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1 Introduction

Church’s formulation of the simple theory of types [1] has the pleasing prop-
erty that every well-formed term has a unique type. The type is thus an
intrinsic attribute of a term. Furthermore, we can restrict attention to well-
formed terms as the only meaningful ones, because the property of being
well-formed is evidently and easily decidable.

Curry’s formulation of combinatory logic [3], later adapted to the λ-
calculus [9], assigns types to terms extrinsically and terms may have many
different types. In other words, types capture properties of terms which
have meaning independent of the types we might assign. This formulation
very easily supports both finitary and infinitary polymorphism. Especially
the former, expressed as intersection types [2], seems to be incompatible
with uniqueness of types.

In this paper we show that it can be very fruitful to consider a two-layer
approach. In the first layer, we have an intrinsically typed λ-calculus in the
tradition of Church. A second layer of types, constructed in the tradition
of Curry, captures properties of terms, but only those already well-formed
according to the first layer. In order to avoid confusion, in the remainder
of the paper we call types from the second layer sorts and use types only to
refer to the first layer.

The resulting system combines the strengths of the two approaches. We
can restrict attention to well-formed terms, and we exploit this when defin-
ing substitution and related operations. Moreover, we can easily define fini-
tary sort polymorphism, and the system is quite precise in the properties it
can assign to terms without losing decidability of sort checking.

The outline of the paper is as follows. We first define an intrinsically
typed λ-calculus in the tradition of Church and consider canonical forms,
which are β-normal and η-long. The theory of canonical forms includes
a brief study of hereditary substitution and iterated expansion. We then
define a system of sorts, including subsorting and intersection sorts, as a
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second layer. Of particular interest for this layer are the preservation of sorts
under hereditary substitution, its converse, and iterated expansion. Finally
we extend subsorting to higher types and conclude with some remarks on
related and future work.

Not much in this paper is new: hereditary substitution and iterated ex-
pansion go back to Watkins [13], who devised them to deal with the com-
plexities of a dependent type theory with linearity and a monad. Much
of the work on sorts and subsorting at higher types is joint work with Lo-
vas [10] in the context of a dependent type theory or with Dunfield [6] in the
context of functional programming. My goal in writing this paper was to
distill these ideas to their purest form to make them as accessible as I could.
In the process I rediscovered some of the virtues of Church’s presentation of
type theory. I also came to understand much better that the construction of
sorts as a refinement of types represents a synthesis of Church’s and Curry’s
approaches to type theory which are often seen as antithetical.

2 An Intrinsically Typed λ-Calculus

Church’s formulation of type theory has two base types: o for truth values
and ι for individuals. Since we are interested in the underlying λ-calculus
and not the logic, we just consider ι as the only base type. We use a modern
notation for function types; Church wrote (β α) for α → β.

DEFINITION 1 (Types). We define the set of types inductively.

1. ι is a type.

2. If α and β are types, then α → β is a type.

We assume that for each type α we have an infinite supply of variables
xα. We also have typed constants cα. Well-formed terms (henceforth just
called terms) satisfy the following inductive definition.

DEFINITION 2 (Well-formed terms). We define the set of well-formed
terms Mα of type α.

1. Any variable xα or constant cα is a term.

2. If xα is a variable and Mβ a term then (λx.M)α→β is a term.

3. If Mα→β
1 and Mα

2 are terms, then (M1 M2)β is a term.

It is an easy inductive property that the type of a term is unique, and
that we can decide if a term is well-formed according to these rules. We
elide the definitions defining the usual notions of free and bound variables
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and α-conversion, β-conversion, and η-conversion. We write fv(M) for the
free variables in a term M . As is common practice, we will mostly omit
type superscripts, since they can usually be determined from context.

Convention. In the remainder of this paper we assume that all
terms are well-formed according to the above definition. More-
over, we will tacitly apply α-conversion to satisfy conditions on
bound variables.

3 Canonical Forms

In the area of logical frameworks, the notion of canonical form is particularly
important. The representation methodology of logical frameworks such as
LF [8] or hereditary Harrop formulas [11] puts the canonical forms of a
given type in one-to-one correspondence with the objects to be modelled.
To achieve this kind of bijection, canonical forms should be β-normal and
η-long. The following mutually inductive definition of canonical and atomic
terms captures this.

DEFINITION 3 (Canonical and atomic terms).

1. If xα is a variable and Nβ is canonical then (λx.N)α→β is canonical.

2. If Rι is atomic then Rι is canonical.

3. If Rβ→α is atomic and Nβ is canonical then (R N)α is atomic.

4. A variable xα or constant cα is atomic.

We have made the intrinisic types of the terms explicit, but except for
clause 2 where we must specify the type ι, the types are entirely redundant.

We can see from the definition that a canonical term cannot contain a
β-redex, because the left-hand side of an application R N must be atomic,
which can only be a variable or another application. It is also fully η-
expanded because the body of a λ-term is either another λ-term (in which
case we do not care about its type) or an atomic term, in which case it must
be of type ι.

Convention. Unless explicitly noted otherwise, in the remain-
der of this paper M and N stand for canonical terms and R
stands for atomic terms.
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4 Hereditary Substitution

Once α-conversion is understood, the crucial operation in the λ-calculus
is substitution, written as [M/x]N . Church only considered it if the type
of M matches the type of the variable x, and if the bound variables of
N are distinct from x and the free variables of M so as to avoid variable
capture. The condition on the bound variables of N can always be achieved
by renaming of bound variables, so substitution is a total operation modulo
α-conversion.

Unfortunately, canonical forms are not closed under substitution. A sim-
ple example is [(λxι. x)/y](yι→ι zι) which yields (λxι. x) z. If we are to
develop a complete theory of canonical forms, we need a different opera-
tion. The central insight is that instead of creating the redex (λxι. x) z we
can spawn another substitution operation, [z/xι]x. This new substitution
is at a smaller type than the original substitution. In this example, we
reduced the type from ι → ι to ι. This observation holds in general, as we
show below.

We define hereditary substitution using three related operations. The
principal operation is the substitution of a canonical term into a canonical
term, yielding a canonical term. We write [Mα/xα]n(Nβ) = N ′β . When
substituting for x in an atomic term R we need to distinguish two cases:
either the variable at the head of R is x, or else it is different from x. In the
former case we may need to substitute hereditarily so as to avoid creating
a redex. In the latter case we just proceed compositionally since the head
of the result will remain unchanged.

We write [M/xα]rn(Rβ) = Nβ if the head of R is x and [Mα/xα]rr(Rβ) =
R′β if the head of R is different from x. The superscript indicates if we are
mapping an atomic term (r) to another atomic term (r) or to a canonical
term (n).

DEFINITION 4 (Head). We define the head hd(R) of an atomic term R
with

hd(x) = x
hd(c) = c
hd(R N) = hd(R)

DEFINITION 5 (Hereditary substitution). We define three forms of hered-
itary substitution

1. [Mα/xα]n(Nβ) = N ′β ,

2. [Mα/xα]rr(Rβ) = R′β for hd(R) 6= x, and

3. [Mα/xα]rn(Rβ) = Nβ for hd(R) = x
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by the following equations. They constitute an inductive definition, first on
the structure of α and second on the structure of N and R, as confirmed by
the subsequent theorem.

[M/xα]n(λy. N) = λy. [M/xα]nN provided y 6= x and y 6∈ fv(M)
[M/xα]n(R) = [M/xα]rr(R) if hd(R) 6= x
[M/xα]n(R) = [M/xα]rn(R) if hd(R) = x

[M/xα]rr(R1 N2) = ([M/xα]rrR1) ([M/xα]nN2)
[M/xα]rr(y) = y for x 6= y
[M/xα]rr(c) = c

[M/xα]rn(R1 N2) = [N ′
2/yβ2

2 ]n(N1) where [M/xα]rn(R1) = λyβ2
2 . Nβ1

1

and [M/xα]n(N2) = N ′
2

[M/xα]rn(x) = Mα

Hereditary substitution is always defined. The key observation is that
if [M/xα]rn(Rβ) = Nβ then β is a subexpression of α. We refer to this
property as type reduction. We write α ≥ β if β is a subexpression of α,
and α > β if β is a strict subexpression of α.1 In the crucial last case of the
hereditary substitution property below, we have α > β2 so the hereditary
substitution does indeed take place at a strictly smaller type.

