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Abstract

Learning graphical models with hidden variables can offer semantic insights to
complex data and lead to salient structured predictors without relying on expen-
sive, sometime unattainable fully annotated training data. While likelihood-based
methods have been extensively explored, to our knowledge, learning structured
prediction models with latent variables based on the max-margin principle remains
largely an open problem. In this paper, we present a partially observed Maximum
Entropy Discrimination Markov Network (POMEN) model that attempts to com-
bine the advantages of Bayesian and margin based paradigms for learning Markov
networks from partially labeled data. POMEN leads to an averaging prediction rule
that resembles a Bayes predictor that is more robust to overfitting, but is also built
on the desirable discriminative laws resemble those of the M3N. We develop an
EM-style algorithm utilizing existing convex optimization algorithms for M®N as
a subroutine. We demonstrate competent performance of POMEN over existing
methods on a real-world web data extraction task.

1 Introduction

Inferring structured predictions based on high-dimensional, often multi-modal and hybrid covari-
ates remains a central problem in data mining (e.g., web-info extraction), machine intelligence (e.g.,
machine translation), and scientific discovery (e.g., genome annotation). Several recent approaches
to this problem are based on learning discriminative graphical models defined on composite fea-
tures that explicitly exploit the structured dependencies among input elements and structured in-
terpretational outputs. Different learning paradigms have been explored, including the maximum
conditional likelihood [7] and max-margin learning [2, 12, 13], with remarkable success.

However, the problem of structured input/output learning can be intriguing and significantly more
difficult when there exist hidden substructures in the data, which is not uncommon in realistic prob-
lems. As is well-known in the probabilistic graphical model literature, hidden variables can facili-
tate natural incorporation of structured domain knowledge such as latent semantic concepts or unob-
served dependence hierarchies into the model, which can often result in more intuitive representation
and more compact parameterization of the model; but learning a partially observed model is often
non-trivial because it involves optimizing against a more complex cost function, which is usually
not convex and requires additional efforts to impute or marginalize out hidden variables. Most exist-
ing work along this line, such as the hidden CRF for object recognition [9] and scene segmentation
[14] and the dynamic hierarchical MRF for web data extraction [18], falls in the likelihood-based
learning. For the max-margin learning, which is arguably a more desirable discriminative learning
paradigm in many application scenarios, learning a Makov network with hidden variables can be
extremely difficult and little work has been done except [11], where, in order to obtain a convex pro-
gram, the uncertainty in mixture modeling is simplified by a reduction using the MAP component.



A major reason for the difficulty of considering latent structures in max-margin models is the lack of
a natural probabilistic interpretation of such models, which on the other hand offers the key insight
in likelihood-based learning to design algorithms such as EM for learning partially observed mod-
els. Recent work on semi-supervised or unsupervised max-margin learning [1, 4, 16] was all short of
an explicit probabilistic interpretation of their algorithms of handling latent variables. The recently
proposed Maximum Entropy Discrimination Markov Networks (MaxEnDNet) [20, 19] represent a
key advance in this direction. MaxEnDNet offers a general framework to combine Bayesian-style
learning and max-margin learning in structured prediction. Given a prior distribution of a structured-
prediction model, and leveraging a new prediction-rule that is based on a weighted average over an
ensemble of prediction models, MaxEnDNet adopts a structured minimum relative entropy prin-
ciple to learn a posterior distribution of the prediction model in a subspace defined by a set of ex-
pected margin constraints. This elegant combination of probabilistic and maximum margin concepts
provides a natural path to incorporate hidden structured variables in learning max-margin Markov
networks (M3N), which is the focus of this paper.

