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Abstract— In this paper we develop a theory of metamodules
and an associated distributed asynchronous planner which
generalizes previous work on metamodules for lattice-based
modular robotic systems. All extant modular robotic systems
have some form of non-holonomic motion constraints. This has
prompted many researchers to look to metamodules, i.e., groups
of modules that act as a unit, as a way to reduce motion
constraints and the complexity of planning. However, previous
metamodule designs have been specific to a particular modular
robot.

By analyzing the constraints found in modular robotic
systems we develop a holonomic metamodule which has two
important properties: (1) it can be used as the basic unit of an
efficient planner and (2) it can be instantiated by a wide variety
of different underlying modular robots, e.g., modular robot
arms, expanding cubes, hex-packed spheres, etc. Using a series
of transformations we show that our practical metamodule
system has a provably complete planner. Finally, our approach
allows the task of shape transformation to be separated into
a planning task and a resource allocation task. We implement
our planner for two different metamodule systems and show
that the time to completion scales linearly with the diameter of
the ensemble.

I. INTRODUCTION

There is growing interest in using self-reconfigurable
modular robots (MRs) as metamorphic systems: i.e., robots
that approximate arbitrary 3D shapes via physical rearrange-
ment of modules for 3D visualization, programmable anten-
nas, entertainment, or general-purpose robotics. To achieve
macroscale objects with good spatial resolution an MR
system requires a very large number of very small modules:
e.g., thousands to millions of centimeter- to millimeter-scale
modules [1]. One of the main challenges for these systems
is an efficient planner. It has long been recognized that
traditional methods are unsuitable due to the large search
space and the blocking constraints imposed by realizable
module design. To ease the planning problem, many groups
have proposed different kinds of metamodules, groups of
modules that act as a unit for planning or motion execution
purposes, each specific to a particular module design [2],
[3], [4].

In this paper we develop a theory of metamodules and
an associated planner which generalizes previous work on
metamodules for lattice-based MR systems. We demonstrate
how metamodules can be derived from the structure of the
reconfiguration graph—whose vertices are feasible config-
urations and edges are unit physical motions that produce

reconfiguration. Our goal is to construct a metamodule
system where two points are adjacent in the space of
possible configurations if and only if they can be reached
by a single move in the reconfiguration graph. In other
words, if two configurations are legal and differ by only
one module position there is a one step transition between
those configurations. This makes it much simpler to construct
a heuristic which effectively explores the possible paths
between configurations.

We begin by examining the types of constraints that make
planning hard for MR systems. These constraints fall into
two general categories: (1) local constraints, introduced by
the specific design of the modules, e.g., motion or block-
ing constraints and (2) non-local constraints imposed on
the overall system, e.g., that the system remain connected.
We show that blocking constraints are a form of discrete
nonholonomic constraints. Building on [5] we develop a set
of movement primitives and an ideal metamodule system
which eliminates local constraints. This ideal metamodule
system, which we call pixel, has but one such primitive:
a module can be created or destroyed at any point in the
lattice. It is trivial to show that in this ideal system state-
space adjacency guarantees reconfiguration-graph adjacency,
and thus it is clearly holonomic. We use pixel to show that
practical realizable metamodule systems are holonomic by
showing that a practical system can be reduced to pixel, thus
showing that it is also holonomic.

We develop a class of practical metamodule systems based
on pixel that use voids in the lattice to eliminate local
constraints. This can be seen as a generalization of previous
work which moved voids around to form shapes [1], [6]
and work which built scaffolds to ensure their are empty
spaces in the lattice in which to move units [7]. The
generalized metamodule system allows a metamodule to hold
a variable number of constituent modules while maintaining
connectivity with all its adjacent neighbors. Motion in the
system is accomplished by the exchange of modules between
metamodules while maintaining connectivity and structural
stability. We show that this general system is isomorphic
to the idealized pixel system in terms of reconfiguration
capability, allowing us to prove properties of the system in
pixel and have those proofs hold in the practical system.