THEOREM 6 (Hereditary substitution).

1. [Mα/xα]n(Nβ) = N ′β for a unique canonical N ′.

2. [Mα/xα]rr(Rβ) = R′β for a unique atomic R′ if hd(R) 6= x.

3. [Mα/xα]rn(Rβ) = N ′β for a unique canonical N ′ if hd(R) = x.
Furthermore, in this case, α ≥ β.

Proof. Uniqueness is straightforward, since the clauses in the definition of
hereditary substitution do not overlap.

We prove existence by nested induction, first on the type α and second
the terms N and R. Furthermore, the type and term may remain the same
when (1) appeals to (2) or (3), but must become strictly smaller when (2)
or (3) appeal to (1).

Case(1): N = λy2. N1 with y2 6= x and y2 6∈ fv(M). Then

1This should not be confused with a subtyping as familiar from programming lan-
guages. We introduce a corresponding notion of subsorting later in this paper.
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[M/xα]nN1 = N ′
1 for some N ′

1 by i.h.(1) on α and N1

[M/xα]n(λy2. N1) = λy2. N
′
1 by defn. of [ ]n.

Case(1): N = Rι with hd(R) 6= x. Then

[M/xα]rr(R) = R′ for some R′ by i.h.(2) on α and R
[M/xα]n(R) = R′ by defn. of [ ]n

Case(1): N = Rι with hd(R) = x. Then

[M/xα]rn(R) = N ′ for some N ′ by i.h.(3) on α and R
[M/xα]n(R) = N ′ by defn. of [ ]n

Case(2): R = x. Impossible, since we assumed hd(R) 6= x.

Case(2): R = y with y 6= x. Then

[M/xα]rr(y) = y by defn. of [ ]rr

Case(2): R = c. As in the previous case.

Case(2): R = R1 N2. Then

[M/xα]rr(R1) = R′
1 for some R′

1 by i.h.(2) on α and R1

[M/xα]n(N2) = N ′
2 for some N ′

2 by i.h.(1) on α and N2

[M/xα]rr(R1 N2) = R′
1 N ′

2 by defn. of [ ]rr

Case(3): R = x. Then

[M/xα]rn(x) = Mα by defn. of [ ]rn

α ≥ α by defn. of ≥

Case(3): R = y with y 6= x or R = c. Impossible, since we assumed
hd(R) = x.

Case(3): Rβ = Rβ2→β1
1 Nβ2

2 with β = β1. Then

[M/xα]rn(R1) = N ′
1 for some N ′β2→β1

1 and
α ≥ β2 → β1 by i.h.(3) on α and R1

N ′β2→β1
1 = λy2. N1 for some yβ2

2 and Nβ1
1 since N ′

1 is canonical
[M/xα]n(N2) = N ′

2 by i.h.(1) on α and N2

α > β2 by defn. of >

[N ′
2/yβ2

2 ]n(N1) = N ′ by i.h.(1) on β2 and N1

[M/xα]n(R1 N2) = N ′ by defn. of [ ]rn

α > β1 by defn. of >
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�

The hereditary substitution theorem expresses that we can substitute
canonical terms for variables (which are atomic) in a canonical term and
obtain a canonical term.

Conversely, if we have an atomic term, we can convert it to a canonical
term by a process analogous to several η-expansions.

DEFINITION 7 (Iterated expansion). We define ηα(Rα) = Nα by induc-
tion on α.

ηι(R) = R
ηα→β(R) = λxα. ηβ(R ηα(x)) choosing x 6∈ fv(R)

Again, this is easily seen to be well-founded and to return a canonical
term.

THEOREM 8 (Iterated expansion). ηα(Rα) = Nα for some canonical N .

Proof. By induction on the structure of α.

Case: α = ι. Then

ηι(R) = R by defn. of η
Rι canonical by defn. of canonical

Case: α = α2 → α1. Then

Let xα2
2 be a variable not in fv(R)

ηα2(x2) = N2 for some canonical N2 by i.h. on α2

ηα1(R N2) = N1 for some canonical N1 by i.h. on α1

ηα(R) = λx2. N1 by defn. of η
λx2. N1 canonical by defn. of canonical

�

We have been especially detailed in the analysis of the definitions of hered-
itary substitution and iterated expansion because the inductive patterns of
these definitions recur multiple times in our development below.

5 Composition and Identity

With ordinary substitution, we usually need some simple lemmas that show
composition and identity properties. For example, [M1/x1][M2/x2]N =
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[[M1/x1]M2/x2]([M1/x1]N) and [x/x]N = N . The corresponding proper-
ties for hereditary substitution are bit more complex to state because we
need to obey the discipline of canonical and atomic terms which entails that
there are several forms of hereditary substitution, as we have seen in the
previous section.

Also, proofs become a bit more tedious. In the cases of ordinary substi-
tution above, they are straightforward by induction on the structure of N .
Hereditary substitutions are defined by nested induction on a type and a
term, so the proofs of the composition properties employ a corresponding
nested induction.

When all is said and done, though, these proofs are really not much more
difficult since the structure of the definitions guides every single step of the
development.

We need one more preparatory lemma.

THEOREM 9 (Vacuous Substitution).

1. [M/x]n(N) = N if x 6∈ fv(N)

2. [M/x]rr(R) = R if x 6∈ fv(R)

Proof. By straightforward induction on the structure of N and R. Note
that [M/x]rn(R) is never needed when x 6∈ fv(R) because hd(R) can not be
x. �

THEOREM 10 (Composition of hereditary substitutions). Assume x1 6= x2

and x2 6∈ fv(M1). Then

[M1/x1]n([M2/x2]n(N)) = [[M1/x1]n(M2)/x2]n([M1/x]n(N))

Proof. We generalize to the following statements, assuming x1 6= x2 and
x2 6∈ fv(M1).

1. [M1/x1]n([M2/x2]n(N)) = [[M1/x1]n(M2)/x2]n([M1/x]n(N))

2. [M1/x1]rr([M2/x2]rr(R)) = [[M1/x1]n(M2)/x2]rr([M1/x1]rr(R))
if hd(R) 6= x1 and hd(R) 6= x2

3. [M1/x1]n([M2/x2]rn(R)) = [[M1/x1]n(M2)/x2]rn([M1/x1]rr(R))
if hd(R) = x2

4. [M1/x1]rn([M2/x2]rr(R)) = [[M1/x1]n(M2)/x2]n([M1/x1]rn(R))
if hd(R) = x1
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Let xα1
1 and xα2

2 . Then the proof proceeds by nested induction, first on α1

and α2, and second on the terms N and R. Also, part (1) may appeal to
parts (2), (3), and (4) with the same types and terms, but any other appeal
has to strictly decrease the induction measure. For the outer induction,
when α1 decreases then α2 stays the same and vice versa, and in the first
case of part (4) they change roles, so one could take the unordered pair of
the two types or the sum of their sizes as the induction measure.

Case(1): N = λy2. N1.

[M1/x1]n([M2/x2]n(λy2. N1))
= [M1/x1]n(λy2. [M2/x2]n(N1)) by defn. of [ ]n

= λy2. [M1/x1]n([M2/x2]n(N1)) by defn. of [ ]n

= λy2. [[M1/x1]n(M2)/x2]n([M1/x1]n(N1)) by i.h.(1) on α1, α2, N1

= [[M1/x1](M2)/x2]n([M1/x1](λy2. N1)) by defn. of [ ]n (twice)

Case(1): N = R with hd(R1) 6= x1 and hd(R1) 6= x2.

[M1/x1]n([M2/x2]n(R))
= [M1/x1]rr([M2/x2]rr(R)) by defn. of [ ]n (twice)
= [[M1/x1]n(M2)/x2]rr([M1/x1]rr(R)) by i.h.(2) on α1, α2, R
= [[M1/x1]n(M2)/x2]n([M1/x1]n(R)) by defn. of [ ]n (twice)

Case(1): N = R with hd(R) = x2.

[M1/x1]n([M2/x2]n(R))
= [M1/x1]n([M2/x2]rn(R)) by defn. of [ ]n

= [[M1/x1]n(M2)/x2]rn([M1/x1]rr(R)) by i.h.(3) on α1, α2, R
= [[M1/x1]n(M2)/x2]n([M1/x1]n(R)) defn. of [ ]n (twice)

Case(1): N = R with hd(R) = x1.

