A Language for Large Ensembles of Independently
Executing Nodes

Michael P. Ashley-Rollmah Peter Le&, Seth Copen Goldstein
Padmanabhan Pillgiand Jason D. Campbell

tCarnegie Mellon University, Pittsburgh, PA 15213
{pa, petel, seth}@s. cnu. edu
fIntel Research Pittsburgh, Pittsburgh, PA 15213
{padmanabhan. s. pill ai, jason. d. canpbel | } @ntel . com

Abstract. We address how to write programs for distributed computing systems
in which the network topology can change dynamically. Examples of sygh s
tems, which we calensemblesinclude programmable sensor networks (where
the network topology can change due to failures in the nodes or links) add-m
lar robotics systems (whose physical configuration can be readangter pro-
gram control). We extend Meld [1], a logic programming language thawalam
ensemble to be viewed as a single computing system. In addition to provirey so
key properties of the language, we have also implemented a completél@omp
for Meld. It generates code for TinyOS [14] and for a Claytronics atan [12].

We have successfully written correct, efficient, and complex progfanemsem-
bles containing over one million nodes.

1 Introduction

Several types of distributed systems have the propertytiigahetwork topology can
change dynamically. For example,ad hocsensor networks [6], it is common for the
network to change due to failures in both the nodes and nktlivies. Modular robotic
systems [21] are another common example. Under softwarteatom modular robotic
system can rearrange how its modules are connected, whiahgribat its network
topology changes, too. A third example is Claytronics [1dfjjch can be viewed as a
type of modular robotic system containing, potentiallyilioms of unreliable modules.
We use the terrensembleo refer to any such network-varying distributed system.
How shall we write programs for ensembles? Writing softwaliteard; writing soft-
ware for distributed systems is even harder. Add to that trssipility of a dynamic
network topology, and it is easy to see that we are faced walluamting programming
problem. Furthermore, real-world ensembles such as rabatssensor nets pose ad-
ditional challenges such as unreliable communicationpgeifiect or failing actuators,
and soft and hard compute errors. The complexity of writiodecto recover from such
failures is magnified by the number of potential interadiarithin an ensemble.

Given these considerations, we have been extending thedgedvield [1], that al-
lows ensembles to be programmed as a unified whole and thepiledrautomatically
into fully distributed code. This approach frees programsyfeom the need to under-
stand how or where in the system the program state is to beaireed or messages sent.
Furthermore, Meld programs are written in the logic prograng paradigm, leading to
clear and concise programs. And as our early experimentsthag far demonstrated,

Meld programs are inherently robust to changes in netwqukltgy and provide for
simple fault handling. The initial design of Meld was infleexdl heavily by Datalog [4]
and, like Datalog, programs in Meld lend themselves to rodtorrectness.

We have made substantial progress on the design, impletiventand application
of Meld [1]. We have adopted X-Y stratification from LDL++ [Rand adapted it to
work in a distributed environment. We have addressed pnabheith the deletion al-
gorithm used in prior work, such as P2 [15]. We have achievikdtwe believe to be
a fully practical language for a range of modular roboticd aensor network applica-
tions, and have completed a thorough definition of the ofmeralt semantics, much of
which has been implemented in the Twelf [19] proof systemo#plete compiler for
Meld has also been implemented, which generates code fpOHf14] and a Claytron-
ics simulator [12]. Using the compiler and simulator, wedawitten correct, efficient
programs for ensembles containing over one million nodes.

2 Related Work

The P2 [15] language and SNLog [5] language, which were desifor programming
overlay networks and sensor networks respectively, shdtegda logic programming
approach could be used to allow an ensemble to be programsnadiaified whole.
Meld adds, among other things, support for robot actuatmmhsensing, and is based
on a well-defined formal semantics. In principle, even vemgé ensembles can be
reasoned about formally.

