Distributed Localization of Networked Cameras

Carlos Guestrin
Carnegie Mellon

Stanislav Funiak
Carnegie Mellon

ABSTRACT

Camera networks are perhaps the most common type of sen-
sor network and are deployed in a variety of real-world appli-
cations including surveillance, intelligent environments and
scientific remote monitoring. A key problem in deploying a
network of cameras is calibration, i.e., determining the loca-
tion and orientation of each sensor so that observations in
an image can be mapped to locations in the real world. This
paper proposes a fully distributed approach for camera net-
work calibration. The cameras collaborate to track an object
that moves through the environment and reason probabilis-
tically about which camera poses are consistent with the ob-
served images. This reasoning employs sophisticated tech-
niques for handling the difficult nonlinearities imposed by
projective transformations, as well as the dense correlations
that arise between distant cameras. Our method requires
minimal overlap of the cameras’ fields of view and makes
very few assumptions about the motion of the object. In
contrast to existing approaches, which are centralized, our
distributed algorithm scales easily to very large camera net-
works. We evaluate the system on a real camera network
with 25 nodes as well as simulated camera networks of up
to 50 cameras and demonstrate that our approach performs
well even when communication is lossy.

Categories and Subject Descriptors: G.3 [Probability
and Statistics]: Miscellaneous; 1.4.1 Digitization and Image
Capture, Camera calibration.

General Terms: algorithms, experimentation.

Keywords: sensor networks, graphical models

1 INTRODUCTION

Camera networks are perhaps the most common type of sen-
sor network. These networks are ubiquitous in a variety of
real-world applications including surveillance, intelligent en-
vironments and scientific remote monitoring. In most appli-
cations, camera network data is only useful if we know from
where the images were captured, i.e., the real world location
of the cameras. Manually measuring the pose (location and
orientation) of all cameras in the network is a very tedious
and time consuming task. In this paper, we present a dis-
tributed method for solving this calibration task automat-
ically by using information provided by the actual cameras
in the network.

Permission to make digital or hard copies of all or part of this work for

Mark Paskin
Stanford University

Rahul Sukthankar

Intel Research

Suppose that a moving object is seen in the field of view
of a camera and, a few moments later, the same object is
observed by another camera; if we knew the trajectory of
this object, we could infer information about the relative
position of the two cameras. Unfortunately, without an in-
dependent localization system like GPS, the trajectory is
unknown. However, if we knew the poses of the cameras, we
could infer the trajectory of the object. Therefore, we can
address the camera network calibration task by solving a
simultaneous localization and tracking (SLAT) prob-
lem, where we estimate both the trajectory of the object and
the poses of the cameras. An effective solution of the SLAT
problem leads to a very simple camera network deployment
procedure: cameras are placed throughout the environment
at unknown locations, then, as an object (e.g., a person)
moves throughout the environment following an unknown
trajectory, the network automatically calibrates itself.

Cameras provide noisy observations about possible loca-
tions of the moving object, and there may be times when
the object is not visible by any camera. Thus, we formulate
SLAT as a probabilistic inference task, where we maintain a
joint distribution over possible object locations and poses of
all cameras, given the images collected by the network. The
object location and the poses of the cameras are continuous
variables in this model. Unfortunately, representing general
distributions over continuous variables is a very challeng-
ing task, and most representations lead to intractable infer-
ence. If the distribution can be represented as a Gaussian,
however, the inference task can be solved by simple matrix
operations. Unfortunately, the camera calibration problem
has nonlinearities (e.g., due to periodicity in the angles)
that cannot directly be represented by Gaussian distribu-
tions. This paper presents a novel approach, relative over-
parameterization (ROP) of the camera pose, that enables
us to represent the complex distributions in the SLAT prob-
lem effectively using a single Gaussian. Even with our ROP
representation, however, we still need to incorporate non-
linear information obtained from the camera network. We
show that the standard procedure for integrating this non-
linear information leads to very poor SLAT solutions. We
address this problem by proposing a novel conditional hy-
brid linearization procedure that isolates and addresses
the main source of nonlinearity, which is uncertainty in the
camera angle. The combination of our ROP representation
with this linearization procedure leads to very precise SLAT
solutions using a simple Kalman filter, even with minimal or
no overlap of the cameras’ fields of view. A strong advantage
of this approach is that it provides an explicit representa-
tion of the uncertainty in the estimate of camera poses.

personal or classroom use is granted without fee provided that copies areBy representing uncertainty, we have a direct measure of
not made or distributed for profit or commercial advantage and that copies the quality of the solution, indicating when the calibration

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
IPSN'06,April 19-21, 2006, Nashville, Tennessee, USA.
Copyright 2006 ACM 1-59593-334-4/06/000455.00.

procedure can be stopped, and what parts of the network
need more information to improve their calibration, poten-
tially enabling an active control of the path of the object
that optimizes the quality of the solution.

Often, we cannot expect a camera network to be able to
upload all images to a central location, e.g., in ad-hoc de-
ployments, when the network is large, when the nodes are
resource constrained, or in situations where a single point
of failure could jeopardize the entire system, such as in an
emergency response system. To address these situations,
we present a distributed solution to the SLAT problem that
builds on our recent work on distributed probabilistic
inference [3,9,11]. Our approach only uses local commu-
nication between nearby camera nodes, and guarantees that
the solution obtained will be exactly the same as if we were
to download all of its images to a central location. Our
approach is online, so that at any time, each camera can
locally obtain an estimate of its pose given the images ob-
served thus far by all of the cameras. The messages commu-
nicated by our algorithm are compact summaries of observa-
tions made by large sets of cameras, so nodes never need to
transmit images, significantly reducing the communication
cost. Furthermore, our approach provides strong guaran-
tees with respect to node failures and lossy communication:
even when a subset of the camera nodes fail, our algorithm
is guaranteed to provide a principled approximation of the
solution obtained by the remaining cameras.

The main contributions of this paper are:

1. A demonstration of the viability of distributed, precise
and efficient calibration of a large network of cameras by
simply tracking a moving object.

2. Novel representation and linearization procedures yield-
ing effective solutions to SLAT using simple Gaussians, de-
spite the problem’s complexity and nonlinearity.

