
Active Code Completion	

Cyrus Omar
Computer Science	

School of Computer Science
Carnegie Mellon University	

[ICSE12]	

YoungSeok Yoon
Software Engineering	

Brad A. Myers
Human-Computer Interaction	

Thomas D. LaToza
Software Engineering	

Carnegie Mellon University, School of Computer Science

Code Completion	

2	

Carnegie Mellon University, School of Computer Science

Code Completion is Commonly Used	

3	

8 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

vide two views of the top 10 commands. Table
2 lists the commands by the number of devel-
opers using the command. Table 3 lists the
commands according to average use by all de-
velopers. Interestingly, developers used content
assist (which suggests possible method names
in the editor given a type) as much as the com-
mon editing commands.

Analyzing the command information in the
interaction histories was difficult. For Eclipse
and the plug-ins that extend it, the intent for
the plug-in developer is to assign a unique
identifier for a command regardless of how
the command is made available in the envi-
ronment. For instance, the same command
provided through a toolbar menu and a con-
text menu in the editor should have the same
identifier. Unfortunately, not all Eclipse plug-

ins use this convention. As a result, we found
many inconsistencies, resulting in different
identifiers representing the same command.
For example, selecting Save from the File
menu in the toolbar generates a different iden-
tifier than when a key binding performs the
Save command. We also found cases that used
the same identifier for commands provided by
different plug-ins.

To account for these duplications and ambi-
guities, we created a mapping of identifiers
that considers the context of how a command
was used. This mapping reduced the number of
unique identifiers from 1,208 to 1,142. How-
ever, our mapping focused on the more com-
monly used commands, so this number might
still include duplicated and ambiguous com-
mands. To facilitate this sort of analysis, we
recommend that plug-in developers specify
consistent IDs for their commands and actions.

Navigation
Most software fixes, changes, and enhance-

ments involve navigating across the code base
to understand the system’s structure and the
context in which code executes. Eclipse pro-
vides seven views to help a developer efficiently
locate code of interest: Package Explorer, Type
Hierarchy, Outline, Search, Call Hierarchy,
Bookmarks, and Declaration. The developers
in our study used the Package Explorer view
the most, on the basis of the number of selec-
tions made in each view (see figure 5); nobody
used the Declaration view, even though it is
present by default in the Java perspective.

Through key bindings, Eclipse also provides
direct, easily accessed support for different
kinds of nonlocal navigation and searches, in-
cluding navigating to the declaration of an ele-
ment selected in the editor, searching for refer-
ences to a selected element, and opening a type.
Table 4 summarizes these nonlocal navigation
and search commands available in the JDT,
their key bindings on the Windows platform,
how many of the developers used the com-
mands, and each command’s rank (a rank of
one indicates the command that the developers
used most; the lowest rank is 1,142—the num-
ber of commands). This data shows that the
command used most often is opening a selected
element’s declaration (a rank of 21); the com-
mand used by the largest number of users is the
search for references in a workspace.

To help developers mark points of interest

Package Explorer
Search
Type Hierarchy
Outline
Call Hierarchy

74%

11%

2%

10%
3%

Figure 5. Use of
navigation views by all
41 developers (nobody
used the Declaration
view).

Table 3
Top 10 commands executed across all 41 developers

Command Identifier Use (%)

Delete org.eclipse.ui.edit.delete 14.3

Save org.eclipse.ui.file.save 11.3

Next word org.eclipse.ui.edit.text.goto.wordNext 7.3

Paste org.eclipse.ui.edit.paste 6.8

Content assist org.eclipse.ui.edit.text.contentAssist.proposals 6.7

Previous word org.eclipse.ui.edit.text.goto.wordPrevious 5.9

Copy org.eclipse.ui.edit.copy 4.6

Select previous word org.eclipse.ui.edit.text.select.wordPrevious 3.4

Step (debug) org.eclipse.debug.ui.debugview.toolbar.stepOver 3.2

(Murphy et al, 2006)	

Carnegie Mellon University, School of Computer Science

Code Completion is Useful	

4	

  Helps developers explore relevant APIs
  Avoids context switches to external API browsers