Using our generalized metamodule system we develop a
distributed asynchronous planner which enforces non-local



Fig. 1. Local and global constraints: (a) A’s movement to position B
requires a module in position C to pivot about and empty space in positions
B and D to move through. This is a local constraint. (b) E can only move
to F if the group as a whole remains connected. This means that removal
of any module, G for example, makes the E-to-F movement illegal.

constraints and is provably complete; if there exists a plan
which maintains global connectivity, then the planner will
find that plan. One of the convenient properties of our meta-
module planner is that it separates the task of reconfiguration
planning (i.e., determining which metamodules should move
where) from resource allocation (i.e., determining where
a module should come from when one is needed). Using
two different, but equivalent, metamodule systems we show
a lower bound on the amount of work that needs to be
performed to achieve a reconfiguration and then compare
this to an implementation that uses a random allocator.
More sophisticated resource allocators can be substituted
into the same planner to improve the performance while still
maintaining the provable properties of the planner.

Finally, we show that our metamodule systems is general
in that we describe how the same metamodules and planners
can be used for three vastly different MR systems: a robot
arm, a cubic telecube-style [8] robot, and a 2D hexagonal
sphere packing.

A. Related Work

Some of the early results on reconfiguration planning
are presented in Chirikjian et al. [9]. They show that
the search space is exponential in the number of modules
and stress the importance of good heuristics, such as the
Linear Sum Assignment Problem (LSAP) [10] and those
generated by the Hungarian Method. Subsequent papers [11],
[12], [13] propose other heuristics which exhibit similar
properties for specific metamorphic systems. Walter et al.
[13] offers a survey of reconfiguration planning algorithms
and heuristics. Yoshida et al. [14] present an alternative
method using a cluster flow algorithm and generators to
bypass nonholonomic constraints.

Nguyen et al. [6] observed that heuristics perform poorly
due to blocking constraints; in a tightly packed ensemble mo-
tion of the modules in the interior is blocked by their neigh-
bors. To resolve this, Nguyen et al. and Kotay and Rus [15]
independently suggested the construction of metamodules—
groups of modules behaving as a single unit, with sufficient
space in their interiors to absorb other metamodules. Al-
ternatively, Kotay and Rus [15], and Stoy and Nagpal [16]
suggested the used of open static scaffolding structures in
cubic modules which permit modules to pass through the
scaffolding, while De Rosa et al. [1] suggested a hole-
motion algorithm which moves empty space randomly within
the interior of packed structures. The basic idea behind

all of these approaches is to alleviate blocking by making
structures porous, and the effect is to improve planning speed
at some cost in physical resolution. Our work presents a
generalization of these approaches.

Other uses of metamodules include Prevas et al. [17]
who focused on generating optimal paths with a metamodule
structure, Ünsal et al. [3] who used metamodules to remove
constraints on surface motion, and Vassilvitskii et al. [8]
who used the concept to demonstrate feasibility and lower
bounds for motion. All of these examples are specific to a
particular MR system.

B. Contributions

The main contribution of this paper is a generalized
metamodule system and associated planner. This follows
from or entails the following contributions:
• Identification of blocking constraints as a form of dis-

crete nonholonomic constraints.
• The development of an ideal metamodule system, pixel,

which is useful for proving properties about practical
metamodule systems and planners that operate on them.

• We show how our metamodule system can be used for
such diverse modules as robot arms, expanding cubes,
hex planar modules, and cubic packed rolling spheres.

• A distributed, asynchronous planner which we proved
complete.

• The separation of concerns between motion planning
and resource allocation to make shape transformation
tractable in metamorphic systems.