It has been shown in [20] that, in the fully observed case, MaxEnDNet subsumes the standard M3N
[12]. But MaxEnDNet in its full generality offers a number of important advantages while retaining
all the merits of the M®N. For example, structured prediction under MaxEnDNet is based on an av-
eraging model and therefore enjoys a desirable smoothing effect, with a uniform convergence bound
on generalization error, as shown in [20]; MaxEnDNet admits a prior that can be designed to intro-
duce useful regularization effects, such as a sparsity bias, as explored in the Laplace M3N [19, 20].
In this paper, we explore yet another advantage of MaxEnDNet stemmed from the Bayesian-style
max-margin learning formalism on incorporating hidden variables. We present the partially ob-
served MaxEnDNet (PoOMEN), which offers a principled way to incorporate latent structures carry-
ing domain knowledge and learn a discriminative model with partially labeled data. The reducibil-
ity of MaxEnDNet to M>?N renders many existing convex optimization algorithms developed for
learning M3N directly applicable as subroutines for learning our proposed model. We describe an
EM-style algorithm for POMEN based on existing algorithms for M®N. As a practical application,
we apply the proposed model to a web data extraction task—product information extraction, where
collecting fully labeled training data is very difficult. The results show the promise of max-margin
learning as opposed to likelihood-based estimation in the presence of hidden variables.

The paper is organized as follows. Section 2 reviews the basic max-margin structured prediction
formalism and MaxEnDNet. Section 3 presents the partially observed MaxEnDNet. Section 4
applies the model to real web data extraction, and Section 5 brings this paper to a conclusion.

2 Preliminaries

Our goal is to learn a predictive function i : X +— ) from a structured input x € & to a structured
outputy € Y, where Y = ) X --Xx ) represents a combinatorial space of structured interpretations
of multi-facet objects. For example, in part-of-speech (POS) tagging, ); consists of all the POS tags
and each label y = (y1,---,¥;) is a sequence of POS tags, and each input x is a sentence (word
sequence). We assume that the feasible set of labels ))(x) C Y is finite for any x.

Let F(x,y;w) be a parametric discriminant function. A common choice of F' is a linear model,

where F' is defined by a set of K feature functions f; : A x Y +— R and their weights wy:
F(x,y;w) = w'f(x,y). A commonly used predictive function is:

ho(x; = F(x,y;w). 1

o(x;w) arg max (x,y;w) )

By using different loss functions, the parameters w can be estimated by maximizing the conditional
likelihood [7] or by maximizing the margin [2, 12, 13] on labeled training data.

2.1 Maximum margin Markov networks

Under the M3N formalism, which we will generalize in this paper, given a set of fully labeled
training data D = {(x’,y")}¥ ,, the max-margin learning [12] solves the following optimization
problem and achieves an optimum point estimate of the weight vector w:

N
1
PO (M3N) : min “lwl|?+C iy 2
OEN): min w0 e @

where &; represents a slack variable absorbing errors in training data, C'is a positive constant, R
denotes non-negative real numbers, and JF is the feasible space for w: Fy = {w : w' Af;(y) >



Ali(y) — &; Vi, Yy # y'}, of which Af;(y) = f(x’,y?) — f(x’,y), w  Af;(y) is the “margin”
between the true label y” and a prediction y, and A¢;(y) is a loss function with respect to y*.

Various loss functions have been proposed for PO. In this paper, we adopt the hamming loss [12]:

Ali(y) = le | I(y; # y;), where I(+) is an indicator function that equals to 1 if the argument is
true and 0 0therw1se The optimization problem PO is intractable because of the exponential number
of constraints in Fy. Exploring sparse dependencies among individual labels y; in y, as reflected
in the specific design of the feature functions (e.g., based on pair-wise labeling potentials), efficient
optimization algorithms based on cutting-plane [13] or message-passing [12], and various gradient-
based methods [3, 10] have been proposed to obtain approximate solution to PO. As described
shortly, these algorithms can be directly employed as subroutines in solving our proposed model.