Carnegie Mellon University, School of Computer Science

Code Completion is Useful	

5	

  Helps developers explore relevant APIs
  Avoids context switches to external API browsers

  Helps developers avoid mistakes

  Spelling and type errors are reduced

Carnegie Mellon University, School of Computer Science

Code Completion is Useful	

6	

  Helps developers explore relevant APIs
  Avoids context switches to external API browsers

  Helps developers avoid mistakes

  Spelling and type errors are reduced

  Reduces required keystrokes
  Increases the amount of information conveyed per

keystroke

Carnegie Mellon University, School of Computer Science

7	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

Carnegie Mellon University, School of Computer Science

8	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

Carnegie Mellon University, School of Computer Science

9	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

Carnegie Mellon University, School of Computer Science

10	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

Carnegie Mellon University, School of Computer Science

11	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

  Direct user responses

Carnegie Mellon University, School of Computer Science

12	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

  Direct user responses

…to which questions?

Carnegie Mellon University, School of Computer Science

13	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

  Direct user responses
to domain-specific queries

Carnegie Mellon University, School of Computer Science

14	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

  Direct user responses
to domain-specific queries

Let domain experts decide!

Carnegie Mellon University, School of Computer Science

15	

A code completion system can be characterized by the
set of sources it queries to predict the user’s intent.

  Language & API specs
(current editors)

  Usage history
[Robbes & Lanza, ASE08], [Hou & Pletcher, ICSM11]

  Example repositories
[Bruch et al, FSE09], [Brandt et al, CHI10], [Mooty et al, VLHCC10],
[Nguyen et al, ICSE12]

  Direct user responses
to domain-specific queries
[Omar et al, ICSE12]

= Active Code Completion

Carnegie Mellon University, School of Computer Science

16	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

17	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

18	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

19	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

20	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

21	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

22	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

23	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

24	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

25	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

26	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

Our Design Methodology	

27	

1.  Large developer survey to validate this idea
and develop design criteria and use cases
before implementation!

2.  Tool design and implementation (GRAPHITE)

3.  Controlled pilot study to justify usefulness
claims

Carnegie Mellon University, School of Computer Science

Survey Method
  Target: professional developers
  Participants recruited from

  “reddit.com” programming forum
  ~340,000 registered readers

  Local CS graduate students mailing list (22)
  696 people started the survey (~20 minutes long)

  475 people completed the survey, we only
analyzed these responses

28

Carnegie Mellon University, School of Computer Science

Participant Experience
  Participant’s experience with regular

expressions and SQL

  Along with experience with programming
languages, implies that most participants
are professional programmers

29

Carnegie Mellon University, School of Computer Science

I. Mockups

  For each of three classes
(Color, Regular Expressions, SQL query)
  Ask which strategy they would naturally use to

instantiate the given class
  Show them mockup screenshots of our tool
  Ask how often they would use the tool if they

wanted to instantiate the class
  Ask them to qualify the answer or make

suggestions (open-ended)

30

Carnegie Mellon University, School of Computer Science

Mockup – Color

31

Carnegie Mellon University, School of Computer Science

Mockup – Color

32

Carnegie Mellon University, School of Computer Science

Mockup – Color

33

Carnegie Mellon University, School of Computer Science

Mockup – Regular Expressions

34

Carnegie Mellon University, School of Computer Science

Mockup – SQL queries

35

Carnegie Mellon University, School of Computer Science

I. Mockups

  For each of three classes
(Color, Regular Expressions, SQL query)
  Ask which strategy they would naturally use to

instantiate the given class
  Show them mockup screenshots of our tool
  Ask how often they would use the tool if they

wanted to instantiate the class
  Ask them to qualify the answer or make

suggestions (open-ended)

36

Carnegie Mellon University, School of Computer Science

Default Strategy – Regex, SQL

37

Fig. 2. Palette in Eclipse

Regular Expressions SQL
Separate test script 29.7% 15.5%
Guess and check 13.4% 16.0%
External tool 38.5% 58.9%
Search for examples 12.1% 4.8%
Other 6.2% 4.8%

Fig. 5. Participant’s experience with regular expressions and SQL.