Several languages have been proposed for sensor nets. Pjodipydb [16], and
Regiment [18] provide excellent support for applicationsisas data collection and
aggregation, but do not directly address more dynamic sieniavolving physical re-
configuration. Pleiades [13], also designed for sensorarisycan be used in situations
with dynamic network topologies. It adopts a programmingessimilar to OpenMP,
for example allowing one to write parallel loops that runcssr multiple modules. Of
course, this requires the programmer to specify whetheriabla is to be stored locally
or propagated about the ensemble as the program runs. Hleuysrdgrammer’s focus
is on the individual modules instead of the whole ensemble.

Origami Shape Language [17] and Proto [3] are effective fagmmming dis-
tributed systems as a whole. They were originally targetedtds stationary wireless
modules, rather than ensembles. Recently, Proto has basrdexl to mobile robots [2].
LDP [7] was derived from a method for distributed debuggi@gginally designed for
modular robotics, LDP sends condition-matchers arouncttsemble. It is based on
a tick model, generating a new set of matchers throughougrisemble on each tick.
While this works well in highly dynamic systems, it can leagkzessive messaging in
more static environments.

3 Meld: Language and Meaning

A running Meld program consists of a databasdaatsand a set of production rules
for operating on and generating new facts. A Meld fact is dioege and a tuple of val-
ues; the predicate denotes a particular relation for whiehtiiple is an element. Facts
represent the state of the world based on observations potsi(e.g., sensor readings,
connectivity or topology information, runtime parametest.), or they reflect the in-
ternal state of the program. Starting from an initial sebabms, new facts are derived

Known Facts I'o=-| I, f(#) Facts F = f(&)

Accumulated Actiong? ::= - | ¥, a({) ConstraintsC ::= ¢(%)

Set of Rules Yu=-|X,R ExpressionE := EAE | F |VF.E | C
Actions A= a() Rule R:=E=F|E=A

| agg(F,g,y) = F
Fig. 1. Abstract syntax for Meld programs

and added to the database as the program runs. In additiact$geictionsare also gen-
erated. They are syntactically similar to facts but caude sffects that change the state
of the world rather than the derivations of new facts. In ats application, for exam-
ple, actions are used to initiate motion or control devidésld rules can use a variety
of arithmetic, logical, and set-based expressions, asagedggregation operations.

3.1 Structure of a Meld Program

Fig. 1 shows the abstract syntax for states, rules, expressand constraints in Meld.
A Meld program consists of a set of production rules. A ruleymantain variables,

the scope of which is the entire rule. Each rule has a headsfieifies a fact to be
generated and a body of prerequisites to be satisfied. Ifratbpuisites are satisfied,
then the new fact is added to the database. Each preregexgitession in the body
of the rule can either match a fact or specify a constrainttchag is achieved by

finding a consistent substitution for the rule’s variablashsthat one or more facts in
the database are matched. A constraint is a boolean exgmesgiluated on facts in
the database; these can use arithmetic, logical, and setsubexpressions. Finally,
foral | statements iterate over all matching facts in the databadeiasure that for

each one, a specified expression is satisfied.

Meld rules may also derive actions, rather than facts. Actides have the same
syntax as rules, but have a different effect. When the bodhisfrule is proved true,
its head is not inserted into the database. Instead, it sausaction to be carried out in
the physical world. The action, much like a fact, has a pagdiand a tuple, which can
be assigned values by the expressions in the rule.

An important concept in Meld is thaggregate The purpose of an aggregate is
to define a type of predicate that combines the values in &aah of facts. As a
simple example, consider the program shown in Fig. 2, formaing the maximum
temperature across all the nodes in an ensemblep@hent rules, (c) and (d), build
a spanning tree across the ensemble, and themetk@enp rules, (e) and (f), use this
tree to compute the maximum temperature. Considering fiestules for calculating
the maximum, rule (e) sets the base case; rule (f) then padgsghe maximum tem-
perature (T) of the subtree rooted at one node (A) to its pgBn Applied across the
ensemble, this has the effect of producing the maximum teatye at the root of the
tree. To accomplish this, the rule prototype given in (bcsjes that whemax Tenp is
matched, therax function should be used to aggregate all values in the setelddor
those cases where the first field matches. In the case pathent rules, the prototype
given in (a) indicates the use of tlié r st aggregate, limiting each node to a single
parent. Thef i r st aggregate keeps only the first value encountered in any noatch
the rest of the tuple. The meaningladgi cal nei ghbor is explained irg4.1.