3. A scalable and distributed algorithm for the SLAT
problem that is guaranteed to converge to the same solution
as the centralized approach, providing robustness guaran-
tees with respect to lossy communication and node failures.

4. An experimental validation of the approach on several
large simulated scenarios and on real data from a network
of twenty-five cameras, demonstrating minimal estimation
error.

2 SIMULTANEOUS LOCALIZATION AND
TRACKING IN CAMERA NETWORKS

2.1 Problem formulation

Our goal is to recover the poses of the cameras in a camera
network. In general, the pose of a camera can be repre-
sented by six parameters: three position parameters z, y, z,
and three angles (e.g., roll, pitch, yaw). This paper focuses
on recovering three of these parameters: the (z,y) location
of the camera and an angle 0, i.e., the rotation around the
z-axis; the remaining parameters (such as tilt and height)
are assumed to be known. We call (z,y,6) the absolute
parameterization of a camera’s pose. This parameteriza-
tion can represent a wide range of camera poses, including
downward-facing cameras attached to a ceiling and wall-
mounted cameras at known heights.

The cameras estimate their pose parameter by tracking
a moving object. We assume that this object maintains
an (approximately) known height throughout its motion, so
that its location can be characterized by (z,y) coordinates.
We assume very little about the motion of this object ex-
cept smoothness—the object can stop, change direction, or
change speed. For example, the moving object could be
a visually distinct marker carried by a person. The images

observed by the cameras are governed by perspective projec-
tion, and are therefore highly nonlinear both in the camera’s
pose parameters and the object’s location.

2.2 Assumptions on the camera network

We assume a general camera network model where each
camera node has (limited) resources for computation and
communication, and synchronized internal clocks that allow
the nodes to share a common notion of time. We assume
that the camera nodes communicate using a multiple access
channel such as 802.11 or radio, which does not guarantee
perfect communication; messages can be lost, and interfer-
ence can partition the network. This communication model
is general enough to accommodate a wide range of camera
nodes from Crossbow motes with on-board cameras to wire-
less webcams.

2.3 Related work

SLAT is related to a problem in mobile robotics called si-
multaneous localization and mapping (SLAM) [10]. In
SLAM, a mobile robot observes landmarks and from these
observations, its odometry, and its control signals, the robot
must jointly estimate its location and the positions of the
landmarks. We can view SLAT as a SLAM problem where
the cameras play the role of landmarks, and the moving ob-
ject plays the role of the robot; the key difference is that in
SLAT, the cameras observe the object; in SLAM, the robot
observes the landmarks. In some ways, SLAT is easier than
SLAM: in SLAT there is no data association problem, since
there is only a single object; in SLAM, there are many land-
marks and the robot must reason about which is associated
with each observation. In other ways, SLAT is more difficult
than SLAM; in SLAM there is significant information about
the motion of the robot (from its odometry and controls),
whereas in SLAT we know little about the object’s dynam-
ics.! Another feature which makes SLAT more challenging
is that there are many variables that represent angles—and
thus interact nonlinearly—whereas in SLAM there is typi-
cally only one angular variable, the orientation of the robot.

Aspects of SLAT are also related to work in computer vi-
sion in multiple camera tracking and calibration [5,
13,15], which as largely focused on overlapping camera con-
figurations, and structure from motion (SFM) [8,12,14].
Given a sequence of images of a static scene captured by a
moving camera, the goal of SFM is to recover the 3D geom-
etry of the scene and the trajectory of the camera motion,
typically by using correspondences between feature points.
There are two key differences between SLAT and SFM. In
SLAT, the positions from which images are obtained are not
related by smooth motion of the camera, but by the layout
of the camera network; this means that the overlap between
different images is typically much smaller. Additionally, in
SFM geometric information is extracted from large sets of
feature point correspondences; in SLAT, only a single point
is tracked—the moving object.

In the sensor networks community, there has been a large
body of work on localizing nodes from pairwise distance es-
timates (c.f. [4] for one such approach, and [18] for an inter-
esting analysis of this problem). The assumptions of SLAT

Hn [7] a problem between SLAT and SLAM is addressed, where
robot carries a pattern; the robot’s odometry is used to simplify
the problem.

are weaker, since we localize nodes by simply tracking an ex-
ternal, uncontrolled object. Perhaps the closest work in the
sensor network community is that on passive localization,
where sensors attempt to localize themselves using sound
events of unknown origin [16].

A recent proposal by Rahimi et al. to address the SLAT
problem uses an offline optimization algorithm [13]. This
approach is based upon a probabilistic model that is similar
to ours, but rather than computing a complete posterior
distribution over camera poses, they compute the most likely
trajectory and the most likely pose for each camera with
the Newton-Rhapson method. In Sec. 6, we show that our
approach and that of Rahimi et al. provide solutions of
comparable quality. However, the approach of Rahimi et
al. is offline, centralized and does not provide an explicit
representation of the uncertainty in the solution. On the
other hand, our algorithm is online, distributed and provides
uncertainty estimates that can be used for active control.

3 DYNAMIC PROBABILISTIC SLAT

We model the SLAT problem using a linear dynamical sys-
tem [13]. The variables of this system are the location and
velocity of the object at each time step, M, and for each
camera ¢, the pose of the camera C;. The motion of the
object is modeled using a Brownian motion:

MY¥ 1 01 0 -1 0

MY 010 1 MY, 0
Me=1V v =100 1 0 A I P

MY 000 1 MY €

(1)
where (M, MY) is the object’s position, (M%, MY) is its ve-
locity, and € is a white noise variable giving additive noise in
velocities. This motion model assumes little about the mo-
tion of the object except smoothness. It is a linear-Gaussian
model, because M is a linear function of M; and some ad-
ditive Gaussian noise. This means that we can represent the
motion model p(M; | M¢_1) using a compact parametric
form [2].