Q8 Consider situations where you need to write
a SQL query. What strategy would you most
likely use first?
(a) I would write a separate test script to help

come up with an appropriate SQL query.
(b) I would guess and check by running my

application.
(c) I would launch an external application or

web tool to test my query against my
database interactively.

(d) I would search the web for an example SQL
query suitable for my task.

(e) Other (please specify)
Q5 Consider situations where you need to write
a regular expression to extract information from a
string or collection of strings. What strategy would
you most likely use first?

(a) I would write a separate test script to help come
up with an appropriate regular expression.

(b) I would guess and check regular expressions by
running my application.

(c) I would launch an external application or web tool
to help me test regular expressions interactively.

(d) I would search the web for a sample regular
expression suitable for my task.

(e) Other (please specify)

Then described regular expression palette. See Figure Y for
the palette and inserted code.

Much more positive. Then asked Q3 again.

3) SQL Queries:

D. System Design Constraints

1) Handling Separation of Concerns: - Color theme or
external resource file

- OR/M system or external stored procedure
- Prototyping vs. Production
- Regex describes program logic, colors and database strings

are considered data
- Testing vs. development, interaction with unit tests
2) Reversibility: - Sidebar vs. popup
3) Palette Settings and State:

4) Interaction with Code Context:

5) Performance:

6) IDE Independence:

7) Composing palette logic:

E. General Palette Design Considerations

1) Simplicity vs. Capability:

2) Keyboard Navigability:

3) Side Effects:

F. Suggestions

1) Alternative/Tricky/Literal Syntax: - Highlighting, auto-
completion - String, vector, dictionary, matrix, embedded
languages - URLs - Paths

2) Parameter Implications Unclear: - Audio tweaks - 3D
transformation matrices -

3) Query Languages: - RegEx, SQL, XQuery/XPath
4) Integrating with Documentation, Learning:

5) Graphical Elements: - Seeing in context
6) Describe by Example: - Keyboard keys

Carnegie Mellon University, School of Computer Science

I. Mockups

  For each of three classes
(Color, Regular Expressions, SQL query)
  Ask which strategy they would naturally use to

instantiate the given class
  Show them mockup screenshots of our tool
  Ask how often they would use the tool if they

wanted to instantiate the class
  Ask them to qualify the answer or make

suggestions (open-ended)

38

Carnegie Mellon University, School of Computer Science

Usefulness of Mockups
  “Consider situations where you need to instantiate the

[specified] class. What portion of the time, in these
situations, do you think you would use this feature?”

39

Carnegie Mellon University, School of Computer Science

I. Mockups

  For each of three classes
(Color, Regular Expressions, SQL query)
  Ask which strategy they would naturally use to

instantiate the given class
  Show them mockup screenshots of our tool
  Ask how often they would use the tool if they

wanted to instantiate the class
  Ask them to qualify the answer or make

suggestions (open-ended)

40

Carnegie Mellon University, School of Computer Science

System Design Constraints
  Reversibility (19 across classes)

  Bring palette back up from data

  Palette settings and state
  Wanted recent regexes + control over comments (12)
  Persistent database connection information (9)
  Recent colors (20)

  IDE/language independence

  Several expressed a desire for IDE or even language
independence of this feature

41

Carnegie Mellon University, School of Computer Science

42	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

43	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

44	

Active Code Completion with GRAPHITE

Carnegie Mellon University, School of Computer Science

System Design Constraints
  Reversibility (19 across classes)

  Bring palette back up from data

  Palette settings and state
  Wanted recent regexes + control over comments (12)
  Persistent database connection information (9)
  Recent colors (20)

  IDE/language independence

  Several expressed a desire for IDE or even language
independence of this feature

45

Carnegie Mellon University, School of Computer Science

46	

Carnegie Mellon University, School of Computer Science

47	

^ or ->

Associating a Palette with a Class

Carnegie Mellon University, School of Computer Science

II. Suggestions

  Ask what other classes could benefit from
these kind of interactive palettes
(open-ended)

48

Carnegie Mellon University, School of Computer Science

Suggestions
  Alternatives / Tricky / Literal Syntax (16)

  Example classes
  string, vector, dictionary, matrix
  URLs, paths
  embedded languages (e.g. HTML)

49

is broadly applicable, and to allow us to characterize the
specific scenarios where it may be most useful. A total
of 119 participants made one or more suggestions, which
we classified into several broad categories (we omit a few
of these below due to space constraints). As above, the
number of participants suggesting a palette in each category
is listed in parenthesis. We also include suggestions made
by researchers and developers in private discussions without
including them in the provided counts.