(a) type logical neighbor parent (nodul e, first nodul e) .
(b) type maxTenp(nodul e, max float).

(c) parent(A, A :- root(A).

(d) parent(A, B) :- neighbor(A B), parent(B,).
(e) maxTenmp(A, T) :- tenperature(A T).

(f) maxTenp(B, T) :- parent(A, B), maxTenp(A, T).

(g) type gl obal Max(nodul e, float).
(h) gl obal Max(A, T) :- maxTenp(A, T), root(A).
(i) global Max(B, T) :- neighbor(A, B), global Max(A T).

(j) type | ocal Max(nodul e).
(k) local Max(A) :- tenperature(A T),
forall nei ghbor (A, B) tenperature(B, T') T > T .

Fig. 2. A data aggregation example coded in Meld. A spanning tree is built acresngemble
and used to aggregate the max temperatures of all nodes to the roog¢stiftes flood broadcast
back to all nodes. Each node also determines whether it is a local maximum

In general, aggregates may use arbitrary functions to lecthe aggregate value.
In the abstract syntax, this is given as a functiotihat calculates the value of the ag-
gregate given all of the individual values. The result oflgjoy ¢ is then substituted
fory in F. In practice, as described by LDL++[22], the programmerlangents this as
three functions: two to create an aggregate and one tovettie final value. The first
two functions consist of one to create an aggregate fromgdesirmlue and a second to
update the value of an existing aggregate given anothee vahe third function, which
produces the final value of the aggregate, permits the aggrég keep additional state
necessary to compute the aggregate. For example, an aggregampute the average
would keep around the sum of all values and the number of sadaen. When the fi-
nal value of the aggregate is requested, the current valserofis divided by the total
number of values seen to produce the requested average.

3.2 Meaning of a Meld Program

The state of an ensemble running a Meld program consistsapawts: derived facts
and derived actiond is the set of facts that have been derived in the current world
I is a list of facts that are known to be true. Initially,is populated with observations
that modules make about the worll, is the set of actions derived in the current world.
These are much like the derived facts that makd upxcept that they are intended to
have an effect upon the ensemble rather than be used to fiativer facts.

As a Meld program runs, new facts and actions are derived é&dsting facts which
are then added té6' and¥. Once one or more actions have been derived, they can be
applied to bring about a change in the physical world. Whenaittons have been
applied to the world, all derived facts are discarded andaoeg with a set of new
observations about the world. The program then restartsuéira in the new world.

The evaluation rules for Meld allow for significant uncentgi with respect to ac-
tions and their effects. This underspecification has twpgses. First, it does not make
assumptions about the type of ensemble nor the kinds ofrectidich can be trig-

gered by a Meld program. Second, it admits the possibilitga$y sensors and faulty
actuators. In the case of modular robotics, for instancesraved action may request
that a robot move to a particular location. External comstsahowever, may prevent
the robot from moving to the desired location. It is, therefamportant thaf” end up
containing the actual position of the robot rather than tivation it desired to reach.

This result is achieved by discardidgwhen an action is applied and starting fresh.
By doing this, we erase all history from the system, remowing dependencies on the
intended effect of the action. This interpretation alsooaicds for the fact that sensors
may fail, be noisy, and even in the best case that obsergatibine real world that are
known to the ensemble are only a subset of those that areblaih the real world.
To account for changes that arise due to external forces seeadlow the program to
restart even whet is empty.