[M1/x1]n([M2/x2]n(R))
= [M1/x1]rn([M2/x2]rr(R)) by defn. of [ ]n (twice)
= [[M1/x1]n(M2)/x2]n([M1/x1]rn(R)) by i.h.(4) on α1, α2, R
= [[M1/x1]n(M2)/x2]n([M1/x1]n(R)) by defn. of [ ]n

Case(2): R = R1 N2 with hd(R) 6= x1 and hd(R) 6= x2.

[M1/x1]rr([M2/x2]rr(R1 N2))
= [M1/x1]rr([M2/x2]rr(R1)) [M1/x1]n([M2/x2]n(N2))
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by defn. of [ ]rr (twice)
= [[M1/x1]n(M2)/x2]rr([M1/x1]rr(R1)) [M1/x1]n([M2/x2]n(N2))

by i.h.(2) on α1, α2, R1

= [[M1/x1]n(M2)/x2]rr([M1/x1]rr(R1))
[[M1/x1]n(M2)/x2]n([M1/x1]n(N2)) by i.h.(1) on α1, α2, N2

= [[M1/x1]n(M2)/x2]rr([M1/x1]rr(R1 N2)) by defn. of [ ]rr (twice)

Case(2): R = y with y 6= x1 and y 6= x2.

[M1/x1]rr([M2/x2]rr(y))
= y by defn. of [ ]rr (twice)
= [[M1/x1]rr(M2)/x2]([M1/x1]rr(y)) by defn. of [ ]rr (twice)

Case(2): R = c. Like the previous case.

Case(3): R = R1 N2 with hd(R1) = x2.

[M1/x1]n([M2/x2]rn(R1 N2))
= [M1/x1]n([[M2/x2]n(N2)/y2]n(N1)) by defn. of [ ]rn and (*)
= [[M1/x1]n([M2/x2]n(N2))/y2]n([M1/x1]n(N1))

by i.h.(1) on α1 and β2

= [[M1/x1]n(M2)/x2]rn([M1/x1]rr(R1) [M1/x1]n(N2))
by defn. of [ ]rn and (**) and (***)

= [[M1/x1]n(M2)/x2]rn([M1/x1]rr(R1 N2)) by defn. of [ ]rr

where (*)

[M2/x2]rn(R1) = λy2. N1 for some yβ2
2 and Nβ1

1 by hered. subst.
and α2 ≥ β2 → β1 by type reduction of [ ]rn

and (**)

[[M1/x1]n(M2)/x2]rn([M1/x1]rr(R1))
= [M1/x1]n([M2/x2]rn(R1)) by i.h.(3) on α1, α2, R1

= [M1/x1]n(λy2. N1) equality (*)
= λy2. [M1/x1]n(N1) by defn. of [ ]n

and (***)

[[M1/x1]n(M2)/x2]n([M1/x1]n(N2))
= [M1/x1]n([M2/x2]n(N2)) by i.h.(1) on α1, α2, N2

Case(3): R = x2.
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[M1/x1]n([M2/x2]rn(x2))
= [M1/x1]n(M2) by defn. of [ ]rn

= [[M1/x1]n(M2)/x2]rn(x2) by defn. of [ ]rn

= [[M1/x1]n(M2)/x2]rn([M1/x1]rr(x2)) by defn. of [ ]rr

Case(4): R = R1 N2 with hd(R1) = x1.

[M1/x1]rn([M2/x2]rr(R1 N2))
= [M1/x1]rn([M2/x2]rr(R1) [M2/x2]n(N2)) by defn. of [ ]rr

= [[[M1/x1]n(M2)/x2]n([M1/x1]n(N2))/y2]n([[M1/x1](M2)/x2](N1))
by defn. of [ ]rn, (**) and (***)

= [[M1/x1]n(M2)/x2]n([[M1/x1]n(N2)/y2]n(N1))
by i.h.(1) on α2, β2

= [[M1/x1]n(M2)/x2]n([M1/x1]rn(R1 N2)) by defn. of [ ]rn and (*)

where (*)

[M1/x1]rn(R1) = λy2. N1 for some yβ2
2 and Nβ1

1 by hered. subst.
and α1 ≥ β2 → β1 by type reduction of [ ]rn

and (**)

[M1/x1]rn([M2/x2]rr(R1))
= [[M1/x1]n(M2)/x2]n([M1/x1]rn(R1)) by i.h.(4) on α1, α2 and R1

= [[M1/x1]n(M2)/x2]n(λy2. N1) by equality (*)
= λy2. [[M1/x1]n(M2)/x2]n(N1) by defn. of [ ]n

and (***)

[M1/x1]n([M2/x2]n(N2))
= [[M1/x1]n(M2)/x2]n([M1/x1]n(N2)) by i.h.(1) on α1, α2, N2

Case(4): R = x1.

[M1/x1]rn([M2/x2]rr(x1))
= [M1/x1]rn(x1) by defn. of [ ]rr

= M1 by defn. of [ ]rn

= [[M1/x1]n(M2)/x2]n(M1) by vacuous substitution
= [[M1/x1]n(M2)/x2]n([M1/x1]rn(x1)) by defn. of [ ]rn

�

The identity property of the ordinary substitution [x/x]N = N is almost
trivial, and the reverse [N/x]x = N is part of the definition of substitution.
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Here, the identity properties reveal an interplay between iterated expan-
sion and hereditary substitution. We cannot substitute [x/x] because x
may not be canonical. Instead, we substitute the iterated expansion of x,
so the left identity property shows that the iterated expansion of a variable
behaves like the variable itself under substitution. Conversely, the right
identity shows that substituting into the expansion of a variable amounts
to substituting into the variable itself.

THEOREM 11 (Identity of iterated expansion).

1. (Left identity) [ηα(x)/x]n(N) = N

2. (Right identity) [N/x]n(ηα(x)) = N

Proof. We generalize to the following five properties.

1. [ηα(x)/x]n(N) = N

2. [ηα(x)/x]rr(R) = R if hd(R) 6= x

3. [ηα(x)/x]rn(R) = ηβ(Rβ) if hd(R) = x

4. [N/x]n(ηα(R)) = ηα([N/x]rr(R)) if hd(R) 6= x

5. [N/x]n(ηα(R)) = [N/x]rn(R) if hd(R) = x

Right identity follows from part (5) using R = x.
The proof is by nested induction, first on α and second on N and R.

Also, (1) may appeal to (2) and (3) with unchanged type or term, but
appeals from (2) and (3) to any part will strictly decrease the measure of
the parameters.

Case(1): N = λy2. N1 for y2 6= x.

[ηα(x)/x]n(λy2. N1)
= λy2. [ηα(x)/x]n(N1) by defn. of [ ]n

= λy2. N1 by i.h.(1) on α and N1

Case(1): N = Rι with hd(R) 6= x.

[ηα(x)/x]n(R)
= [ηα(x)/x]rr(R) by defn. of [ ]n

= R by i.h.(2) on α and R
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Case(1): N = Rι with hd(R) = x.

[ηα(x)/x]n(R)
= [ηα(x)/x]rn(R) by defn. of [ ]n

= ηι(R) by i.h.(3) on α and R
= R by defn. of η

Case(2): R = R1 N2.

[ηα(x)/x]rr(R1 N2)
= [ηα(x)/x]rr(R1) [ηα(x)/x]n(N2) by defn. of [ ]rr

= R1 [ηα(x)/x]n(N2) by i.h.(2) on α and R1

= R1 N2 by i.h.(1) on α and N2

Case(2): R = y for y 6= x.

[ηα(x)/x]rr(y)
= y by defn. of [ ]rr

Case(2): R = c. Like the previous case.

Case(3): R = Rβ2→β1
1 Nβ2

2 where hd(R1) = x.