2.2 Maximum Entropy Discrimination Markov Networks

Instead of predicting based on a single rule F(-; w) as in M3N using w, the structured maximum
entropy discrimination formalism [19] facilitates a Bayes-style prediction by averaging F'(-; w) over
a distribution of rules according to a posterior distribution of the weights, p(w):

() = arg max [ p(w)F(x,yiw) dw, )
YEY(x)

where p(w) is learned by solving an optimization problem referred to as a maximum entropy dis-
crimination Markov network (MaxEnDNet, or MEN) [20] that elegantly combines Bayesian-style
learning with max-margin learning. In a MaxEnDNet, a prior over w is introduced to regularize its
distribution, and the margins resulting from predictor (3) are used to define a feasible distribution
subspace. More formally, given a set of fully observed training data D and a prior distribution
po(w), MaxEnDNet solves the following problem for an optimal posterior p(w|D) or p(w):

P1 (MaxEnDNet) : min KL(p(w)||lpo(w)) + U(§), 4)
p(w)eFy EeRY
where the objective function K L(p(w)||po(w)) + U(€) is known as the generalized entropy [8, 5],
or regularized KL-divergence, and U (€) is a closed proper convex function over the slack variables
&. U is also known as an additional “potential” term in the maximum entropy principle. The feasible
distribution subspace F; is defined as follows:
Fo={pw): [ pwaR W) - A6 dw > 6, ¥, Wy},

where AF;(y;w) = F(x', y'; w) — F(x', y; w).

P1 is a variational optimization problem over p(w) in the feasible subspace F;. Since both the KL-
divergence and the U function in P1 are convex, and the constraints in ; are linear, P1 is a convex
program. Thus, one can apply the calculus of variations to the Lagrangian to obtain a variational
extremum, followed by a dual transformation of P1. As proved in [20], solution to P1 leads to a
GLIM for p(w), whose parameters are closely connected to the solution of the M3N.

Theorem 1 (MaxEnDNet (adapted from [20])) The variational optimization problem PI under-
lying a MaxEnDNet gives rise to the following optimum distribution of Markov network parameters:

P%) = 7o) exp{Zal JIAF (y; w) = Abi(y)]}, 5)

where Z (a) is a normaltzatwn factor and the Lagrangian multipliers «;(y) (corresponding to
constraints in F) can be obtained by solving the following dual problem of P1:

D1: max —log Z(a) — U*(«)
s.t. az(Y) > 07 VZ, vy7
where U*(-) is the conjugate of the slack function U (-), i.e., U*(ar) = supg ( Doy @i(¥)&i— U(g)).

It can be shown that when F(x,y;w) = w ' f(x,y), U(§) = CY_, &, and po(w) is a standard
Gaussian N (w0, I), then p(w) is also a Gaussian with shifted mean >, _ a;(y)Af;(y) and co-
variance matrix I, where the Lagrangian multipliers «;(y) can be obtained by solving problem D1
of the form that is isomorphic to the dual of M3N. When applying this p(w) to Eq. (3), one can
obtain a predictor that is identical to that of the M®N.

From the above reduction, it should be clear that M®N is a special case of MaxEnDNet. But the
MaxEnDNet in its full generality offers a number of important advantages while retaining all the



" shop.scholastic. com - Scholastic Store - Micro... [— |[/[>€] Web Page
Ele Edit View Favorites Tools Hep - Q

Results 1-3of 3

o, Eem LAY
Ea— /,/5/4;‘4,//%

<

©
Figure 1: (a) A Web page with two data records contalnlng 7 and 8 elements respectively; (b) A partial vision
tree of the page in Figure 1(a), where grey nodes are the roots of the two records; (c) A label hierarchy for
product information extraction, where the root node represents an entire instance (a web page); leaf nodes are
the attributes (i.e. Name, /mage, Price, and Description); and inner nodes are the intermediate class labels
defined for parts of a web page, e.g. {N, I} is a class label for blocks containing both Name and Image.