This interpretation permits us to give Meld programs a weffined meaning even
when actuators fail, external forces change the ensembsensors are noisy. In turn,
this imbues Meld with an inherent form of fault tolerance eTdgreatest limitation of
this approach, however, is in our ability to reason abougams. By allowing the
ensemble to enter a state other than the one intended by tiba,age eliminate the
ability to directly reason about what a program does. Taucineent this, it is necessary
to make assumptions about how likely an action is to go awdyiarwhat ways it's
possible for it to go awry. This is discussed furthegh2.

4 Distributed Implementation of Meld programs

In this section we describe how Meld programs can be run agafokchaining logic
programs across an ensemble. We first explain the basic tldaasake this possible.
We then describe the additional techniques of deletion anistratification that are
required to make this feasible and efficient.

4.1 Basic Distribution/Implementation Approach

Meld is an ensemble programming language; efficient andblsakxecution requires
Meld programs to be distributed across the nodes of the dilseiio facilitate this, we
require the first variable of a fact, called theme variableto refer to the node where
the fact will be stored. This convention permits the compitedistribute the facts in
a Meld program to the correct nodes in the ensemble. It alsmifgethe runtime to
introduce facts representing the state of the world at thket modes, i.e., facts that
result from local observations are available at the cooedimg module, e.gA in the
t enper at ur e predicate of Fig. 2 refers to the temperature observed a Aod

Just as the data is distributed to nodes in the ensembleylégeeed to be trans-
formed to run on individual modules. Extending a techniqoenfthe P2 compiler, the
rules of a program arkcalized— split into rules with local bodies — such that two
kinds of rules exist. The first of these doeal rulesin which every fact in the body and
head of the rule share the same home node. The second kinkt @ asend rulefor
which the entire body of the rule resides on one module whisehtead of the rule is
instantiated on another module.

To support communication for the send rules, the compilguires a means of de-
termining what routes will be available at runtime. Thisasifitated by special facts,
called logical neighbor factswhich indicate runtime connectivity between pairs of

original rule from the temperature example:
| ocal Max(A) :- tenperature(A T),
forall nei ghbor (A, B)
@ [tenperature(B, T),
T>T].

J, \‘ send rule after splitting:
@ _remote LMA B, T) :- neighbor(B, A,
tenperature(B, T).
local rule after splitting:
| ocal Max(A) :- tenperature(A T),
forall nei ghbor (A, B)
[_remote LMA B, T),
T>T].

Fig. 3. Example of splitting a rule into its local and send parts. On the left, the spaimei@dor
home nodes is shown. On the right is a rule from the program in Fig. 2 aWithghe two rules
that result from localizing it.

modules, and potentially multi-hop routes between themoAgthe axioms introduced
by the runtime system are logical neighbor facts calledghbor facts, which indicate
a node’s direct communication partners. Beyond an abilitgdmmunicate (assumed
to be symmetric), any meaning attributed to these factsmaptementation-dependent
(e.g. for Claytronics, these indicate physically neiglhgmodules; for sensor net-
works, these indicate motes within wireless range). Adddi logical neighbor facts
(e.g.par ent) can be derived transitively from existing ones (e.g. twei ghbor
facts) with the route automatically generated by concdi@maSymmetry is preserved
automatically by the creation of a new predicate to suppartiiverted version of the
fact (which contains the reverse route at runtime).

Using the connectivity relations guaranteed by logicaghbor facts, the compiler
is able to localize the rules and ensure that routes will lvknfor all send rules. The
compiler considers the graph of the home nodes for all fagtdved in the a rule, using
the connectivity relations supplied by logical neighbart$aas edges. A spanning tree,
rooted at the home node of the head of the rule, is generageshavn in Fig. 3).