[ηα(x)/x]rn(R1 N2)
= [N2/y2]n(ηβ1(R1 ηβ2(y2))) by defn. of [ ]rn, (*) and (**)
= ηβ1([N2/y2]rr(R1 ηβ2(y2))) by i.h.(4) on β1

= ηβ1([N2/y2]rr(R1) [N2/y2]n(ηβ2(y2))) by defn. of [ ]rr

= ηβ1(R1 [N2/y2]n(ηβ2(y2))) by vacuous substitution
= ηβ1(R1 [N2/y2]rn(y2)) by i.h.(5) on β2

= ηβ1(R1 N2) by defn. of [ ]rn

where (*)

[ηα(x)/x]rn(R1)
= ηβ2→β1(R1) by i.h.(3) on α and R1

= λy2. η
β1(R1 ηβ2(y2)) by defn. of η

α ≥ β2 → β1 by type reduction of [ ]rn

and (**)

[ηα(x)/x]n(N2)
= N2 by i.h.(1) on α and N2

Case(3): R = x.
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[ηα(x)/x]rn(x)
= ηα(x) by defn. of [ ]rn

Case(4): α = α2 → α1 and hd(R) 6= x.

[N/x]n(ηα2→α1(R))
= [N/x]n(λy2. η

α1(R ηα2(y2))) by defn. of η
= λy2. [N/x]n(ηα1(R ηα2(y2))) by defn. of [ ]n

= λy2. η
α1([N/x]rr(R ηα2(y2))) by i.h.(4) on α1

= λy2. η
α1([N/x]rr(R) [N/x]n(ηα2(y2))) by defn. of [ ]rr

= λy2. η
α1([N/x]rr(R) ηα2([N/x]rr(y2))) by i.h.(4) on α2

= λy2. η
α1([N/x]rr(R) ηα2(y2)) by defn. of [ ]rr

= ηα2→α1([N/x]rr(R)) by defn. of η

Case(4): α = ι and hd(R) 6= x.

[N/x]n(ηι(R))
= [N/x]n(R) by defn. of η
= [N/x]rr(R) by defn. of [ ]n

= ηι([N/x]rr(R)) by defn. of η

Case(5): α = α2 → α1 and hd(R) = x.

[N/x]n(ηα2→α1(R))
= [N/x]n(λy2. η

α1(R ηα2(y2))), y2 6∈ fv(N) ∪ fv(R) by defn. of η
= λy2. [N/x]n(ηα1(R ηα2(y2))) by defn. of [ ]n

= λy2. [N/x]rn(R ηα2(y2)) by i.h.(5) on α1

= λy2. [ηα2(y2)/y2]n(N1) by defn. of [ ]rn, (*) and (**)
= λy2. N1 by i.h.(1) on α2

= [N/x]rn(R) by equality (*)

where (*)

[N/x]rn(R)
= λy2. N1 for some Nα1

1 by hereditary substitution
and renaming, since y2 6∈ fv(N) ∪ fv(R)

and (**)

[N/x]n(ηα2(y2))
= ηα2([N/x]rr(y2)) by i.h.(4) on α2

= ηα2(y2) by defn. of [ ]rr
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Case(5): α = ι and hd(R) = x.

[N/x]n(ηι(R))
= [N/x]n(R) by defn. of η
= [N/x]rn(R) by defn. of [ ]n

�

6 Simple Sorts

Now that we have defined an intrinsically typed λ-calculus in the tradition
of Church, we can define a second layer of sorts in the tradition of Curry [3].
In this and the following section we temporarily allow general well-formed
terms, and not just canonical forms.

We begin by considering the type ι. For Church’s purposes, a single
type of individuals was sufficient: other “types” could be explicitly defined
using the higher-order features of his type theory, or one could define new
constants and represent sorts as predicates. For example, if we wanted to
introduce natural numbers, we might declare constants zι, sι→ι, and natι→o

and the assumptions

nat(z)
∀xι. nat(x) ⊃ nat(s(x))

However, reasoning with natural numbers now requires a good deal of ex-
plicit inferences with the nat predicate, while from a modern perspective it
seems that static type-checking should be able ascertain when a given term
represents a natural number.

In order to explore this, we allow declarations of sorts such as nat. In
addition we can declare new constants and give them sorts. For example:

natι sort
zι : nat
sι→ι : nat → nat

The first declaration states that nat is a new sort constant that represents
a subset of the terms of type ι. We say that nat refines ι. We use Q for sort
constants, also called base sorts.

From the last declaration we can see that for this new device to be useful,
the language of sorts needs to include function sorts, and they must match
the types in a consistent way. Declarations for base sorts and constants are
collected in a signature Σ. We call these simple sorts, since we extend them
later to include intersections, and because they match simple types.

DEFINITION 12 (Simple sorts). We define simple sorts inductively with
respect to a signature Σ.
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1. A base sort Qι declared in Σ is a simple sort.

2. If Sα and T β are simple sorts, then (S → T )α→β is a simple sort.

The general form of a constant declaration is cα : Sα, that is, the sort
assigned to a constant must refine its type. This is essential in this two-layer
approach so we do not lose the good properties of the underlying intrinsically
typed λ-calculus.

We follow a similar restriction when we assign sorts to variables xα : Sα.
Since sorts are extrinsic to variables, just as they are extrinsic to terms, we
must now explicitly track the sort we would like to assign to a variable. We
collect the sort assignments to variables in a context Γ which is a collection
of variable declarations as above. We write dv(Γ) for the set of variables
declared in a context.

More generally, type assignment is a relation between a term and a sort
in a context. We write Γ ` Mα : Sα. In modern parlance we refer to
this as a judgment and define it by a set of inference rules, but it could
just as well be written out as an inductive definition. Interestingly, Curry’s
original paper also used an axiomatic formulation to establish that a term
has a sort by logical reasoning, while Church’s original paper gave typing
as an explicitly inductive definition. We assume all sort and term constants
are declared in a fixed signature Σ.

x:S ∈ Γ

Γ ` x : S

c:S ∈ Σ

Γ ` c : S

Γ, x:S ` M : T (x 6∈ dv(Γ))

Γ ` λx.M : S → T

Γ ` M : S → T Γ ` N : S

Γ ` M N : T

We have omitted all the types, but it is essential to remember that we
consider M : S only when M has type α and S refines α, that is, Mα : Sα.
If we ignore this restriction, then the rules above define a Curry-Howard
style type assignment system for the simply-typed λ-calculus [9] which is
essentially isomorphic to Church’s system. We do not precisely formulate
or prove such a theorem here in order to concentrate on richer sort systems.

7 Subsorts

The first generalization will be to allow subsorts. Continuing the previous
example, we can distinguish the sort with just the constant z (zero) and the
sort of all positive terms (pos). We also express that they are subsorts of
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the sort of natural numbers (nat).

zero ≤ nat
pos ≤ nat
z : zero
s : nat → pos

We now also allow multiple sort declarations for constants. Since a sort
represents a property of terms, this is perfectly natural. We also need a
rule of subsumption, allowing us to exploit the knowledge of subsorting.
Remarkably, the remainder of the system does not need to be changed.

Q ≤ Q

Q1 ≤ Q2 Q2 ≤ Q3

Q1 ≤ Q3

Γ ` M : Q Q ≤ Q′

Γ ` M : Q′

We can now prove, for example, s z : pos or λx. s x : zero → pos.
However, this system is unfortunately very weak. For example, λx. x has

the property expressed by the sort (nat → zero) → (zero → nat). In words:
any function mapping an arbitrary natural number to 0 will also map 0 to
some natural number. But this typing cannot be established in the system
above, because subtyping is too weak. Fortunately, this problem can be
solved by strengthening the subtyping relation and raising it to higher type,
as we will do in Section 12.

8 Sort Checking Canonical Forms

We now restrict our attention again to canonical forms. Careful study of
a sorting system for canonical forms can be transferred to a calculus that
permits arbitrary well-formed terms, although we do not pursue this transfer
in this paper.

The rules for sort assignment in the previous section do not immediately
describe an algorithm for performing sort checking. If we try to infer sorts
for terms, then the rule for λ-abstraction presents a problem in that, even
if we can infer the sort of the body, the sort of the bound variable has to
be guessed. Conversely, if we instead try to check a term against a known
sort, then the rule for application creates problems because we do not know
the sort of the argument. This is in contrast to Church’s system where we
can systematically construct the unique type of a term (or fail, if it is not
well-formed). One avenue now would be to introduce unification into the
sort-checking process, but this will be difficult to extend to more expressive
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sort systems. Instead, we observe that on canonical forms sort-checking can
be performed very elegantly.