merits of the M3N. First, the MaxEnDNet prediction is based on model averaging and therefore
enjoys a desirable smoothing effect, with a uniform convergence bound on generalization error, as
shown in [20]. Second, MaxEnDNet admits a prior that can be designed to introduce useful regular-
ization effects, such as a sparsity bias, as explored in the Laplace M>N [19, 20]. Third, as explored
in this paper, MaxEnDNet offers a principled way to incorporate hidden generative models underly-
ing the structured predictions, but allows the predictive model to be discriminatively trained based
on partially labeled data. In the sequel, we introduce partially observed MaxEnDNet (POMEN), that
combines (possibly latent) generative model and discriminative training for structured prediction.

3 Partially Observed MaxEnDNet

Consider, for example, the problem of web data extraction, which is to identify interested informa-
tion from web pages. Each sample is a data record or an entire web page which is represented as a set
of HTML elements. One striking characteristic of web data extraction is that various types of struc-
tural dependencies between HTML elements exist, e.g. the HTML tag tree or the Document Object
Model (DOM) structure is itself hierarchical. In [17], fully observed hierarchical CRFs are shown
to have great promise and achieve better performance than flat models like linear-chain CRFs [7].
One method to construct a hierarchical model is to first use a parser to construct a so called vision
tree [17]. For example, Figure 1(b) is a part of the vision tree of the page in Figure 1(a). Then, based
on the vision tree, a hierarchical model can be constructed accordingly to extract the interested at-
tributes, e.g. a product’s name, image, price, description, etc. In such a hierarchical extraction
model, inner nodes are useful to incorporate long distance dependencies, and the variables at one
level are refinements of the variables at upper levels. To reflect the refinement relationship, the class
labels defined as in [17] are also organized in a hierarchy as in Figure 1(c). Due to concerns over
labeling cost and annotation-ambiguity caused by the overlapping of class labels as in Figure 1(c),
it is desirable to effectively learn a hierarchical extraction model with partially labeled data.

Without loss of generality, assume that the structured labeling of a sample consists of two parts—an
observed part y and a hidden part z. Both y and z are structured labels, and furthermore the hidden
variables are not isolated, but are statistically dependent on each other and on the observed data
according to a graphical model p(y,z, w|x) = p(w,z|x)p(y|x,z, w), where p(y|x,z, w) takes
the form of a Boltzmann distribution p(y|x,z,w) = - exp{—F(x,y,2;w)} and x is a global
condition as in CRFs [7]. Following the spirit of a margin-based structured predictor such as M>N,
we employ only the unnormalized energy function F'(x,y,z; w) (which usually consists of linear
combinations of feature functions or potentials) as the cost function for structured prediction, and
we adopt a prediction rule directly extended from the MaxEnDNet—average over all the possible
models defined by different w, and at the same time marginalized over all hidden variables z. That is,

ha(x) = arg ma())c{) Z / p(w,z)F(x,y,z; w)dw. 6)
Now our problem is learning the optimum p(w, z) from data. Let {z} = (z!,...,2z") denote the
ensemble of hidden labels of all the samples. Analogous to the setup for learning the MaxEnDNet,
we specify a prior distribution po({z}) over all the hidden structured labels. The feasible space F
of p(w, {z}) can be defined as follows according to the margin constraints:

Fo={pw.(21): Y [pw.mAF (v, zw) - M) dw >~ Vi, vy},



where AF;(y,z;w) = F(x',y',z;w) — F(x',y,2;w), and p(w, z) is the marginal distribution of
p(w, {z}) on a single sample, which will be used in (6) to compute the structured prediction.