II. RECONFIGURATION AND MOTION CONSTRAINTS

A. Nonholonomic constraints for discrete systems

A continuous system can be described by a configuration
q and a velocity q̇. Such a system has a nonholonomic con-
straint if it possesses a constraint on q and q̇ that cannot be re-
duced (integrated) to a constraint on q alone. A consequence
of a nonholonomic constraint is that any continuous heuristic
function f(q, q′) for computing the distance between two
configurations can wildly underestimate the actual distance
because the velocity constraints can prohibit motions from
q to an infinitesimally close neighbor q + δq, i.e., their true
distance is very large, even though f(q, q + δq) is small by
definition [18].

In discrete systems, velocity is represented by atomic
movements. A discrete nonholonomic constraint is a con-
straint on configurations and atomic movements that cannot
be reduced to a constraint on configurations alone. As in the
continuous system, the consequence of a discrete nonholo-
nomic constraint is that configurations that are adjacent to
each other can have a prohibitively high true distance in the
reconfiguration graph, i.e., a distance that no heuristic can
accurately estimate.

B. Configuration Space and the Reconfiguration Graph

The configuration space of a metamorphic system is
the set of all possible distinct configurations of that sys-
tem. For a given module design with particular motion



Fig. 2. The reconfiguration graph as a state-space constraint: The
hex-packed system from Fig. 1, here showing that configurations adjacent
in state-space (boxes) can be substantially further apart in reconfiguration
space due to blocking constraints. Since this constraint separates two legal,
state-space-adjacent configurations, it is nonholonomic. Dotted circles in the
top right configuration must be empty and available for modules to move
through during this four-step reconfiguration.

capabilities there is also a reconfiguration graph, whose
vertices are distinct configurations and whose edges connect
(minimal) transitions from one configuration to another. A
motion planner must often consider the distance between
two configurations—ideally measured in terms of the shortest
path on the reconfiguration graph. Because the reconfig-
uration graph is intractably large for any reasonable size
metamorphic system, planners resort to heuristics to estimate
these distances.

Fig. 2 is an example of a nonholonomic constraint illus-
trated by a part of a reconfiguration graph. The two boxed
states differ by the motion of one module to a neighboring
lattice cell and would be considered directly adjacent to
one another by, for instance, an LSAP heuristic [10] based
on module locations. However, due to mechanical blocking
constraints, four transitions would be needed to go from the
first boxed configuration to the second. This is an example
of a discrete nonholonomic constraint.

C. Local and Non-Local Constraints

A useful formalism for reasoning about certain constraints
was introduced by Abrams and Ghrist [5], who model local
constraints using a catalog of generators. For our purposes,
the important feature of each generator is that it contains
an unordered pair of local configurations (where a local
configuration is, roughly, a template for a small arrangement
of modules) and all of the information required to transition
from one state to the other by means of an action. For
example, Fig. 1(a) displays one four-module generator for
hex planar modules. The local constraint expressed by this
generator is that the action of changing configuration AC to
BC requires the absence of a module at D.

We extend this formalism with the notion of a non-local
constraint, which is a predicate on a configuration that
determines if the configuration is admissible or inadmissible.
In contrast to local constraints, non-local constraints may
consider any part of the system in order to determine admissi-
bility. Such constraints can, for example, be used to maintain
global properties such as connectivity and physical stability.
Given a particular configuration of the system, all possible

Fig. 3. Motion plan in a metamodule systems: The configuration in Fig. 2
again, scaled up and constructed from metamodules. The motion plan using
metamodules is much simpler because of their ability to absorb/recreate
other metamodules. This plan relies only on one neighbor for execution.

next configurations can be found by applying each generator
at each admissible location, and then filtering the resulting
set of configurations through all non-local constraints.

Note that non-local constraints are holonomic as they
reduce legal configurations, not legal transitions. Such con-
straints can make the planning problem easier, since they
reduce the search space. However, for large ensembles,
checking configurations for admissibility with respect to non-
local constraints can be prohibitively expensive.