We distinguish two judgments, Γ ` N ⇐ S and Γ ` R ⇒ S. For the first
one, we envision Γ, N , and S to be given, and we want to verify if N has
sort S. For the second, we assume that Γ and R are given, and we want to
synthesize a sort S for R. At the place where checking meets synthesis (or:
where an atomic term is viewed as a canonical one) we must have a base
sort that refines ι.

x:S ∈ Γ

Γ ` x⇒ S

c:S ∈ Σ

Γ ` c ⇒ S

Γ, x:S ` N ⇐ T (x 6∈ dv(Γ))

Γ ` λx.N ⇐ S → T

Γ ` R ⇒ S → T Γ ` N ⇐ S

Γ ` R N ⇒ T

Γ ` R ⇒ Q′ Q′ ≤ Q

Γ ` R ⇐ Q

This system can easily be recognized as a decision procedure for sorting
of terms, based on the intuition given above, as long as basic subsorting is
also decidable. Since Q′ ≤ Q is just the reflexive and transitive closure of
the subsorting declarations in the signature, this also holds.

We hold off on a formal statement of this property, since we prove a more
general statement in the next section. We close this section by reconsidering
the example showing incompleteness of the rules from the previous section.
We noted that

6` λx. x : (nat → zero) → (zero → nat)

This term, λxι→ι. x, is not canonical. If we expand it to its canonical form
we obtain

λxι→ι. ηι→ι(x) = λx. λy. ηι(x ηι(y)) = λx. λy. x y

Now we can indeed verify that

` λx. λy. x y ⇐ (nat → zero) → (zero → nat)

This derivation uses zero ≤ nat twice: once for y and once for x y.

9 Intersection Sorts

The system so far, on canonical forms, has a number of desirable properties,
but it lacks the basic ability to ascribe more than one property to a term.
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So we can prove, for example,

` λxι. x ⇐ nat → nat
` λxι. x ⇐ zero → zero
` λxι. x ⇐ pos → pos

but we cannot combine these pieces of information into a single judgment.
At first one might think of a form of parametric polymorphism to solve this
problem, for example, ∀qι. q → q as a common sort. To see that this would
not be sufficient, consider the additional sorts even and odd.

even ≤ nat
odd ≤ nat
z : even
s : even → odd
s : odd → even

Now we have, for example,

` λxι. s(s(s x)) ⇐ even → odd
` λxι. s(s(s x)) ⇐ odd → even

but we cannot combine them using universal quantification.
To increase the expressive power we introduce finitary polymorphism in

the form of intersection sorts, S1 ∧ S2. Because we construct a Curry-style
sort assignment system on top of Church-style typing, a single term M can
only be assigned two sorts S1 and S2 if Mα : Sα

1 and Mα : Sα
2 . Therefore,

to form the intersection, both sorts must refine the same type Sα
1 ∧Sα

2 , and
the intersection will again refine α.

The rules to introduce and eliminate intersection are quite straightfor-
ward: a term M , which need not be canonical, has sort S1 ∧ S2 if and only
if it has both sorts.

Γ ` M : S1 Γ ` M : S2

Γ ` M : S1 ∧ S2

Γ ` M : S1 ∧ S2

Γ ` M : S1

Γ ` M : S1 ∧ S2

Γ ` M : S2

To integrate them into the canonical forms system, we have to think about
the direction they should apply.

The first consideration is the availability of information. In the checking
rules, we know the sort we are checking against, and we must make sure
we also know the sort in the premises. This means that the intersection
introduction rule on the left should be a checking rule. In the synthesis
rules we may assume that the premise yields a type, but we must make
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sure we can synthesize the type in the conclusion. This means that the two
elimination rules on the right should be synthesis rules.

Γ ` N ⇐ S1 Γ ` N ⇐ S2

Γ ` N ⇐ S1 ∧ S2

Γ ` R ⇒ S1 ∧ S2

Γ ` R ⇒ S1

Γ ` R ⇒ S1 ∧ S2

Γ ` R ⇒ S2

We can also think about it from the logical perspective: an introduction
rule, read bottom-up, will decompose the formula (here: the sort S1 ∧ S2).
It should therefore become a checking rule, which also decomposes the sort
bottom-up. Conversely, an elimination rule, read top-down, will decompose
a formula (here: the sort S1 ∧ S2). It should therefore become a synthesis
rule which also decomposes the sort top-down.

We introduce one more sort, >, which is the unit of intersection and
can be thought of as a conjunction of zero conjuncts. The introduction
rule (checking), therefore, has zero premises which must be satisfied. And
instead of two eliminations rules (synthesis) we have none.

Γ ` N ⇐ > No > elimination rule

This rule may at first appear troublesome, but due to our two-layer con-
struction it does not mean that every term is well-sorted, just those that are
well-formed according to the typing discipline. So > is just an uninformative
property of well-formed terms.

We consolidate our language of sorts into a definition, extending the
previous definition of simple sorts.

DEFINITION 13 (Sorts). We define sorts inductively with respect to a
signature Σ.

1. A base sort Qι declared in Σ is a sort.

2. If Sα and T β are sorts, then (S → T )α→β is a sort.

3. If Sα and Tα are sorts then (S ∧ T )α is a sort.

4. >α is a sort for each type α.

The complete rules for sort assignment can be found in Figure 1. Now
we can verify that, indeed, at least for canonical forms sort checking is
decidable.

THEOREM 14 (Decidability of sort checking). Assume a signature Σ with
sort declarations is fixed.
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Subsorting Q′ ≤ Q.

Q ≤ Q

Q1 ≤ Q2 Q2 ≤ Q3

Q1 ≤ Q3

Q′ ≤ Q ∈ Σ

Q′ ≤ Q

Sort checking Γ ` Nα ⇐ Sα and
sort synthesis Γ ` Rα ⇒ Tα.

x:S ∈ Γ

Γ ` x⇒ S

c:S ∈ Σ

Γ ` c ⇒ S

Γ, x:S ` N ⇐ T (x 6∈ dv(Γ))

Γ ` λx.N ⇐ S → T

Γ ` R ⇒ S → T Γ ` N ⇐ S

Γ ` R N ⇒ T

Γ ` R ⇒ Q′ Q′ ≤ Q

Γ ` R ⇐ Q

Γ ` N ⇐ S1 Γ ` N ⇐ S2

Γ ` N ⇐ S1 ∧ S2

Γ ` R ⇒ S1 ∧ S2

Γ ` R ⇒ S1

Γ ` R ⇒ S1 ∧ S2

Γ ` R ⇒ S2

Γ ` N ⇐ > No > elimination rule

Figure 1. Sort assignment rules for canonical and atomic terms
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1. It is decidable whether Q′ ≤ Q.

2. It is decidable whether Γ ` N ⇐ S.

3. There is a finite number of sorts T such that Γ ` R ⇒ T .

We assume that all judgments are well-formed in the manner explained
before. For example N must be of some type α and S must refine α.

Proof. Decidability of subsorting follows since it is just the reflexive and
transitive closure of the given subsort declarations.

Parts (2) and (3) follow by nested induction, first on the terms N and R.
Second, (2) may appeal to (3) with the same term, but (3) may appeal to
(2) only on a strictly smaller term. Finally within each part we may break
down the structure of S and T if the term stays the same.

Case(2) S = >. Then Γ ` N ⇐ > by rule.

Case(2) S = S1∧S2. Then Γ ` N ⇐ S1∧S2 iff Γ ` N ⇐ S1 and Γ ` N ⇐
S2 by inversion. Both of these are decidable by induction hypothesis
(2) on N and S1 and S2, respectively, and so Γ ` N ⇐ S1 ∧ S2 is
decidable.

Case(2) S = S1 → S2. Then Γ ` N ⇐ S1 → S2 iff N = λx1. N2 and
Γ, x1:S1 ` N2 ⇐ S2. This is decidable by induction hypothesis on N2

and S2.

Case(2) S = Q. Then Γ ` N ⇐ Q iff N = R and there exists a Q′ such
that Γ ` R ⇒ Q′ and Q′ ≤ Q. By induction hypothesis (3) on R,
there is a finite set of Q′ such that Γ ` R ⇒ Q′. By part (1) we can
test each one in turn to see if at least one of them is a subsort of Q
or not.