When the object appears in the image of camera i, an
observation is generated which is represented by a point,
O = (0%,0Y), in the image coordinates of that camera.
This observation depends upon the object’s state M and
the camera’s pose C; via
where ¢ is the (non-linear) projective transformation for
camera ¢ and § are white noise variables with a small stan-
dard deviation (e.g., 3 pixels). For instance, when an over-
head (downward-facing) camera with known focal length, f,
located at (C®,CY) rotated at an angle of 6 observes an ob-
ject located at (M®, MY) and a known height offset h, the
observation is given by

6] - amliese]+ [5]
where Ry represents a clockwise rotation by 6. This mea-
surement equation is not linear-Gaussian; therefore, we can-
not represent the observation model p(O | C;, M) ex-
actly using linear-Gaussian parameters. Our approach, de-

scribed below, is to use linearization to find a good linear-
Gaussian approximation to the observation model.

To complete our definition of the probability model, we
must specify the prior distribution over the object location
at the first time step, p(Mo), and the poses of the cameras
p(C;). Our observations give us only relative information,
so any translation or rotation of the coordinate frame is
equally reasonable. To resolve the coordinate system, we
initialize the prior of the first camera that observes the ob-
ject to a point mass at the origin and set its orientation to
zero. The remaining priors (over the object location and the
other cameras’ parameters), are “uniform”, represented by
a Gaussian with a large variance [2].

At each time step, we get some set of object observations
0:. The belief state at time ¢ is defined to be

p(M:,C | 01,02,...,0:-1). 3)

This is the posterior distribution over the current state of the
system (i.e., the object state and all cameras’ poses), given
all observations made so far. A filtering algorithm itera-
tively computes the belief state at time ¢ using the previous
belief state, the probability model, and the observations at
time ¢t — 1. For example, given our linear Gaussian assump-
tions, the belief state can be represented by a mean vector
e+ and a covariance matrix >, and it can be computed using
the Kalman filter (c.f. [6]). The mean vector represents the
most likely values for the state variables, and in particular,
it represents the most likely poses for the cameras.

The filtering update can be viewed in terms of a three
step process—a view that will be useful to us later:

Estimation. In this step, we condition on the observa-
tions of the current time step by computing

p(Mt,C | o1:.t) < p(M¢,C | 01:4—1) - p(ot | My, C), (4)
=p(M¢,C |o1t-1) [[p(o} | Mt,Cuugiy)- (5)

7

The first term on the r.h.s of Eq. (4) is the previous belief
state, and the second term is the likelihood of the current
observations. In Eq. (5), we have used the assumption that
observations are independent given the location of the ob-
ject and the pose of the camera that made the observation;
this allows us to decompose the likelihood into a product
of likelihoods, one per object observation: o} is the ™ ob-
servation, and C',(;) is the pose of the camera that received
the observation. Note that each observation depends upon
the location of the object and the pose of the observing
camera—not upon the joint state vector. To summarize: es-
timation is accomplished by multiplying into the belief state
a likelihood for each observation (and then renormalizing).

Prediction. In this step we augment the belief state with
the new object state variable by computing

p(Mit1, My, C | 01:4) = p(My,C | 01:4) - p(M 41 | M) (6)

The first term on the r.h.s is the result of estimation, and
the second term is the object’s motion model from Eq. (1).

Roll-up. In this step we marginalize out the object’s state
variable from the current time step by computing

p(Miy1,C | 01:4) = /P(Mt+1,Mz =my¢, C | o14)dms. (7)

The first term on the r.h.s is the result of prediction, and
the Lh.s. is the belief state at the next time step.

s u,
/
: 4
(mf,ml")ﬁ -~
> @(m.m)
(a) absolute parameters (b) ROP parameters

Figure 1. Two parameterizations that represent the pose of a cam-
era. (a) Standard parameterization in terms of camera center (z,y)
and orientation 6. (b) ROP parameterization that expressess the
camera pose as a composition of a translation and a rotation about
a hypothetical location (m®*, m¥) of the object when first observed.
At t = 1, the camera makes its first observation of the tracked object
(in this case, a person), and represents its distribution in terms of
m¥,mY,u,v, and ¢. (m¥, mY) is the unknown location of the per-
son at t = 1, ¢ is the camera orientation, u represents the distance
of the camera’s image plane from the person, and v represents the
lateral offset (if v were equal to 0, the camera would observe the
person head on). If we vary ¢ from —7 to 7, the camera traces a
circle around (m¥,mY). The object location at t = 1, (m§,m¥),
remains a part of the camera’s belief state even after the object has
moved to a different location (m%, m}) at the next time step.

In our setting, where the joint distribution is (approxi-
mated by) a multivariate Gaussian distribution, the multi-
plications and marginalizations required by the filtering up-
dates can be implemented algebraically using simple matrix
operations, as described in [2].

4 ADDRESSING NON-GAUSSIANITY

Thus far, we have referred to the pose of camera i abstractly
as C;. One possible representation for this pose uses the
absolute parameters (z,y, §). This parameterization is illus-
trated in Fig. 1(a).

Suppose that a camera with an unknown pose observes
the object at a known position. Given the heights of the
object and camera are known, we can estimate the distance
from the camera to the object using a simple inverse projec-
tion. Unfortunately, we cannot recover the orientation of the
camera 6, as the camera could be anywhere in a ring around
the object’s location. Fig. 2(a) illustrates this phenomenon
by visualizing the true posterior distribution over possible
camera poses in absolute coordinates given an observation of
a object with known location. This ring-like distribution is
highly non-Gaussian, and if we tried to approximate it with
a Gaussian, the problem structure would be lost, as shown
in Fig. 2(b).? Because of this, applying the Kalman filter to
solving the SLAT problem fails when the camera poses are
represented in absolute parameters, see Fig. 3(b).