This extended formalism is used to evaluate whether
an action is legal. Even when a direct movement to a
configuration-space-adjacent configuration is not legal, the
configuration may be reachable via a series of legal actions.
Constraints in this formalism are holonomic exactly when
each adjacent state-space configuration is either reachable
by applying a single generator to the current state, or is
unreachable by the constrained system.

Systems with mechanical blocking constraints (i.e., where
one module physically blocks another from entering an
empty lattice position) are susceptible to nonholonomic
constraints; modular robots generally fall into this category.
An example of such a situation is shown in Fig. 1, and part
of the reconfiguration graph for the same situation is given
in Fig. 2.

III. AVOIDING NONHOLONOMIC CONSTRAINTS

A. A Purely Holonomic System

Our goal is to devise a holonomic lattice-style metamor-
phic system. Each lattice point is either empty, or holds a
metamodule, which in turn is composed of a group of basic
modules. At the metamodule level, the system provides a
set of templates for manipulating metamodules and the state
of the lattice points, and, below this abstraction, provides
preplanned motion sequences for individual modules to im-
plement the templates on metamodules. Holonomic meta-
module templates free the system of blocking constraints,
thereby ensuring that distributed rules guided by simple, local
heuristics are guaranteed not to get stuck.

We first consider an idealized, simple system called the
pixel system. Here, there is only one defined template:
create/destroy, which switches the state of a lattice point
between “empty” and “metamodule present.” This can be
written as:

create/destroy : �⇔ M

Like pixels being turned on and off, metamodules can
spontaneously appear and disappear anywhere, independent
of the presence or absence of metamodules at other lattice
points.
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Fig. 4. Example metamodule creation sequences for (a) general2 on disks, (b) general1 on spheres, (c) general-lock3 on modular robot arms and (d)
general-lock3 on expanding cubes. Each system’s metamodule destruction sequence runs the creation sequence in reverse.

The pixel system has two non-local constraints: the first,
connectivity, states that only configurations in which all
present modules form a connected group are allowed; the
second, conservation(min, max), only allows configurations
with no more than max and no fewer than min metamodules
at a time.

This system’s constraints are holonomic. This can be seen
from the fact that the system’s generator allows uncon-
strained movement through state space (since any module
can appear or disappear as long as the non-local constraints
are not violated.)

B. Towards a Realizable Holonomic System

The pixel system’s metamodule template is not realizable
in practice, as it is not mass-conserving. Furthermore, pixel
relies heavily on a non-local constraint to enforce connectiv-
ity. We can construct an intermediate system that simplifies
the latter requirement by changing the create/destroy tem-
plate to:

create/destroy : M�⇔ MM

This system, called intermediate, requires that creation and
deletion of metamodules occur only at lattice spaces adjacent
to existing metamodules. This rule makes the system appear
more like a compressible fluid that can expand and contract
arbitrarily, than like a set of pixels or voxels. Although
complete independence no longer holds, this template still
requires only local support. Furthermore, given the connec-
tivity constraint, any metamodule that is created or destroyed
in the pixel system is guaranteed to have a neighbor, so any
reconfiguration that can be accomplished in that system can
also be done in intermediate.

To make the system mass-conserving, we define a new
system, general1 with the following templates:

create/destroy : C� ⇔ DD
transfer : CD ⇔ DC

Here, metamodules can be in two different states: in state
D, the metamodule is composed of a minimum number of
modules, and has internal room to hold additional modules;
and in state C, the extra space is filled, such that the
metamodule is composed of twice as many modules. The
create/destroy template in now mass conserving, as the
number of modules (not metamodules) remains unchanged.
An extra template to transfer extra modules (resources)
between adjacent metamodules without changing the number
of metamodules is also introduced.