A. Graphical Elements (27)

The most popular suggestions were graphical elements,
influenced perhaps by our demonstration of the Color
palette. Some participants suggested palettes for classes rep-
resenting primitive graphical objects, such as brush and font
selectors or polygon editors, while other participants were
focused on user interface elements, such as buttons, check
boxes and frame layouts. A few also suggested palettes for
manipulating 3D primitives, such as transformation matrices,
in a more direct and intuitive manner. A practitioner also
suggested that because setting up a plot or graph is often
significantly simpler using a direct manipulation interface,
it would be a natural candidate for a palette as well.

B. Query Languages (17)

The second most popular category of suggestions con-
sisted of various interfaces for query languages, also likely
due to the examples we provided to participants. In addition
to variants of the SQL and regular expression palettes,
developers also wanted to work with other types of queries
such as XPath or XQuery for XML.

C. Simplified or Domain-Specific Syntax (16)

Another interesting class of suggestions were cases where
a more natural syntax than the syntax provided by Java
is desirable. One suggestion was a palette that automati-
cally escaped strings containing quotation marks or escape
sequences. A related category of suggestions consisted of
palettes that offered a more natural interface for generating
strings containing code in other languages such as HTML
(e.g. offering syntax highlighting, escaping, tag matching
and other features.) Domain-specific syntax for complex
mathematical expressions and chemical formula were also
mentioned in discussions with practitioners.

An interesting suggestion that we investigated further
involved Java’s collection classes, such as ArrayList and
HashMap. A participant suggested that these classes could
be associated with a palette that offered a simplified literal
syntax for initialization, pointing toward other languages that
do offer such a literal syntax (e.g. JavaScript.) Without such
syntax, these classes must be tediously initialized using a
separate method call for each element. To determine whether
this usage pattern is common, we conducted a corpus anal-
ysis using 10 randomly selected projects from the Qualitas

Collection Class Total Literal Percentage
ArrayList 464 44 9.5%
HashMap 56 19 33.9%
HashSet 122 62 50.8%
Hashtable 86 10 11.6%
Vector 729 31 4.2%
Total 1457 166 11.4%

Figure 4. Usage patterns for common Java collection classes in the
java.util package in our code corpus. Uses that fit a pattern that can
be captured by a literal make up a significant portion of all uses. Not all
possible usage scenarios of this type were captured by our analysis, so
these numbers are lower bounds.

Corpus [13] containing over 1M lines of code. We began by
searching for places in these projects where Java collection
classes were being instantiated, then looked to see whether
this instantiation code was immediately followed by method
calls that inserted items into the collection, indicating a case
where a literal may have been used if available. Figure 4
summarizes the results of this analysis, providing evidence
in support of the claim that a palette that simplifies this
process could be useful for general-purpose programming.

D. Unclear Parameter Implications (11)
Another category of use cases contains classes where

it can be difficult to predict what the run-time behavior
of a particular parameter choice may be. Examples given
included audio filters (e.g. pitch manipulation) and animation
descriptors (e.g. speed or shape parameters). By giving
immediate visual or auditory feedback using a preview
panel, these parameters can be tweaked without requiring
the execution of the full application.

E. Integrating with Documentation and Examples (7)
Some participants suggested integrating tutorials or lists of

relevant examples directly using a palette, so that these can
be discovered more easily by new users and inserted directly
into code, without requiring switching to a web browser and
executing a search.

F. Complex Instantiation and Cleanup Procedures (5)
A related category contains classes that require complex

instantiation and cleanup procedures. For example, in order
to read a text file in Java, the developer might want to
use BufferedReader class. This class can be difficult
to use because it requires try/catch block, and one must
remember to close the file after reading it. By using a palette
to choose a file or choose a variable which contains the file
path, the developers could easily instantiate these objects
and get an outline containing the full life-cycle of the file.
Similarly, palettes may help to alleviate the factory pattern
usability problem [14]. As long as the developers remember
which class to use, they will not need to remember how
to instantiate that class. We explore this further in our user
study in Section VI.