4.1 Relative over-parameterization

One approach for representing such ring-like distributions
is to use a mixture of Gaussians [4]. Unfortunately, com-
putations with mixtures of Gaussians are significantly more
costly, losing the simplicity of the Kalman filter approach;

2Placing Gaussian distributions over angular variables requires
some care because of periodicity. In our convention, a Gaussian-
distributed angle © with mean u and variance o2 is distributed
so that for all —7 < 6y < 01 <,

Prim<o<oy= > [

k=—oc0

0142km
N(0; p, o2)d6.
o+2km

2n
E NL {;D‘ g0
i1 %
=2x;
5N - 10
0\ S \Gx\ 10
y \5{;/ ! 1071 . 2)
¥ =5 =5 x y -10 -10 «x 2i3)
(a) true posterior in (b) Gaussian approx- Ty
absolute parameters imation in absolute ° ™ s
parameters O "0

Yy =5-5 F 3
(e) transforming a
Gaussian in polar
parameters back to
absolute parameters
yields desired results

(c) true posterior in (d) Gaussian approx.
polar parameters in polar parameters

Figure 2. An example demonstrating the folly of Gaussian repre-
sentations in absolute parameters, and the improvement obtained
with relative parameters. Figure (a) visualizes the posterior distri-
bution of a camera’s pose in absolute parameter space, given that
it has observed the object at the origin. The distribution forms a
spiral in the (z,y, 0) space and a ring in the (x,y) space. The best
Gaussian approximation to this posterior is shown in Figure (b); note
the bad approximation. In contrast, when expressed in polar coordi-
nates (c), the posterior can be effectively approximated with a single
Gaussian (d). By transforming this distribution back to the absolute
parameters (e), we can verify that we have obtained an accurate
approximation of the original posterior distribution in Figure (a).

typically an exponential number of mixture components are
required to represent the pose of multiple cameras simulta-
neously. We now present a novel, simple reparameterization
of the problem that allows us to represent these complex
distributions with a single Gaussian.

Our reparameterization is based on a simple intuition.
Fig. 2(b) shows that a Gaussian in absolute parameters can-
not represent the ring structure of the position variables in
Fig. 2(a). Nevertheless, this structure can be represented
well with a Gaussian in polar coordinates (r,¢), Fig. 2(c),
where the origin corresponds to the observed object’s true
location, r is the distance to the camera’s position, and the
angle ¢ describes both the orientation of the camera and
its orientation with respect to the object, since the camera
must be looking inward toward the object. A Gaussian with
a small variance for r would provide a good approximation,
see Fig. 2(d). Comparing Fig. 2(e) to the exact posterior
in Fig. 2(a), we see that we have obtained a sensible ap-
proximation to the true distribution of the camera pose.

This intuition has two problems that we must correct.
First, the object location—the origin of our polar coordi-
nate system—is not known with certainty when the object
is observed; to remedy this, we can add its position (m®, m¥)
position to the pose variables, so that they too can be es-
timated from observations. Second, the camera does not
necessarily observe the object head—on, but at an angle ac-
cording to the orientation of the camera. To correct this, we
can substitute for the radius r a pair of parameters, u and v,
which describe the distance from the object to its projection
on the camera’s image plane (u), and the distance from this
projection to the camera’s center (v). Thus, our relative
over-parameterization (ROP) of a camera’s pose is given
by (m®,m¥,u,v, ¢), as illustrated in Fig. 1(b).

Using the ROP representation in our Kalman filter re-
quires two small changes. First, the observation model Eq. (2)
must be expressed in terms of (m®,m¥ u,v,¢), which re-

4 -3 -2 -1

o 1 2 3
X

%4 a3 2 -l

4

a3 2

4

(a) tower scenario

(b) absolute + accurate lin. (c) ROP parameterization (d) ROP + hybrid cond. lin.

Figure 3. The performance of the Kalman Filter on a simulated network of cameras. The long arrows correspond to the true location and
orientation of the cameras, the ellipses (often small) are 95% confidence intervals in the position estimates, and the two short arrows (often
overlapping) are the 95% confidence intervals in the estimate of orientation. (a) Eight side-facing and four overhead cameras (in the corners)
are placed around a hallway. The dark-shaded regions represent the overlapping fields of the view. The dotted line shows the actual location of
the object at each time step. (b) Nonlinearities give poor results when camera poses are represented as (, y, 6), even with accurate linearization
of the observations. (c) The ROP representation of camera poses, (s, ¢, u, v, ¢), improves results. (d) Combining the ROP representation with

the hybrid conditional linearization techniques gives excellent results.

quires the projection operation g(M,C) to first perform a
transformation of the ROP camera pose C into absolute
coordinates, (z,y,0), and then apply the standard projec-
tion. Second, the prior over camera poses must also be con-
verted to the ROP representation. This prior is similar to
the one in absolute coordinates: If camera i first observes
the object at time ¢, the prior over the coordinates (u,v, ¢)
is uniform, and the prior over (m®, m¥) is defined such that
these variables are exactly equal to the (unknown) object
position (M¢,MY). This conversion preserves the strong
correlations among the cameras that arise when the person
is seen by multiple cameras at once: the cameras will be
correlated through their values of (m?®, m¥). Using our new
ROP representation, we are able to obtain very precise pose
estimates for a large camera network using only a Kalman
filter with a single Gaussian, as shown in Fig. 3(d).

4.2 Hybrid conditional linearization

Recall that our observation model in Eq. (2) includes a pro-
jection operation that is highly nonlinear. This makes it
impossible to directly apply the Kalman filter to SLAT,
because its linear-Gaussian assumptions are violated. The
standard approach to applying the Kalman filter to nonlin-
ear systems is to adopt a strategy for linearization, which
chooses a linear approximation to the observation model in
the region that has highest probability according the prior
distribution. The most sophisticated techniques are based
on numerical integration, including Gaussian Quadrature
and Exact Monomials [6, §6], which include as a special case
the Unscented Kalman filter (UKF) [17].% In this section, we
briefly describe this approach to linearization and two new
enhancements we developed for SLAT, hybrid linearization
and hybrid conditional linearization, which dramatically im-
prove the linearization quality.

Suppose that we have a Gaussian approximation of the
belief state p(M¢,C | 01..—1). We wish to condition this
belief state on a nonlinear observation o' made by cam-
era i. It is sufficient for us to consider the simpler prob-
lem of computing a Gaussian approximation to p(My,C; |
o') from p(My,C;); this allows us to focus on the state of
the object and the camera making the observation.® In

3The more common extended Kalman filter uses a first-order Tay-
lor expansion for linearization; Gaussian Quadrature methods are
far more powerful.