Assuming mass of 1 and 2 for D and C, respectively, the
number of metamodules during reconfiguration in general1

can range from m/2 to m, where m is the total mass of
a given starting configuration. Given the conservation(min,
max) global constraint, assuming min = m/2 and max =
m, any reconfiguration that can be accomplished in inter-
mediate can also be accomplished in general1, assuming
appropriate application of the resource transfer template.
In contrast to intermediate and pixel, this system can be
physically realized. Fig. 3 shows an example of a 2-
dimensional general1 metamodule system applied to the
same reconfiguration problem as in Fig. 2. Here, the system
does not suffer from blocking, nonholonomic constraints, and
reconfiguration is a straightforward task. An example of a 3D
general1 metamodule system is shown in Fig. 4(b).

C. A Generalized Holonomic System

Although general1 is realizable, the mass conserving
property in conjunction with the single-step create/destroy
template may impose unwieldy requirements on metamodule
design. In particular, a metamodule must have sufficient
internal volume to hold all of the modules required to create
a second metamodule. As this may not be desirable, or
even possible, for some systems, we introduce generaln,
a generalization of general1 that uses extra modules from
n metamodules to create a new one. Here, metamodules
are constructed/destroyed gradually over multiple steps. This



requires n different create/destroy templates to handle all
degrees of completion in a partial metamodule, and multiple
applications of the transfer rule to deliver/remove all of the
resources. The templates for generaln are as follows:

create/destroy1 : C� ⇔ DB1

create/destroyi : CBi−1 ⇔ DBi

create/destroyn : CBn−1 ⇔ DD
transfer : CD ⇔ DC

Here, additional states B1 . . .Bn−1 represent partially con-
structed metamodules, such that Bi has a relative mass of
i/n. D and C are as in general1, but with mass 1 and 1+1/n,
respectively.

An interesting observation is that the addition of an n-
step process requires the participation of just one additional
metamodule, whose modules can be scavenged to construct
new metamodules. An example of a 2-step create/destroy
process is shown in Fig. 4(a). One issue in implementing
such a metamodule system is that partially constructed Bi

metamodules must connect to all neighboring metamodule
lattice positions. This ensures that the Bi are functionally
equivalent to all neighboring metamodules, and thereby, con-
sistent with our rule set. Unfortunately, this greatly restricts
the metamodule designs that will work.

To overcome this, we introduce the notion of locking
at the metamodule level: starting a creation or destruction
sequence locks the partial metamodule and the adjacent
complete metamodule together until the sequence completes.
The locked pair can only participate in create or destroy tem-
plates with the partnered metamodule, although the transfer
template is allowed with the other adjacent metamodules.
The templates for general-lockn are:

create/destroy1 : C� ⇔ D ./ B1

create/destroyi : C ./ Bi−1 ⇔ D ./ Bi

create/destroyn : C ./ Bn−1 ⇔ DD
transfer : CD ⇔ DC

Here, “./” represents the pairwise lock between the meta-
modules. This system now allows a much broader range
of implementations, where a Bi metamodule only needs to
maintain connectivity with the adjacent module that initiated
the creation or destruction process. One potential concern is
that multiple locked metamodules performing simultaneous
creation sequences may result in a resource-starved livelock
situation. However, given the conservation(min,max) global
constraint, any parallel templates that could have succeeded
under pixel would have sufficient resources to complete
under general-lockn. Examples of metamodule systems im-
plementing general-lockn are shown in Fig. 4.

To summarize, we described the construction of a general
and realizable metamodule system that arose from the desire
to maintain holonomic constraints in the system. While sev-
eral other researchers [6], [15] have suggested metamodules
for specific systems, we believe that the rule set for generaln

can serve as a blueprint for metamodule construction on any
modular robotic system. We must admit that creating the
metamodules is not easy; it requires domain knowledge of

the underlying modular robotic system. However, it provides
a unifying grammar that enables the construction of shape
planning algorithms capable of working on any hardware
platform that implements generaln.