Again we learn the optimum p(w, {z}) based on a structured minimum relative entropy principle
as in MaxEnDNet. Specifically, let po(w, {z}) represent a given joint prior over the parameters and
the hidden variables, we define the POMEN problem that gives rise to the optimum p(w, {z}):

P2 (PoMEN) : min KL(p(w,{z})llpo(w, {z})) + U(E). ©)
p(w,{2})€F2 ECRY
Analogous to P1, P2 is a variational optimization problem over p(w, {z}) in the feasible space F5.
Again since both the KL and the U function in P2 are convex, and the constraints in F> are linear,
P2 is a convex program. Thus, we can employ a technique similar to that used to solve MaxEnDNet
to solve the POMEN problem.

3.1 Learning POMEN

For a fully general p(w, {z}) where hidden variables in all samples are coupled, solving P2 based on
an extension of Theorem 1 would involve very high-dimensional integration and summation that is
in practice intractable. In this paper we consider a simpler case where the hidden labels of different
samples are iid and independent of the parameter w in both the prior and the posterior distributions,
that is, po(w,{z}) = po(w) Hf\ilpo(zi) and p(w,{z}) = p(w) Hf\ilp(zi). This assumption
will hold true in a graphical model where w corresponds to only the observed y variables at the
bottom of a hierarchical model. For many practical applications such as the hierarchical web-info
extraction, such a model is realistic and adequate. For more general models where dependencies are
more global, we can use the above factored model as a generalized mean field approximation to the
true distribution, but this extension is beyond the scope of this paper, and will be explored later in
the full paper. Generalizing Theorem 1, following a coordinate descent principle, now we present
an alternating minimization (EM-style) procedure for P2:

Step 1: keep p(2z) fixed, infer p(w) by solving the following problem:
i KL +C i 8
o KL () +0 3 € ®
where F| = {p(w) : [p(W)Ey,)[AFi(y,z;w) — Ali(y)]dw > =&, Vi, Yy}, which is a
generalized version of ; with hidden variables. Thus, we can apply the same convex optimization
techniques as being used for solving the problem P1. Specifically, assume that the prior distribution
po(w) is a standard normal and F(x,y,z;w) = w ' f(x,y,z), then the solution (i.e. posterior
distribution) is p(w) = N (W|pw, I), where piw = >,  @i(¥) Ep(s) [Afi(y, z)]. The dual variables

« are achieved by solving a dual problem:
1
max Y ai(y)AL(y) = 511 Y 0ily) Epw [Afi(y, 2)]II°, ©)
acP(C) iy 2 iy

where P(C) = {a : > ai(y) = C; ai(y) = 0, Vi, Vy}. This dual problem is isomorphic
to the dual form of the M3N optimization problem, and we can use existing algorithms developed

for M2N, such as [12, 3] to solve it. Alternatively, we can solve the following primal problem via
employing existing subgradient [10] or cutting plane [13] algorithms:

N
. 1 T
min §W W+C’Z£i, (10)

weF) EeRY

where 7 = {w : w' E,,)[Af;(y,z)] > Al(y) — &; & > 0, Vi, Vy}, which is a generalized
version of Fy. It is easy to show that the solution to this primal problem is the posterior mean of
p(w), which will be used to make prediction in the predictive function hy. Note that the primal
problem is very similar to that of M3N, except the expectations in . This is not surprising since it
can be shown that M>N is a special case of MaxEnDNet. We will discuss how to efficiently compute

the expectations E,,) [Af;(y, z)] in Step 2.

1=1

Step 2: keep p(w) fixed, based on the factorization assumption p({z}) = [];p(z’) and

po({z}) = T, po(z’), the distribution p(z) for each sample i can be obtained by solving the
following problem:

i KL O, 11
e (p(2)|lpo(2)) + C¢ (11



where 7t = {p(z) : 3, p(z) [ p(w)[w'Afi(y,2) — Ali(y)]dw > —&, Vy}. Since p(w)
is a normal distribution as shown in Step 1, Ff = {p(z) : Y, p(2)[u,Afi(y,z) — Ali(y)] >
—¢&;, Vy}. Similarly, by introducing a set of Lagrangian multipliers 5(y), we can get:

1
pe) = 5 eXp{Z,B i ALy, 2) — AL(y)]
and the dual variables 3(y) can be obtained by solving the following dual problem:
pmax flog<2po exp{Zﬁ ) pwAEi(y, 2) — Mi(y)}}), (12)
where P;(C) = {3, B(y) = C, B(y) = 0, Vy}. This non-linear constrained optimization

problem can be solved with existing solvers, like [POPT [15]. With a little algebra, we can compute
the gradients as follows:

Olog Z ()
9B(y)

To efficiently calculate the expectations E,,)[Af;(y, z)] as required in Stepl and in the above gra-
dients. We make a gentle assumption that the prior distribution py(z) is an exponential distribution

of the following form:
z) :exp{qum(z)}. (13)

This assumption is general enough for our purpose, and covers the following commonly used priors:

= g By [AFi(y,2)] — Ali(y).

i. Log-linear Prior: defined by a set of feature functions and their weights. For ex-
ample, in a pairwise Markov network, we can define the prior model as: pg(z) o
exp{ Xy 2ok Mk (2is 2j) |, where gy, (z;, z;) are feature functions and ), are weights.

ii. Independent Prior: defined as po(z) = H§:1 po(zj). In the logarithm space, we can write it
¢
as: po(z) = exp{>_;_, logpo(2;)}-
iii. Markov Prior: the prior model have the Markov property w.r.t the model’s structure. For exam-
ple, for a chain graph, the prior distribution can be written as: pg(z) = p(z1) H§:2 po(2;|zj-1).

Similarly, in the logarithm space, py(z) = exp{logpo(z1) + Eﬁ:z log po(zi|zi-1)}

With the above assumption, p(z) is an exponential family distribution, and the expectations,

Epz)[Afi(y, z)], can be efficiently calculated by exploring the sparseness of the model’s structure
to compute marginal probabilities, e.g. p(z;) and p(z;, z;) in pairwise Markov networks. When the
model’s tree width is not large, this can be done exactly. For complex models, approximate inference
like loopy belief propagation and variational methods can be applied. However, since the number of
constraints in (12) is exponential to the size of the observed labels, the optimization problem cannot
be efficiently solved. A key observation, as explored in [12], is that we can interpret 3(y) as a prob-
ability distribution of y because of the regularity constraints: > 8(y) = C, 3(y) > 0, Vy. Thus,
we can introduce a set of marginal dual variables and transfer the dual problem (12) to an equivalent
form with a polynomial number of constraints. The derivatives with respect to each marginal dual
parameter is of the same structure as the above gradients.

4 Experiments

We apply POMEN to the problem of web data extraction, and compare it with partially observed
CRFs (PoHCRF) [9], and fully observed hierarchical CRFs (HCRF) [17] and hierarchical M3N
(HM3N) which has the same hierarchical model structure as the HCRF.

4.1 Data Sets, Evaluation Criteria, and Prior for Latent Variables

We concern ourselves with the problem of identifying product items for sale on the web. For each
product item, four attributes — Name, Image, Price, and Description are extracted in our experiments.
The evaluation data consists of product web pages generated from 37 different templates. For each
template, there are 5 pages for training and 10 for testing. We evaluate all the methods on two
different levels of inputs, record level and page level. For record-level evaluation, we assume that
data records are given, and we compare different models on accuracy of extracting attributes in the
given records. For page-level evaluation, the inputs are raw web pages and all the models perform
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Figure 2: (a) The F1 and block instance accuracy of record-level evaluation from 4 models under different
amount of training data. (b) The F1 and its variance on the attributes: Name, Image, Price, and Description.
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Figure 3: The average F1 and block instance accuracy of different models with different ratios of training data
for two types of page-level evaluation: (a) ST1; and (b) ST2.

both record detection and attribute extraction simultaneously as in [17]. In the 185 training pages,
there are 1585 data records in total; in the 370 testing pages, 3391 data records are collected. As
for evaluation criteria, we use the standard precision, recall, and their harmonic value F1 for each
attribute and the two comprehensive measures, i.e. average F1 and block instance accuracy, as
defined in [17]. We adopt an independent prior described earlier for the latent variables, each factor
po(z;) over a single latent label is assumed to be uniform.