4This follows from the fact that

p(M,C | 01:4-1,0") = p(M,C; | 0') - p(Cy; | 01:4-1),

Gaussian Quadrature techniques like the UKF, we com-
pute this Gaussian approximation by first approximating
p(M¢,C;, 0", and then instantiating the observation O* =

o (using exact Gaussian conditioning). The joint distribu-

tion p(M,C;, O") is approximated as follows. First, we se-
lect some small number of integration points in (M, C;)
space to characterize the prior p(M, C;); these typically in-
clude the mean and points along a confidence ellipse to char-
acterize the uncertainty in the prior. Then we evaluate the
nonlinear observation function g(M¢,C;) for each integra-
tion point to compute their images. The desired Gaussian
approximation to the joint p(M,C;, O%) is then computed
by estimating its mean and covariance from the integration
points and their images. In general, these techniques pro-
vide formal guarantees when the function f is a polynomial
of bounded degree.

Unfortunately, as shown in Fig. 3(c), the Gaussian Quadra-
ture approach does not provide effective linearization in the
SLAT problem. The main cause of this problem is the peri-
odicity of the angle ¢, which represents the orientation of the
camera. This periodicity in the projection function cannot
be approximated well by a polynomial of bounded degree.

We address this problem with an approach we call hybrid
linearization. By fixing the value of the angle ¢ in the
projection operator, the periodicity problem is eliminated
and our integration problem can be approximated well with
Gaussian Quadrature methods. Building on this idea, we
redefine our integration problem by selecting a number of
integration points ¢; for the angle, and then we use Gaus-
sian Quadrature to compute a Gaussian approximation of
p(My,Ci,0" | ¢;) for each ¢;.° (Note that ¢; is a com-
ponent of the camera pose C;.) The approximation of our
joint distribution is then given by:

. p(d)p(My, Ci, O | &,
p(My, Cs, OF) ~ > p(é)pz(.p(%) | ¢)_ ()

In this equation, each p(M;, Ci, O" | ¢;) is a Gaussian, mak-
ing p(M¢,C;,0") a mixture of Gaussians. In order to ap-
proximate this mixture as a single Gaussian, we use a stan-
dard approach that finds the optimal Gaussian approxima-
tion by moment matching [6, §3.3].

where C\; is the vector of poses for all cameras except for i. This
follows from our independence assumptions.

5The integration points for ¢; are evenly spaced in the interval
[¢ — a, ¢ + a], where ¢ is the prior mean over the angle, and
a = min(30g,), where oy is the prior standard deviation over
the angle.

1 %) fﬁ

8 6 4 2 2 4 6 8
p

(a) simulated net. of side-facing cameras

(b) simulated network of overhead cameras

- =0
{ L?mf o
b

) X
(c) real network of overhead cameras

Figure 4. Additional results from the centralized algorithm. Figures (a) and (b) demonstrate very good results on simulated networks with
many cameras. In (b), where the cameras are overhead, the estimates are more uncertain because the object is observed less frequently. (c)
shows the results of our algorithm when run on a real camera network of twenty-five cameras.

The Gaussian Quadrature method described thus far im-
proves the quality of the SLAT results, but these results
are still not satisfactory. The reason for this is the mix-
ture of Gaussians in Eq. (8) is often a complex, multi-modal
distribution that cannot be approximated well by a single
Gaussian. On the other hand, the distribution after the ob-
servation is instantiated is more focused and better approx-
imated by a single Gaussian. This leads us to our hybrid
conditional linearization technique, where the observa-
tion is instantiated in each mixture component:

Z p(¢]) Mtvcivoi | ¢J)
ij(¢j) .

p(Mt7Oi | Oi) O(p(Mt7Cl70)
9)

This mixture is typically much closer to a Gaussian than the
one in Eq. (8); thus, when we approximate it by a Gaussian
as above, the approximation is precise. As before, Gaussian
quadrature methods and exact conditioning can be used to
approximate the summands in Eq. (9) when the prior over
Ci, M is sufficiently focused. When a camera makes its first
observation, its pose prior is completely “uniform”, which
does not allow us to select integration points. Instead, we
use the inverse projection function gil(Mt, o', 5%, ®;) to ap-
proximate p(My, C;, 0" | ¢;) as a marginal of

p(ciaMt70i76i | (Z)J) X (10)
p(Ci | My,0',8",¢;)p(My | 0',6°,¢;)p(6" | o', b;).

Here, p(C; | My, 0", 8%, ¢;) is deterministic and corresponds
exactly to the inverse projection function. Furthermore,
p(M; | ¢4,0%,6") = p(M,), because the prior distribution
of C; is uninformative, and we approximate p(6’ | ¢;,0") as
a normal distribution N (0,02I). We have found that the
resulting hybrid conditional linearization yields excellent re-
sults for SLAT problems, as shown in Fig. 3(d).

5 EXPERIMENTAL RESULTS

In addition to the smaller tower scenario in Fig. 3(d), we
evaluated our approach on several other larger simulated
scenarios. We include two sample results here, Fig. 4(a) and
Fig. 4(b). We omit the results for the absolute parameteriza-
tion, because it performed very poorly in these larger scenar-
ios. These results are best visualized with videos, we refer
the reader to http://www.cs.cmu.edu/ sfuniak/slat.
The scenario in Fig. 4(a) includes 44 side facing cameras,
tilted down about 35°, arranged along both walls in a square
corridor. The object circles the loop twice. Note that all of
the camera position and orientation estimates are within the
estimated 95% confidence intervals. Thus, we are effectively
representing both the estimate and the uncertainty.

The scenario in Fig. 4(b) consists of 50 downward-facing
cameras, and the object circles the space. Again, we see
that our estimates are almost all within the 95% confidence
interval. Interestingly, camera 16 in the center only sees
the object once; its posterior distribution should be ring-
like. Since our ROP parameterization can capture such a
structure, we see that the 95% confidence interval for this
camera is in fact a ring.

We have also evaluated our approach on a real network of
twenty-five overhead cameras. Here, a toy remote-controlled
car was driven around a room carrying a colored marker, and
a standard image processing algorithm was used to extract
the center of the marker. Fig. 4(c) illustrates the solution
we obtain. We see that our approach generates excellent
pose estimates with real data.