IV. SHAPE PLANNING

In this section, we present a distributed asynchronous algo-
rithm for shape reconfiguration, the planner, that runs on top
of our metamodule abstraction. Given a starting configuration
of metamodules, the planner controls the creation and dele-
tion of metamodules to reconfigure the ensemble into a target
shape. The planner preserves the global connectivity prop-
erty, but does not directly address the conservation(min,max)
constraint. However, it does provide provable guarantees
of completeness: if there exists a globally connected plan
to achieve a target shape, it will be found. Although the
algorithm is written based on an intermediate system, we
show how to extend it to run on realizable generaln and
general-lockn systems.

A. The planning algorithm

The planner, based on the intermediate system, produces a
sequence of rearrangements to reach a target shape, T , while
maintaining global connectivity. Initially, all metamodules
are in a known start shape. We assume each metamodule
is aware of its coordinates in the lattice (e.g., by using
techniques from [19]) and knows the configuration of the
target shape.1 Metamodules are only allowed to communi-
cate with their lattice neighbors. The planner incrementally
deletes metamodules that are not in the target shape and
creates metamodules at empty spaces in the target shape.
While creating metamodules cannot break global connec-
tivity, deleting metamodules can. The planner ensures that
deletion does not affect global connectivity by generating
logical trees that connect each metamodule to be deleted to
the sections that will be preserved inductively through its
parent in the tree. When deletion is limited to the leaves of
the trees (i.e., the metamodules that do not have children),
all other metamodules will remain connected.

To distribute the work of generating and modifying these
logical trees, each metamodule stores and communicates a
variable, which we term its label, to its lattice neighbors. Our
planner uses three label values—U (undecided), P (path), and
F (final)—to denote metamodules that are not part of a tree,
those that are in a tree, and those that are in the target shape,
respectively. The algorithm proceeds to achieve T with every
module in state F denoted TF.

The plan starts with an ensemble, E , consisting of a
set of metamodules in the start shape. Exactly one seed
metamodule in the intersection of E and T , is labeled F,
while all of the others are labeled U. If it is necessary to
make the distinction, we mark the labels of metamodules

1In this work, we do not consider how T is represented, and only assume
that there is some function that indicates whether a given coordinate is in
the target shape. Efficient shape representation is beyond the scope of this
paper.



Fig. 5. The planning algorithm running. Metamodules are created in the target shape and deleted outside the target shape; logical trees are formed to make
sure deletion will not disconnect the group. The U start state is indicated by the white metamodules (spheres), the F final by the gray (blue) metamodules,
and P state by the black metamodules. Trees are indicated by white arrows among the P state metamodules.

in T with ( ˆ ), and of those not in T with ( ˇ ). An F-
labeled metamodule recruits every neighbor in T to also
become F. It marks every neighbor in state Ǔ as a candidate
for removal called P. These nodes recursively recruit other
U metamodules. Every P is connected to its parent (the
metamodule that recruited it to state P); the connection
from parent to child is indicated with →. As long as the
sequence of parent-child connections remains unbroken, the
P metamodules will remain connected to the goal shape.
Eventually, the P trees will have no further space to expand,
at which point, the leaves (metamodules with no children)
can be safely deleted without loss of connectivity. Fig. 5
shows snapshots from an execution sequence of this planner.

The above plan reconfigures E ⇒ E ′ when one of these
transitions occurs:

RELABELING RULES:
FINALIZATION FÛ ⇒ FF

PATH FINALIZATION FP̂ ⇒ FF
PATH CREATION FǓ ⇒ F→P
PATH PROPAGATION PU ⇒ P→P

MOTION RULES:
CREATION F�̂ ⇒ FF
DELETION P ⇒ �,

if @ U∈ nbr(P) and @ P′ ∈ nbr(P) : P→P′

where ‘nbr’ returns the neighbors of a metamodule. Note that
only CREATION and DELETION produce actual module mo-
tion; all of the other rules, collectively called RELABELING
RULES, merely update labels.