4.2 Record-Level Evaluation

In this evaluation, partially observed training data are the data records whose leaf nodes are labeled
and inner nodes are hidden. We randomly select m = 5, 10, 20, 30, 40, or, 50 percent of the training
records as training data, and test on all the testing records. For each m, 10 independent experiments
were conducted and the average performance is summarized in Figure 2. From Figure 2(a), it can
be seen that the HM®N performs slightly better than HCRF trained on fully labeled data. For the
two partially observed models, POMEN performs much better than POHCRF in both average F1
and block instance accuracy, and with lower variances of the score, especially when the training
set is small. As the number of training data increases, POMEN performs comparably w.r.t. the
fully observed HM?3N. For all the models, higher scores and lower variances are achieved with
more training data. Figure 2(b) shows the F1 score on each attribute. Overall, for attributes Image,
Price, and Description, although all models generally perform better with more training data, the
improvement is small; and the differences between different models are small. This is possibly
because the features of these attributes are usually consistent and distinctive, and therefore easier to
learn and predict. For the attribute Name, however, a large number of training data are needed to
learn a good model because its underlying features have diverse appearance on web pages.

4.3 Page-Level Evaluation

Experiments on page-level prediction is conducted similarly as above, and the results are summa-
rized in Figure 3. Two different partial labeling strategies are used to generate training data. ST1:
label the leaf nodes and the nodes that represent data records; ST2: label more information based
on ST1, e.g., label also the nodes above the “Data Record” nodes in the hierarchy as in Figure 1(c).
Due to space limitation, we only report average F1 and block instance accuracy.

For ST1, PoMEN achieves better scores and lower variances than POHCRF in both average F1 and
block instance accuracy. The HM3N performs slightly better than HCRF (both trained on full label-
ing), and POMEN performs comparably with the fully observed HCRF in block instance accuracy.
For ST2, with more supervision information, POHCRF achieves higher performance that is compa-
rable to that of HM?3N in average F1, but slightly lower than HM?3N in block instance accuracy. For



the latent models, POHCRF performs slightly better in average F1, and POMEN does better in block
instance accuracy; moreover, the variances of POMEN are much smaller than those of POHCRF in
both average F1 and block instance accuracy. We can also see that POMEN does not change much
when additional label information is provided in ST2. Thus, the max-margin principle could provide
a better paradigm than the likelihood-based estimation for learning latent hierarchical models.

For the second step of learning POMEN, the IPOPT solver [15] was used to compute the distribution
p(z). Interestingly, the performance of POMEN does not change much during the iteration, and
our results were achieved within 3 iterations. It is possible that in hierarchical models, since inner
variables usually represent overlapping concepts, the initial distribution are already reasonably good
to describe confidence on the labeling due to implicit consistence across the labels. This is unlike
the multi-label learning [6] where only one of the multiple labels is true and during the iteration
more probability mass should be redistributed on the true label during the EM iterations.

5 Conclusions

We have presented an extension of the standard max-margin learning to address the challenging
problem of learning Markov networks with the existence of structured hidden variables. Our ap-
proach is a generalization of the maximum entropy discrimination Markov networks (MaxEnDNet),
which offer a general framework to combine Bayesian-style and max-margin learning and subsume
the standard M3N as a special case, to consider structured hidden variables. For the partially ob-
served MaxEnDNet, we developed an EM-style algorithm based on existing convex optimization
algorithms developed for the standard M®N. We applied the proposed model to a real-world web
data extraction task and showed that learning latent hierarchical models based on the max-margin
principle could be better than the likelihood-based learning with hidden variables.
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