6 SCALING UP TO LARGE NETWORKS

The model we have developed so far would not scale well
to very large camera networks for two reasons. First, the
representation of the belief state (in terms of a mean vector
and covariance matrix) requires space that is quadratic in
the number of cameras (since correlations between all pairs
of camera poses are maintained). In addition, these correla-
tions must be updated with each observation, which makes
the filter update a quadratic-time algorithm. This problem
also occurs in the SLAM domain [10].

In this section, we give a brief overview of an approxima-
tion strategy that circumvents these difficulties and facili-
tates the distributed inference algorithm described below.
This approximation strategy is an instance of the Boyen &
Koller (BK) algorithm [1]. Rather than representing the
belief state as a monolithic probability distribution over all
state variables, the BK algorithm uses an approximation
built out of marginals of that joint distribution:

HC ﬁ(Mt7 i ‘ Olztfl)
[lg,, (M1, Cij | 01:4-1)

where C; are subsets of the camera pose variables C and
C;; = C; N C;. For the approximation to be well-defined,
these subsets must be defined in terms of a data structure
called a junction tree [2]. An example junction tree for
the SLAT problem of Fig. 3(a) is shown in Fig. 5(a). Each
node of the junction tree is annotated with a set of variables
called a clique, and each edge is associated with another set
of variables called its separator; each separator is the in-
tersection of the two incident cliques. Junction trees satisfy
a constraint called the running intersection property: if
a variable is in two cliques, then it must also be in all cliques

(Mt,C|01t 1) , (11)

0.8

(s, Cy, Cras MyHC7, Cs, Cra M,) 07

—= 0.6

Cy,Cr0,Cr2, My Co, Cr, Cuz, My %05
50.

Ci0,C11, C1z, M, @ 04
~03

Ci1,Cra, My 02
Ci1, Cra, M,y C3,Cy, Crp, M,y 01

0 123512
tower

(€1, Co, Cro, M Cs, Cy, Cia, M)

(a) an example BK junction tree

123544
hall44

1 f
-a-hall44
08 Y —5—grid5x10
E
~ 06
=}
£
o
204
4
o2\ L | Lt
0,

136950R 135825R 5 25

grid5x10 real25 average number of observations per camera

(b) approximation error vs. clique size (c) sensitivity to number of observations

Figure 5. Using the Boyen & Koller (BK) algorithm. (a) An example BK junction tree for the SLAT problem in Fig. 3(a); the cliques are shown
(but the separators are not). Note that the cliques contain pose variables of nearby cameras; the object state M is included in all cliques so
the BK approximation represents its coupling to all camera poses. (b) Approximation error vs. clique size. The horizontal axis shows the four
scenarios discussed in the previous sections. The bars correspond to solutions with increasing numbers of variables per clique. The fifth bar in
each group corresponds to the solution of a Kalman Filter. The results were averaged over 10 observation sequences, except for the Kalman
Filter solutions for the two large networks, which were run without averaging. We see that often, a very simple approximation suffices to obtain
accurate results. The last bars in the grid5x10 and real25 examples (labeled 'R’) show the performance of the algorithm [13], running on our
data set with the same choice of model parameters. We see that our online approach performs equally well as the offline approach [13]. (c)
Approximation error vs. number of observations. The horizontal axis shows the total number of observations a camera has made. We see that
with 10—12 observations per camera, we can extract the camera poses accurately.

on the unique path between them. In our BK approximation
Eq. (11), the cliques are {M,} U C; and the separators are
{M} U C;j; thus, the object state variable M, is in every
clique and separator.

The intuition behind the BK approximation is that to
avoid the cost of maintaining dependency information be-
tween all variables, we can instead maintain dependencies
between small, overlapping subsets of variables. How, should
we select these cliques to get the best approximation? If we
examine the exact solution computed with the Kalman Fil-
ter, we notice that the strongest dependencies are among
the variables of the cameras with overlapping views. This
provides a good heuristic for choosing the BK approxima-
tion: we select the cliques to cover sets of cameras that are
near one another, as in Fig. 5(a).6 Furthermore, since the
object state is strongly coupled to the camera poses (via
the observations), we add M to all cliques and separators
in the junction tree. In a real camera deployment, wire-
less radio range could be used to determine the couplings
among the cameras. Alternatively, a technique called Thin
junction tree filtering (TJTF) [10] could be used to auto-
matically and adaptively select the approximation structure
of the BK algorithm, without topological information.

The filter updates, estimation, prediction, and roll-up,
can be implemented efficiently using the BK representation.
When performing filtering, for each clique, we must compute
the new clique marginal p(M¢4+1,C; | 01:¢) using the previ-
ous belief state, Eq. (11), the observation likelihoods from
time step ¢, and the motion model for the object. This can
be accomplished in a two-step process: first, the estimation
phase is performed by multiplying the likelihoods into the
belief state Eq. (11), as in Eq. (4), and then using an efficient
dynamic programming algorithm in which each pair of ad-
jacent cliques in the junction tree exchange information [2].
The result of this process is a belief state of the form

_ Hci ﬁ(Mtvcl | ol:t)
a HCM ﬁ(MtaC’L] ‘ Olzt)7

P(M¢,C | 01:4) (12)

S0ur cliques are selected using gross, imprecise topological infor-
mation about the environment, not the precise locations of the
cameras, which are determined by our approach.

i.e., all marginals have been conditioned on the new obser-
vation o¢. The prediction and roll-up phases of filtering can
now be implemented very efficiently: for each clique (and
separator) marginal, we independently multiply in the ob-
ject motion model and marginalize out the old object state:

P(Mi41,Ci | 01:4)
:/p(Mt+1 ‘ M = mt)ﬁ(Mt =my, C; | 01;t)dmt. (13)

In the SLAT problem, we have found that the BK ap-
proximation is excellent, and yields almost no approxima-
tion error. In Fig. 5(b), we show the result of solving sev-
eral SLAT scenarios using a BK approximation, for differ-
ent clique sizes. We also compared the performance of our
approach to the calibration algorithm in [13] on our scenar-
ios with overhead cameras (at the time of writing, the im-
plementation of their algorithm did not support side-facing
cameras). We see that, in these scenarios, our online ap-
proach performs equally well as the offline optimization ap-
proach of [13].