Case(3) R = x. Then there is a unique T such that x:T ∈ Γ, so we start
with Γ ` x ⇒ T . We can saturate the set of judgments Γ ` x ⇒ T ′

by applying the two intersection elimination rules, the only ones that
do not change x. Since there are only finitely many conjuncts in T ,
this will terminate with a finite set.

Case(3) R = c. As in the case for variables, except we may already start
with a finite set of T with Γ ` c ⇒ Ti since there may be finitely many
declarations for c.

Case(3) R = R1 N2. By induction hypothesis on R1, there are finitely
many T ′ such that Γ ` R1 ⇒ T ′. For each T ′ of the form T2 → T1
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for some T2 and T1 we can test, by induction hypothesis, whether
Γ ` N2 ⇐ T2. Then for each matching T1 we get Γ ` R1 N2 ⇒ T1.
We complete the set of all sorts synthesized by R1 N2 by saturating
with respect to the two intersection elimination rules.

�

10 Sort Preservation

The decidability of sort checking is a useful property for an implementation,
but we should verify that the system is well-constructed. On canonical
forms, this means the preservation of sorts under hereditary substitution
and iterated expansions, which are generalizations of the same properties
for types. We constructed the rules systematically, which makes the proof
of these preservation properties quite straightforward.

We need some properties of typing derivations, specifically that the order
of the typing assumptions does not matter (order irrelevance), and that we
can adjoin additional unused assumptions (weakening) without changing
the structure of the typing derivation. We elide the straightforward formal
statement and proof of these properties. Recall that we assume that all
judgments are well-formed with respect to the underlying layer of types.

THEOREM 15 (Sort preservation under hereditary substitution).
Assume Γ ` M ⇐ S.

1. If Γ, x:S ` N ⇐ T then Γ ` [M/x]n(N) ⇐ T .

2. If Γ, x:S ` R ⇒ T and hd(R) 6= x then Γ ` [M/x]rr(R) ⇒ T .

3. If Γ, x:S ` R ⇒ T and hd(R) = x then Γ ` [M/x]rn(R) ⇐ T .

Proof.
There are two forms of induction we can use for this property. One is

a nested induction on the structure of the type α of Mα first, and the
structure of the given sort derivations second. This is very similar to the
proof given for composition of substitutions earlier.

An alternative is to use a nested induction, first over the structure of
the computation of [M/x]n(N), [M/x]rr(R), and [M/x]rn(R), and second
on the sort derivation D for N and R. For this, we consider the equations
defining hereditary substitutions as rules of computation, reading them left
to right, where we can apply the induction hypothesis to any subcomputa-
tion. Since hereditary substitution is well-founded, this is a well-founded
form of induction.
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We use this alternative method to illustrate it. When we write “by i.h. on
[M/x]n(N)” we mean the computation starting at this term, which should
be a subcomputation of the given one.

Case(1): [M/x]n(N) is arbitrary and

D =

D1

Γ, x:S ` N ⇐ T1

D2

Γ, x:S ` N ⇐ T2

Γ, x:S ` N ⇐ T1 ∧ T2

Γ ` [M/x]n(N) ⇐ T1 by i.h.(1) on [M/x]n(N) and D1

Γ ` [M/x]n(N) ⇐ T2 by i.h.(2) on [M/x]n(N) and D2

Γ ` [M/x]n(N) ⇐ T1 ∧ T2 by rule

Case(1): [M/x]n(N) is arbitrary and

D =
Γ, x:S ` N ⇐ >

Γ ` [M/x]n(N) ⇐ > by rule

Case(1): [M/x]n(λy2. N1) = λy2. [M/x]n(N1) where y2 6= x and y2 6∈
fv(M) and

D =

D1

Γ, x:S, y2:T2 ` N1 ⇐ T1

Γ, x:S ` λy2. N1 ⇐ T2 → T1

Γ, y2:T2, x:S ` N1 ⇐ T1 by order irrelevance
Γ, y2:T2 ` M ⇐ S by weakening
Γ, y2:T2 ` [M/x]n(N1) ⇐ T1 by i.h.(1) on [M/x]n(N1) and D1

Γ ` λy2. [M/x]n(N1) ⇐ T2 → T1 by rule

Case(1): [M/x]n(R) = [M/x]rr(R) with hd(R) 6= x and

D =

D′
Γ, x:S ` R ⇒ Q′

Q
Q′ ≤ Q

Γ, x:S ` R ⇐ Q

Γ ` [M/x]rr(R) ⇒ Q′ by i.h.(2) on [M/x]rr(R) and D′
Γ ` [M/x]n(R) ⇐ Q by rule
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Case(1): [M/x]n(R) = [M/x]rn(R) with hd(R) = x and

D =

D′
Γ, x:S ` R ⇒ Q′

Q
Q′ ≤ Q

Γ, x:S ` R ⇐ Q

Γ ` [M/x]rn(R) ⇐ Q′ by i.h.(3) on D′
Γ ` [M/x]rn(R) ⇒ Q′′ and Q′′ ≤ Q′ by inversion
Q′′ ≤ Q by transitivity
Γ ` [M/x]rn(R) ⇐ Q by rule

Case(2): [M/x]rr(R) arbitrary and

D =

D12

Γ, x:S ` R ⇒ T1 ∧ T2

Γ, x:S ` R ⇒ T1

Γ ` [M/x]rr(R) ⇒ T1 ∧ T2 by i.h.(2) on [M/x]rr(R) and D12

Γ ` [M/x]rr(R) ⇒ T1 by rule

Case(2): [M/x]rr(R) is arbitrary and D ends in the second intersection
elimination rule. Symmetric to the previous case.

Case(2): [M/x]rr(R1 N2) = ([M/x]rrR1) ([M/x]nN2) and

D =

D1

Γ, x:S ` R1 ⇒ T2 → T1

D2

Γ, x:S ` N2 ⇐ T2

Γ, x:S ` R1 N2 ⇒ T1

Γ ` [M/x]rrR1 ⇒ T2 → T1 By i.h.(2) on [M/x]rrR1 and D1

Γ ` [M/x]nN2 ⇐ T2 By i.h.(1) on [M/x]nN2 and D2

Γ ` ([M/x]rrR1) ([M/x]nN2) ⇒ T1 by rule

Case(2): [M/x]rr(y) = y with y 6= x and

D =
y:T ∈ Γ, x:S

Γ, x:S ` y ⇒ T

Γ ` y ⇒ T by rule

Case(2): [M/x]rr(c) = c and D ends in the sorting rules for constants. As
in the previous case.
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Case(3): [M/x]rn(R) is arbitrary and

D =

D12

Γ, x:S ` R ⇒ T1 ∧ T2

Γ, x:S ` R ⇒ T1

Γ ` [M/x]rn(R) ⇐ T1 ∧ T2 by i.h.(3) in [M/x]rn(R) and D12

Γ ` [M/x]rn(R) ⇐ T1 by inversion

Case(3): [M/x]rn(R) is arbitrary and D ends in the second intersection
elimination rule. Symmetric to the previous case.

Case(3): [M/x]rn(R1 N2) = [N ′
2/y2]n(N1) where [M/x]rn(R1) = λy2. N1

and [M/x]n(N2) = N ′
2 and

D =

D1

Γ, x:S ` R1 ⇒ T2 → T1

D2

Γ, x:S ` N2 ⇐ T2

Γ, x:S ` R1 N2 ⇒ T1

Γ ` [M/x]rn(R1) ⇐ T2 → T1 by i.h.(3) on [M/x]rn(R1) and D1

Γ ` λy2. N1 ⇐ T2 → T1 by equality
Γ, y2:T2 ` N1 ⇐ T1 by inversion
Γ ` [M/x]n(N2) ⇐ T2 by i.h.(1) on [M/x]n(N2) and D2

Γ ` N ′
2 ⇐ T2 by equality

Γ ` [N ′
2/y2]n(N1) ⇐ T1 by i.h.(1) on [N ′

2/y2]n(N1)

Case(3): [M/x]rn(x) = M and

D =
x:S ∈ (Γ, x:S)

Γ, x:S ` x⇒ S

Γ ` M ⇐ S by assumption

�

A second property is sort preservation under iterated expansion. In some
sense this is dual to the previous property: hereditary substitution allows
us to replace a hypothesis x:S which should be read as x⇒S with a term
M ⇐ S and thus provides a way to go from checking to synthesis. Con-
versely, iterated expansion takes us from x⇒ S to ηα(x) ⇐ S, that is, from
synthesis to checking.