B. Resource allocation

The planner as described above runs directly on a interme-
diate abstraction. To run the planner on an generaln system
it is necessary to include an additional component called the
resource allocator. The resource allocator shifts resources
around (moves C and D states, as defined in §III through
multiple invocations of the transfer operation) so creations
and deletions indicated by the planner can occur. Since there
is a global constraint on the total number of C and D labels,
a good resource allocator must distribute them well, sending
the D to regions of anticipated deletion and the C to regions
of anticipated creation. A simple, highly suboptimal allocator
is a randomizer which transports resources by randomly
switching adjacent C and D labels.

Note that except when a purposely malicious resource
allocator is used, the algorithm is provably complete as long
as the start shape contains a viable number of resources for
the target shape. This works because the planner permits
creation and deletion in parallel, preventing intermediate
states from becoming stuck due to resource constraints. It
is also worth noting that while any resource allocator results
in eventual completion, the better the allocator, the faster the
time to completion.

We have implemented both the basic planner for inter-
mediate systems, and a version with a randomized resource
allocator suitable for general1 systems. The results of using
these in shape change experiments are presented in §VI.

C. Proof of Correctness

Theorem 1 (Correctness): Running the shape change
algorithm on E containing a single seed resultsin TF being
reached while maintaining connectivity provided E is con-
nected, T is connected, and there exists some configuration
of metamodules in the target shape with the same mass as E .

The reconfiguration planner is correct if, for a given
starting configuration and target shape, T , it produces a plan
that successfully transforms the start shape into the target
shape in finite time and maintains connectivity provided the
starting configuration contains adequate resources to produce
the target shape. The proof of Theorem 1 follows from
the lemmas defined below. The proof has been written in
Twelf[20], a language for proving properties of deductive
systems. The full Twelf proof is available in [21] and a brief
sketch is included below.

The proof centers around the existence and maintenance
of a spanning tree of the metamodule system. This tree is
said to be well-formed:

Definition 1 (well-formed): A spanning tree is said to be
well-formed if the following 2 conditions hold

1) If a metamodule has state F and it is not the root then
its parent has state F

2) If a metamodule has state P then its parent in the tree
is its parent in the algorithm

Corollary 1: If E has a well-formed spanning tree then E
is connected.

Next, we will define a few mechanisms for comparisons
between shapes:

Definition 2 (|E|S): the number of metamodules in state
S in E .
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Fig. 6. Example execution of general1 planner: 400 metamodule system transitioning between two rectangular solids.

Definition 3 (#(E)): The number of resources contained
within E . #(E) = |E|D + (1 + 1

n )|E|C in generaln.
Definition 4 (κ supports E): We say that κ supports E if

there exists a distribution of C and D resources in E such
that #(E) = κ.

Definition 5 (<T ): For a given target shape T , E <T E ′
if |E|F = |E ∩ T |F and one of the following hold:
• |E|F > |E ′|F
• |E|F = |E ′|F and |E|U < |E ′|U
• |E|F = |E ′|F and |E|U = |E ′|U and |E|P < |E ′|P
By this definition, E <T E ′ if E is “closer” to T F.

Observe that if E is closer to T than E’ then E contains
more metamodules in the target shape, or else it contains
fewer metamodules in the start state which have made no
progress or else it contains fewer metamodules which need
to be deleted. As a corollary, there is no shape E such that
E <T TF. This is because no configuration can have a greater
number of F metamodules in T , fewer U metamodules, or
fewer P metamodules than Tf .

Using these definitions, the proof of correctness follows
simply from 3 lemmas:

Lemma 1 (Safety): If E has a well-formed spanning tree
and E ⇒ E ′ then E’ has a well-formed spanning tree.

Lemma 2 (Progress): If E has a well-formed spanning
tree and #(E) supports T then E is T or ∃E ′ such that
E ⇒ E ′ and #(E) = #(E ′).

Lemma 3 (Termination): If E ⇒ E ′ then E ′ <T E .
Proof Sketch of Lemma 1: This proof proceeds by case

analysis on the rules of the algorithm, showing that after
each rule is applied, a new well-formed spanning tree can
be constructed based on the old one.