Fig. 5(c) shows the performance of our algorithm as we
vary the number of observations made by the cameras. With
roughly 10-12 observations, the algorithm obtains accurate
estimates. Only a few of these observations are made in the
regions where the camera views overlap.

7 DISTRIBUTED FILTERING

In the previous section we described the BK filtering algo-
rithm, which can be used to decompose the belief state into
smaller pieces while introducing minimal approximation er-
ror. In this section, we give an overview of our distributed
SLAT approach, which uses the BK representation to per-
form robust, distributed filtering. For further details on the
algorithm, refer to the companion technical report [3].

Our approach builds on a general architecture for robust,
distributed inference in sensor networks [9], which can be
applied to many types of inference problems, including re-
gression (or function fitting) problems, probabilistic infer-
ence problems, and control problems. In this architecture,
each node of the network starts with local pieces of infor-
mation, which may come from its local measurements and

047
/Camera 7

0.3r

Camera 3

RMS error
=3
)

o
=

% 50 100 150 200 250 300
time step
(a) convergence of distributed SLAT

—=-hall44
| -o-real25
0.8r . -A-tower
g ;
= 0.6f Y
8
=1 \
o \
£ 04 !
~
0.2 X
)
e e R
0 5 10

epochs per time step
(b) accuracy v. # epochs

Figure 6. (a) RMS of estimated poses versus number of time steps, in the tower scenario, using our distributed algorithm; (b) RMS of the
resulting solution as the number of epochs per time step increases. Horizontal lines indicate the quality of the corresponding centralized solution.

from a global model. Then, the nodes coordinate to build a
spanning tree overlay and form a distributed data structure
called a network junction tree, where each camera node
is associated with a subset of the variables in the inference
problem. Inference is then performed with a message pass-
ing algorithm in which adjacent nodes in the spanning tree
exchange information about their common variables. This
architecture can solve inference problems robustly in the face
of lost messages and failed nodes, and the algorithm can re-
cover from interference that partitions the network [9].

Distributed probabilistic inference problems can be solved
using this architecture in combination with the robust mes-
sage passing algorithm described in [11]. This algorithm
provides robustness properties beyond those guaranteed by
the architecture. Not only does the network compute the
right answer after message passing has converged, but even
before convergence, or when nodes fail, each node in the net-
work can compute a principled approximation to the correct
answer. In our SLAT setting, this guarantee corresponds to
a principled approximation of a node’s posterior distribu-
tion, given the images observed by the cameras that are
within communication range. This guarantee ensures that
even when communication is very unstable, making global
coordination impossible, nodes can collaborate with other
nearby nodes to obtain informative approximate solutions.

Unfortunately, we cannot directly apply robust message
passing to our SLAT inference problem. The robust mes-
sage passing algorithm is designed to solve static inference
problems, where the random variables do not change over
time. In the SLAT problem, however, we must solve a dy-
namic inference problem—a filtering problem—because the
object’s location M changes over time. In this section, we
describe a new algorithm for performing robust, distributed
filtering which is based upon both the architecture of [9] and
the robust message passing algorithm of [11].

Recall from Sec. 6 that the BK filtering algorithm repre-
sents the belief state p(M¢, C | 01.+—1) using a set of clique
marginals, and that these cliques are defined in terms of a
junction tree like that in Fig. 5(a). We will call this junc-
tion tree the external junction tree to distinguish it from
the network junction tree described above, which is built by
the camera nodes as the distributed algorithm runs. Thus,
while the purpose of the network junction tree is to pass
messages about the variables assigned to each node, the ex-
ternal junction tree represents the conditional dependencies
among the variables. In our algorithm, each node in the
network maintains a portion of this belief state, i.e., a sub-
set of the external junction tree’s clique marginals. In each
filtering update, the nodes collaborate to update their clique

marginals with each other’s observations, and to reflect the
evolution of the process—in the case of SLAT, the motion
of the object. After the distributed filtering update has con-
verged, the network has implemented an exact BK update,
and each node has advanced each of its clique marginals from
Pp(M¢,C; | 01:4—1) to p(M¢41,C; | 01:¢). At this point, the
process repeats, to once again update the belief state with
new observations. At any time during the distributed filter-
ing algorithm, each node has immediate access to marginals
of the joint belief state; in SLAT, these marginals enable
each camera to estimate its own pose, for example.

Initialization of the distributed algorithm. To ini-
tialize the distributed filtering algorithm, each clique of the
external junction tree—which is a set of camera pose vari-
ables, plus the initial object state M(—is distributed to one
or more nodes of the camera network. Each camera is given
at least one clique that contains its pose variable, and each
clique is given to at least one camera. These cliques may be
distributed redundantly to increase robustness in the face
of node failures, just as in the robust message passing al-
gorithm [11]. Using these cliques, the cameras initialize the
clique priors of the first belief state, which are uniform. In
addition to receiving these cliques, each camera node also
receives the motion model of the object of Eq. (1), so that
it can perform the prediction step of the filtering algorithm.

The estimation phase. In the estimation phase of the
filtering algorithm, the nodes must collaborate to condition
their clique marginals on the images observed in the current
time step. That is, the camera nodes start with a distributed
representation of the BK belief state Eq. (11), and they must
collaborate so as to obtain a distributed representation of
Eq. (12). This is a challenging problem, but one that has
already been solved: this type of inference is exactly the
sort of inference performed by the robust message passing
algorithm, where we wish to compute a posterior from a
prior and some observed evidence. In estimation, the belief
state at the current time step plays the role of the prior,
and the goal is to compute Eq. (12), which is the posterior,
conditioned on the current observations. We can therefore
run the robust message passing algorithm without change
to implement the estimation phase of the filtering update.

The prediction and roll-up phases. In comparison
to the estimation phase, the prediction and roll-up phases
are very simple, because they require no coordination. In
order to reflect the motion of the object, each camera node
independently applies the update in Eq. (13) to each one of

its local cliques. The old clique marginals are then replaced
by the new clique marginals, yielding a new distributed rep-
resentation of the belief state in Eq. (11).