THEOREM 16 (Sort preservation under iterated expansion).
If Γ ` Rα ⇒ T then Γ ` ηα(R) ⇐ T .
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Proof. By induction on the structure of T .

Case: T = T1 ∧ T2. Then

Γ ` R ⇒ T1 ∧ T2 assumption
Γ ` R ⇒ T1 by rule
Γ ` ηα(R) ⇐ T1 by i.h. on T1

Γ ` R ⇒ T2 by rule
Γ ` ηα(R) ⇐ T2 by i.h. on T2

Γ ` ηα(R) ⇐ T1 ∧ T2 by rule

Case: T = >. Then

Γ ` ηα(R) ⇐ > by rule

Case: T = T2 → T1 and α = α2 → α1.

Let x2 be a variable not in fv(R).
Γ, x2:T2 ` x2 ⇒ T2 by rule
Γ, x2:T2 ` ηα2(x2) ⇐ T2 by i.h. on T2

Γ, x2:T2 ` R ⇒ T2 → T1 by weakening
Γ, x2:T2 ` R ηα2(x2) ⇒ T1 by rule
Γ, x2:T2 ` ηα1(R ηα2(x2)) ⇐ T1 by i.h. on T1

Γ ` λx2. η
α1(R ηα2(x2)) ⇐ T2 → T2 by rule

Case: T = Q and α = ι.

Γ ` R ⇒ Q assumption
Q ≤ Q by reflexivity
Γ ` R ⇐ Q by rule

�

11 Sort Preservation under Converse Substitution

One of the surprising properties of intersection types that was realized early
on in their development [2] is that the converse of β-reduction preserves
types. This means if we can type a normal form, we can type every term
that reduces to it. Here, in the setting of canonical forms, we don’t have
redexes, but we can ask a corresponding question about the converse of
hereditary substitution. We will show in this section that the converse of
hereditary substitution preserves sorts.

We first prove a few useful lemmas.

LEMMA 17 (Strengthening).
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1. If Γ, x:S ` N ⇐ T and x 6∈ fv(N) then Γ ` N ⇐ T .

2. If Γ, x:S ` R ⇒ T and x 6∈ fv(R) then Γ ` R ⇒ T .

Proof. By straightforward mutual induction on N and R. �

We write [Rα/xα]N and [Rα/xα]R′ for the direct substitution of R for x
in N and R′, which should be capture-avoiding as usual. This substitution
is not hereditary. Intuitively, this is because we are replacing a variable,
which is atomic, with an atomic term of the same sort.

An easy induction verifies that direct substitution preserves types and,
once we know this, also sorts.

LEMMA 18 (Sort preservation under direct substitution).
Assume Γ ` R ⇒ S.

1. If Γ, x:S ` N ⇐ T then Γ ` [R/x]N ⇐ T .

2. If Γ, x:S ` R′ ⇒ T then Γ ` [R/x]R′ ⇒ T

Proof. By straightforward mutual induction on the typing derivations for
N and R′. �

LEMMA 19 (Hypothesis intersection).

1. If Γ, x:S1 ` N ⇐ T then Γ, x:S1 ∧ S2 ` N ⇐ T .

2. If Γ, x:S2 ` N ⇐ T then Γ, x:S1 ∧ S2 ` N ⇐ T .

3. If Γ, x:S1 ` R ⇒ T then Γ, x:S1 ∧ S2 ` R ⇒ T .

4. If Γ, x:S2 ` R ⇒ T then Γ, x:S1 ∧ S2 ` R ⇒ T .

Proof. We show the proof of part (1). The others are analogous.

Γ, x:S1 ` N ⇐ T Given
Γ, y:S1 ∧ S2, x:S1 ` N ⇐ T by weakening
Γ, y:S1 ∧ S2 ` y ⇒ S1 ∧ S2 by rule
Γ, y:S1 ∧ S2 ` y ⇒ S1 by rule
Γ, y:S1 ∧ S2 ` [y/x]N ⇐ T by direct substitution
Γ, x:S1 ∧ S2 ` N ⇐ T by renaming

�

THEOREM 20 (Sort preservation under converse hereditary substitution).
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1. If Γ ` [M/x]n(N) ⇐ T then there exists an S such that Γ ` M ⇐ S
and Γ, x:S ` N ⇐ T .

2. If Γ ` [M/x]rr(R) ⇒ T then there exists an S such that Γ ` M ⇐ S
and Γ, x:S ` R ⇒ T .

3. If Γ ` [M/x]rn(R) ⇐ T then there exists an S such that Γ ` M ⇐ S
and Γ, x:S ` R ⇒ T .

Proof. Again, we have a choice: we can prove this by a nested induction
on a type and a sorting derivation, or we can use computation induction on
the definition of hereditary substitution. Choosing the latter, the proof is
by nested induction, first on the computation of [M/x]n(N), [M/x]rr(R) or
[M/x]rn(R) and second on the given typing derivation D.

Case(1): [M/x]n(N) is arbitrary and

D =

D1

Γ ` [M/x]n(N) ⇐ T1

D2

Γ ` [M/x]n(N) ⇐ T2

Γ ` [M/x]n(N) ⇐ T1 ∧ T2

There exists S1 such that
Γ ` M ⇐ S1 and
Γ, x:S1 ` N ⇐ T1 by i.h.(1) on [M/x]n(N) and D1

There exists S2 such that
Γ ` M ⇐ S2 and
Γ, x:S2 ` N ⇐ T2 by i.h.(1) on [M/x]n(N) and D2

Γ, x:S1 ∧ S2 ` N ⇐ T1 by hypothesis intersection
Γ, x:S1 ∧ S2 ` N ⇐ T2 by hypothesis intersection
Γ, x:S1 ∧ S1 ` N ⇐ T1 ∧ T2 by rule
Γ ` M ⇐ S1 ∧ S2 by rule

Case(1): [M/x]n(N) is arbitrary and

D =
Γ ` [M/x]n(N) ⇐ >

Γ ` M ⇐ > by rule
Γ, x:> ` N ⇐ > by rule
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Case(1): [M/x]n(λy2. N1) = λy2. [M/x]n(N1) where y2 6= x and y2 6∈
fv(M) and

D =

D1

Γ, y2:T2 ` [M/x]n(N1) ⇐ T1

Γ ` λy2. [M/x]n(N1) ⇐ T2 → T1

There exists S such that
Γ, y2:T2 ` M ⇐ S and
Γ, y2:T2, x:S ` N1 ⇐ T1 by i.h.(1) on [M/x]n(N1) and D1

Γ, x:S, y2:T2 ` N1 ⇐ T1 by order irrelevance
Γ, x:S ` λy2:T2. N1 ⇐ T2 → T1 by rule
Γ ` M ⇐ S by strengthening since y2 6∈ fv(M)

Case(1): [M/x]n(R) = [M/x]rr(R) where hd(R) 6= x and

D =

D′
Γ ` [M/x]rrR ⇒ Q′ Q′ ≤ Q

Γ ` [M/x]rrR ⇐ Q

There exists S such that
Γ ` M ⇐ S and
Γ, x:S ` R ⇒ Q′ by i.h.(2) on [M/x]rr(R) and D′
Γ, x:S ` R ⇐ Q by rule

Case(1): [M/x]n(R) = [M/x]rn(R) where hd(R) = x and

D =

D′
Γ ` [M/x]rn(R) ⇒ Q′ Q′ ≤ Q

Γ ` [M/x]rn(R) ⇐ Q

There exists S such that
Γ ` M ⇐ S and
Γ, x:S ` R ⇒ Q′ by i.h.(3) on [M/x]rn(R) and D′
Γ, x:S ` R ⇐ Q by rule

Case(2): [M/x]rr(R) is arbitrary and

D =

D12

Γ ` [M/x]rr(R) ⇒ T1 ∧ T2

Γ ` [M/x]rr(R) ⇒ T1
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There exists S such that
Γ ` M ⇐ S and
Γ, x:S ` R ⇒ T1 ∧ T2 by i.h.(2) on D12

Γ, x:S ` R ⇒ T1 by rule

Case(2): [M/x]rr(R) is arbitrary D ends in the second intersection elimi-
nation. Symmetric to the previous case.