Carnegie Mellon University, School of Computer Science

Suggestions

  Unclear Parameter Implications (11)
  Example classes

  audio tweaks
  3D transformation matrices
  number/string/date formatting

  What people wanted
  modify the parameters and see the results directly

without running the application

50

Carnegie Mellon University, School of Computer Science

Suggestions

  Query Languages (17)
  Example classes

  regular expressions
  SQL queries
  XPath / XQuery

  What people wanted

  testing the query result directly
without running the application

51

Carnegie Mellon University, School of Computer Science

Suggestions

  Graphical Elements (27)
  What people wanted

  checking the graphical property directly
  manipulating the layout of GUI elements

  Example classes
  color, font, shape, thickness, etc.
  JFrame, layouts, any swing components, etc.

52

Carnegie Mellon University, School of Computer Science

Suggestions

  Describe by Example (2)
  Example classes

  keyboard keys (e.g., shortcut keys)

  Integrating with Documentation, Tutorials (7)

53

Carnegie Mellon University, School of Computer Science

Pilot Study Overview	

  Observe users doing regular expression
tasks with and without Graphite.

  Hypotheses:
  Control subjects (4) will have more trouble with:

  Factory pattern initialization: Pattern.compile(…)	

[Ellis et al, ICSE07]

  Escaping of strings: Pattern.compile(“\\d”)	

  Treatment subjects (3) will complete more tasks

and test more examples 	

54	

Carnegie Mellon University, School of Computer Science

Protocol	

  Pre-survey asking the familiarity with:

  Programming languages
  Integrated development environments
  Regular expressions

  Give a demo of how to use Graphite plug-in with
the Color palette
  Only for the treatment group

  Instruct them how to complete the tasks and
start the experiment

55	

Carnegie Mellon University, School of Computer Science

Pilot Study Results	

  Hypotheses:
  Control subjects had trouble with:

  Factory pattern initialization: Pattern.compile(…)	

[Ellis et al, ICSE07]

  Escaping of strings: Pattern.compile(“\\d”)	

  Treatment subjects completed more tasks and

tested more examples

56	

Carnegie Mellon University, School of Computer Science

Pilot Study Results	

  Hypotheses:
  Control subjects had trouble with:

  Factory pattern initialization: Pattern.compile(…)	

[Ellis et al, ICSE07]

  Escaping of strings: Pattern.compile(“\\d”)	

  Treatment subjects completed more tasks and

tested more examples
  Treatment subjects were uniformly positive.

Control subjects later shown the palette were
also positive.

57	

Carnegie Mellon University, School of Computer Science

DEFINITION. Active Code Completion	

58	

  A code completion system that actively engages
both users and providers during code completion
1.  Providers equip types with specialized user interfaces

(palettes)

2.  API clients interact with palettes to provide requested
information about their intent

3.  API providers generate code based on this information

Carnegie Mellon University, School of Computer Science

Benefits of Active Code Completion	

59	

  Domain-specific tools can be easily integrated
directly into the editor (fewer context switches)
and discovered more easily.

  Palettes can handle tricky aspects of an API
(e.g. factory patterns, string escaping)

Carnegie Mellon University, School of Computer Science

Our Design Methodology	

60	

1.  Large developer survey to validate this idea
and develop design criteria and use cases
before implementation!

2.  Tool design and implementation (GRAPHITE)
http://www.cs.cmu.edu/~NatProg/graphite.html

3.  Controlled pilot study to justify usefulness
claims

Carnegie Mellon University, School of Computer Science

Broader Trends	

61	

Extensible languages require extensible
development environments.

Active typing: directly equipping types with
relevant compile-time and design-time logic.

More to come!

Carnegie Mellon University, School of Computer Science

Thanks!	

62	

  Jonathan Aldrich and the CMU PLAID group

  Students in 05-899D: Human Aspects of
Software Development
(co-taught by Thomas LaToza and Brad Myers)

  UIUC Software Engineering Seminar

  All our participants and subjects!