Aligning inconsistent beliefs. The distributed algo-
rithm requires us to face issues that do not arise in static
inference problems. In dynamic settings, communication la-
tencies or failures may prevent information from reaching
all parts of the network in a timely fashion. If the esti-
mation process fails to converge before the end of the time
step, the robust message passing algorithm guarantees that
each node has a principled approximation, but these ap-
proximations may not be consistent with each other. For
example, nodes may not agree on the posterior distribution
of the object state M, because they have not had access
to the same observations. In this case, performing the pre-
diction and roll-up computations will propagate these in-
consistencies into the next belief state. This inconsistency
is theoretically troublesome because it becomes impossible
to characterize the belief state of the network as a whole.
To correct such inconsistencies, our distributed filtering al-
gorithm must align the beliefs at different nodes, so that
they are consistent with some joint distribution. The key
idea behind our alignment algorithm is to note that if every
pair of adjacent nodes in the network junction tree agree on
the distribution of the variables they share, then all nodes
are consistent with a global distribution. Our alignment al-
gorithm guarantees that if a single filtering step successfully
converges, then all inconsistencies in the belief state due
to communication failures in the past are resolved, and the
network represents a well-defined joint distribution over the
current state of the process. A full description of the algo-
rithm is presented in the companion technical report [3].

8 DISTRIBUTED SLAT EXPERIMENTS

Since do not have a wireless camera network at this time, we
evaluated our distributed algorithm using the event-based
distributed-systems simulator described in [11] to obtain a
qualitative evaluation of our distributed SLAT approach.

We simulated link qualities using an exponentially-decaying
function of the squared distance between nodes, where nearby
cameras (about 1 meter apart) had about 20% packet loss.

Our first experiment applies our distributed SLAT algo-
rithm to the tower scenario. Fig. 6(a) shows that our dis-
tributed algorithm converges to the same solution as the cen-
tralized one. Note that the convergence curve is different for
different cameras, since their estimate is uninformative until
they first observe the object. Interestingly, in this figure, we
can clearly see a “loop-closing” effect [10] after about 150
time steps: the first camera to observe the object is certain
about its location; when the object returns to the field of
view of this camera, its position becomes more certain, and
the estimates of all cameras become more accurate.

To illustrate the effect of information propagation through-
out the network, in Fig. 6(b), we evaluate the quality of the
final solution of the distributed algorithm as a function of
the number of epochs in each time step. In each epoch, each
node attempts to send any new messages it has queued up;
about 30% of messages are lost due to lossy communication.
These results show that with about 15-20 epochs per time
step, our distributed algorithm converges to the same solu-
tion as the centralized one. For the real data experiment,
the algorithm converges much quicker: due to the small size

of the network, fewer messages are needed to propagate the
information around the network.

9 CONCLUSION

This paper has demonstrated that large camera networks
can be automatically calibrated by tracking a moving object.
We presented two techniques, relative over-parameterization
and hybrid conditional linearization, that enable an efficient
Kalman filter solution to the SLAT problem, in spite of its
complexity and nonlinearity. Our approach obtains the es-
timate of a camera’s pose, as well as the uncertainty in the
estimate. We demonstrated that the BK algorithm gives
an excellent approximation to the Kalman filter solution,
and we used the BK representation as the basis of a scalable
distributed filtering algorithm that solves the SLAT problem
robustly; even in the presence of communication failures, the
distributed algorithm converges to good SLAT solutions.

Acknowledgments. This research was supported by grant CNS-
0428738 NSF ITR: Synthetic Reality; S. Funiak was supported by
the Intel Research Scholar Program. Thanks to A. Rahimi for his
implementation of [13] and to J. Huang and S. Schlosser for their
help with the camera testbed.

References

(1] X. Boyen and D. Koller. Tractable inference for complex
stochastic processes. In Proc. UAI, 1998.

[2] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer, New
York, NY, 1999.

[3] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Ro-
bust probabilistic filtering in distributed systems. Technical
Report CMU-CALD-05-111, Carnegie Mellon Univ., 2005.

[4] A.Ihler, J. Fisher, R. Moses, and A. Willsky. Nonparametric
belief propagation for self-calibration in sensor networks. In
Proc. IPSN, 2004.

[5] S. Khan and M. Shah. Consistent labeling of tracked objects
in multiple cameras with overlapping fields of view. IEEE
PAMI, 25(10), 2003.

[6] U. Lerner. Hybrid Bayesian Networks for Reasoning about
Complex Systems. PhD thesis, Stanford, 2002.

[7] W. Mantzel, H. Choi, and R. Baraniuk. Distributed Camera
Network Localization. In Asilomar Conference on Signals,
Systems, and Computers, 2004.

[8] D. Nistér. Automatic dense reconstruction from uncalibrated
video. PhD thesis, Royal Inst. of Tech., 2001.

[9] M. Paskin, C. Guestrin, and J. McFadden. A robust archi-
tecture for inference in sensor networks. In Proc. IPSN, 2005.

[10] M. A. Paskin. Thin junction tree filters for simultaneous
localization and mapping. In Proc. IJCAI, 2003.

[11] M. A. Paskin and C. E. Guestrin. Robust probabilistic in-
ference in distributed systems. In Proc. UAI, 2004.

[12] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch. Visual modeling with
a hand-held camera. IJCV, 59(3), 2004.

[13] A. Rahimi, B. Dunagan, and T. Darrell. Simultaneous cali-
bration and tracking with a network of non-overlapping sen-
sors. In CVPR, 2004.

[14] S. Soatto and P. Perona. Reducing “structure from motion”:
A general framework for dynamic vision part 1: Modeling.
IEEE PAMI, 20(9), 1998.

[15] C. Stauffer and K. Tieu. Automated multi-camera planar
tracking correspondence modeling. In CVPR, 2003.

[16] S. Thrun. Affine structure from sound. In NIPS, 2005.

[17] E. A. Wan and R. van der Merwe. The unscented Kalman
filter for nonlinear estimation. In Proc. Adaptive Sys. for
Signal Proc., Comm. and Control, 2000.

[18] K. Whitehouse, C. Karlof, A. Woo, F. Jiang, and D. Culler.
The effects of ranging noise on multihop localization: an
empirical study. In Proc. IPSN, 2005.