Proof Sketch of Lemma 2: This proof proceeds by analysis
on the states of the modules. If there is are modules in state
U or P, then it is possible to find a rule that can be applied
to affect one of these modules. Otherwise, either the target
has been achieved or a new module can be created.

Proof Sketch of Lemma 3: This proof proceeds by case
analysis on the rules.

Proof Sketch of Theorem 1: Observe that a spanning tree
rooted at the seed is well-formed. We inductively apply
Lemma 2, Lemma 1, and Lemma 3 to show that if TF has
not yet been reached then E ⇒ E ′ where E’ still has a well-
formed spanning tree, is connected, and is “closer” to the
target shape.

V. IMPLEMENTATION

To verify that planning using our metamodule formalism
is tractable, we implemented the planner under intermediate
and general1 in DPRSim [22], a simulator for distributed
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Fig. 7. Total required actions of intermediate and general1 vs. ensemble
scaling: The total number of creations, deletions, and (in the case of
general1) transfers required during shape change. Note that the y-axis is
log-scale.

modular robotic applications. Using the high-level language
LDP [23], we were able to implement the planner in under 15
lines of code. For general1, we included a naive, randomized
resource management policy ( Fig. 6). We tested the perfor-
mance of the algorithm for shape change from a block with
aspect ratio 6x3x2 to a 3x3x4 block. We scaled the size of
the ensemble from 36 to 2304 metamodules, maintaining the
aspect ratio. This allowed us to directly compare the relative
work done by the creation and deletion sub phases of the
algorithm.

As shown in Fig. 7, the total number of actions required
by intermediate is linear in the size of the ensemble. The
intermediate implementation also provides a lower limit on
the number of actions required by any implementable system,
as intermediate ignores the locality of resources, and is able
to move them instantaneously within the ensemble. This is
observable in the behavior of general1, which performs the
same number of creations and deletions as intermediate, but
performs from one to three orders of magnitude more actions,
in the form of random resource transfers. These random
resource transfers are the primary source of inefficiency in
general1.

By examining the time to completion of the creation and
deletion portions of the algorithm in Fig. 8, we can see
that the lag in deletion is the primary factor in general1s
significantly longer completion times. We attribute this to
the need to have two adjacent destroyers in order to proceed
with deletion, whereas creation requires only a single creator
and an open location. As the deletion depletes the local
population of destroyers, and random transfers diffuse new
destroyers very slowly, the deletion process is a significant
bottleneck. This points to the need for further optimization of
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the deletion phase in order to improve the overall efficiency
of general1.

VI. CONCLUSIONS

The difficult problem of shape planning in a modular
robotic system with nonholonomic motion constraints has
in the past been dealt with in system-specific ways. We have
devised a general approach to efficient shape planning by
introducing a metamodule abstraction, the pixel system, that
eliminates nonholonomic constraints. We extend this ideal
system to the generaln abstraction that can be physically
realized, yet continues to ensure ease of planning.

The effectiveness of our metamodule abstraction has been
shown with a very simple, yet effective planner, that main-
tains global connectivity and is provably complete. A great
benefit of our approach is that the planner is not tied to a
particular modular robot, and can be used on any hardware
on which a generaln metamodule abstraction can be devised.
The rule set we have presented for generaln can serve as
a guideline for metamodule construction on any modular
robotic system.

A further contribution of our approach is the clean sep-
aration of concerns between the shape planning and re-
source allocation. A planner need not concern itself with the
mechanics of transporting resources around the ensemble,
but only indicate (implicitly) where they are needed by
attempting to create or destroy metamodules. Likewise, the
resource manger need not be aware of the planning sequence.
The simple planner we have described works acceptably with
a naive, randomized resource manager. Future enhancements
to performance may be achieved through independent efforts
in optimizing the planning algorithm and by implementing
a more effective resource manager.
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