Case(2): [M/x]rr(R1 N2) = [M/x]rr(R1) [M/x]n(N2) and

D =

D1

Γ ` [M/x]rr(R1) ⇒ T2 → T1

D2

Γ ` [M/x]n(N2) ⇐ T2

Γ ` [M/x]rr(R1) [M/x]n(N2) ⇒ T1

There exists S1 such that
Γ ` M ⇐ S1 and
Γ, x:S1 ` R1 ⇒ T2 → T1 by i.h.(2) on [M/x]rr(R1) and D1

There exists S2 such that
Γ ` M ⇐ S2 and
Γ, x:S2 ` N2 ⇐ T2 by i.h.(1) on [M/x]n(N2) and D2

Γ ` M ⇐ S1 ∧ S2 by rule
Γ, x:S1 ∧ S2 ` R1 ⇒ T2 → T1 by hypothesis intersection
Γ, x:S1 ∧ S2 ` N2 ⇐ T2 by hypothesis intersection
Γ, x:S1 ∧ S2 ` R1 N2 ⇒ T1 by rule

Case(2): [M/x]rr(y) = y for y 6= x and

D =
y:T ∈ Γ

Γ ` y ⇒ T

Γ ` M ⇐ > by rule
Γ, x:> ` y ⇒ T by rule

Case(2): [M/x]rr(c) = c and D ends in the rule for constants. Proceed as
in the previous case.

Case(3): [M/x]rn(R1 N2) = [N ′
2/y2]n(N1) where [M/x]rn(R1) = λy2. N1

and [M/x]n(N2) = N ′
2 and

D
Γ ` [N ′

2/y2]n(N1) ⇐ T

is arbitrary.
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There exists S2 such that
Γ ` N ′

2 ⇐ S2 and
Γ, y2:S2 ` N1 ⇐ T by i.h.(1) on [N ′

2/y2]n(N1) and D
Γ ` [M/x]n(N2) ⇐ S2 by equality
There exists S such that
Γ ` M ⇐ S and
Γ, x:S ` N2 ⇐ S2 by i.h.(1) on [M/x]n(N2)
Γ ` λy2. N1 ⇐ S2 → T by rule
Γ ` [M/x]rn(R1) ⇐ S2 → T by equality
There exists S′ such that
Γ ` M ⇐ S′ and
Γ, x:S′ ` R1 ⇒ S2 → T by i.h.(3) on [M/x]rn(R1)
Γ ` M ⇐ S ∧ S′ by rule
Γ, x:S ∧ S′ ` R1 ⇒ S2 → T by hypothesis intersection
Γ, x:S ∧ S′ ` N2 ⇐ S2 by hypothesis intersection
Γ, x:S ∧ S′ ` R1 N2 ⇒ T by rule

Case(3): [M/x]rn(x) = M and

D
Γ ` M ⇐ T

is arbitrary.

Γ ` M ⇐ T by D
Γ, x:T ` x⇒ T by rule

�

12 Subsorting at Higher Types

Recall that iterated expansion preserves sorts: if Rα ⇒ S then ηα(R) ⇐
S. Since the substitution property has a (perhaps surprising) converse, we
might conjecture that the identity property also has a converse.

Alas, it is not the case that ηα(R) ⇐ S implies R ⇒ S. A simple
counterexample is x:even ` x ⇐ nat, but x:even 6` x ⇒ nat. Various
slightly extended conjectures also fail: synthesis is inherently very weak
when compared to checking.

Nevertheless, there are still other interesting developments to consider
regarding iterated expansion and the identity theorem. So far, subsorting
has been confined to base sorts and this has been sufficient, essentially
because we only consider η-long terms. But we can introduce a derived
notion of subsorting beyond base sorts and show that we have a system
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which is both sound and complete with respect to other characterizations of
what subtyping might be. Finally, although beyond the scope of the present
paper, we can use it to complete the general system of sort assignment
sketched earlier which does not rely on canonical forms, but has a general
subsumption rule.

One desirable property would be that S is a subsort of T if and only
if every term of sort S is also a term of sort T . This means subsorting
is essentially inclusion among sets of terms. However, this quantifies over
all canonical terms, and is thus not an a priori decidable condition and of
limited immediate utility.

The basic idea on how to reduce subsorting to a property of sorting and
iterated expansion is to check whether x:S ` ηα(x) ⇐ T . If so, S should
be a subsort of T because ηα(x) is the identity. Because sort-checking is
decidable, this is an effective criterion.

DEFINITION 21 (Subsorting at higher types). For two sorts Sα and Tα

we write S ≤ T iff x:S ` ηα(x) ⇐ T .

We are justified in reusing the symbol ≤, because on base sorts the prior
judgment Q′ ≤ Q coincides with the extended one: the derivation

x:Q′ ` x⇒ Q′ Q′ ≤ Q

x:Q′ ` ηι(x) ⇐ Q

is entirely forced, noting that ηι(x) = x.
We can now show that subsorting via sort checking of identities is sound

and complete with respect to inclusion among sets of canonical forms.

THEOREM 22 (Alternative characterization of subtyping).
S ≤ T if and only if forall all Γ and N , Γ ` N ⇐ S implies Γ ` N ⇐ T .

Proof. Direct in each direction.

(=⇒)

S ≤ T assumption
Γ ` N ⇐ S assumption
x:S ` ηα(x) ⇐ T by defn. of ≤
Γ, x:S ` ηα(x) ⇐ T by weakening
Γ ` [N/x]n(ηα(x)) ⇐ T by sort preservation under substitution
Γ ` N ⇐ T by right identity

(⇐=)
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x:S ` x⇒ S by rule
x:S ` ηα(x) ⇐ S by sort preservation under expansion
x:S ` ηα(x) ⇐ T by assumption
S ≤ T by defn. of ≤

�

13 Conclusion

We have developed a calculus of canonical forms for a λ-calculus formulated
in the style of Church [1] where every well-formed term intrinsically has a
unique simple type. The critical ingredient is the operation of hereditary
substitution which returns a canonical form when substituting a canonical
form for a variable in a canonical form. Its counterpart is iterated expansion
which returns a canonical form when given an atomic one. By an argument
relying crucially on the intrinsic types, we could see that these operations
are always properly defined. Moreover, hereditary substitutions can be
composed with expected results and iterated expansion of variables returns
both a left and right identity for hereditary substitutions.

As a second layer we defined a system in the style of Curry [3] where sorts
are assigned to terms already known to be well-typed. Sorts thus stand for
properties of terms, which is the essence of Curry’s approach. An interest-
ing possibility we explored was to introduce finitary polymorphism through
which we can explicitly state multiple properties of a single term. We pre-
sented an elegant formulation of subsorting and intersection sorts, which
can immediately be seen to be decidable. In addition, sorts are preserved
under hereditary substitution and iterated expansion, which means that
Curry-style sort assignment harmoniously coexists with Church-style typ-
ing. Interestingly, the presence of finitary intersection allows us to validate
the converse of substitution. In practice this means that we can sort-check a
term not in canonical form by converting it to one and sort-checking the re-
sult, although the corresponding theorem is beyond the scope of this paper.
We cannot directly validate the converse of iterated expansion because sort
synthesis of atomic terms is too weak. But we introduce a notion of sub-
sorting based on iterated expansion which characterizes, precisely, inclusion
among sets of canonical forms and is directly decidable.

A natural next step is to give a sort assignment system for well-formed
terms that are not necessarily in canonical form and prove (a) normalization
via hereditary substitution and iterated expansion, (b) that sorting can be
decided by conversion to canonical form and application of the algorithms
in this paper. We conjecture that this should be possible and relatively
straightforward based on the presented results.
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We have carried out a related analysis of canonical forms and sorts for
a dependently typed λ-calculus [10] and for types for a modal λ-calculus
with metavariables [12]. These results illustrate the robustness of the ideas
presented here. Refinement types [7, 4, 5] for functional programs repre-
sent another line of development that shares many ideas with this paper,
although there are significant technical differences between a call-by-value
functional language with data types, recursion, and effects, and Church’s
simply-typed λ-calculus. A promising idea toward a synthesis and unifica-
tion of these threads is to generalize canonical forms via focusing in polarized
logic [14] which is closely related to the concurrent logical framework [13].
Perhaps it is no accident that the latter originated the idea of hereditary
substitutions.
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