For each leaf in the tree, the compiler generates a new @atedie.g..r enot e_LM),
which will reside on the parent node, and creates a sendouliefiving this predicate
based on all of the relevant facts that reside on the leaf.Aidtenew predicate is added
as a requirement in the parent, replacing the facts fromgilieniode, and the leaf node
is removed from the graph. This is repeated until only theé nmale remains at which
point we are left with a local rule. Note that this process radg dependencies on
symmetric versions of logical neighbor facts, sucmasghbor (B, A) in Fig. 3.

Constraints from the original rule can be placed in the loak's body to produce
a correct implementation of the program. A better, more ieffiicalternative, however,
places the constraints in the send rules. This way, if a cainstdoes not hold, then a
message is not sent, effectively short-circuiting theinggrule’s evaluation. To this
end, constraints are pushed as far down the spanning trexssible to short-circut the
process as early as possible.

root(a) neighbor(a,b) neighbor(b,a)

root(a) neighbor(a,b) neighbor(b,a)){/

maxT!mp(a, 50)
W;xﬁfmp(a 50) globalMax ﬁ)\
C / globalMax(b,501,2])

globalMax(a,50; globalMax(b,50)

globalMax(a,50[,3]

(a) (b)

Fig. 4. Partial derivation graph for the program in Fig. 2. The graph on theskefivs the deriva-
tion graph for this program using the simple reference counting appro&ate the cycle in the
graph which prevents this approach from working correctly. Thelgmapthe right shows how
the cycle is eliminated through the usage of the derivation counting agproac

The techniques of assigning home nodes, generating logé&ghbors for multi-
hop communications, and automaticly tranforming rules intal and send parts allow
Meld to execute a program on a distributed set of commumigatodes.

4.2 Triggered Derivations

A Meld program, as a bottom-up logic, executes by deriving feects from existing
facts via application of rules. Efficient execution reqsaiemplying rules that are likely
to find new derivations. Meld accomplishes this by ensurirag & new fact is used in
every attempt at finding a derivation. Meld maintainm@ssage queughich contains
all the new facts. As a Meld program executes, a fact is pullgdf the queue. Then,
all the rules that use the fact in their body are selected adidates rules. For each
candidate, the rest of its rule body is matched against ttebdae and, if the candidate
can be proven, the head of the rule is instantiated and addbd message queue. This
triggered activation of rules by newly derived facts is esis¢to make Meld efficient.

4.3 Deletion

One of the largest hurdles to efficiently implementing Mealdhat whenever the world
changes we must discard all known facts and start the progremfrom the begin-
ning, as described i§8.2. Fortunately, we can more selectively handle such by
borrowing the notion ofleletionfrom P2. P2 was designed for programming network
overlays and uses deletion to correctly handle occasiamalfailures. Although the
ensembles we consider may experience more frequent chiaries world, these can
be handled effectively with a local, efficient implemeraatof deletion.

Deletion avoids the problem of simultaneously discardivgre fact at every node
and restarting the program by carefully removing only th@esss from the system
which can no longer be derived. Deletion works by considg@dndeleted fact and
matching the rules in exactly the same way as derivationd@me to determine which
other facts depend on the deleted one. Each of these fadigns in turn, deleted.
Strictly following this approach will result in a “consetixse” approach that deletes too
many facts, e.g., ones with alternative derivations thatatadepend on the previously
deleted facts. This approach would be correct if at each atgpossible derivations

(a) Initial facts with ref counts:
nei ghbor (a, b) (x1) root(a) (x1)
nei ghbor (b, a) (x1) nmaxTenp(a, 50) (x1)
(b) Facts after application of rules with reference counts:
nei ghbor (a, b) (x1) root(a) (x1) gl obal Max(b, 50) (x1)
nei ghbor (b, a) (x1) nmaxTenp(a, 50) (x1) gl obal Max(a, 50) (x2)
(c) Facts after deletion of maxTemp(a,50) using basic referenamunts:
nei ghbor (a, b) (x1) root(a) (x1) gl obal Max(b, 50) (x1)
nei ghbor (b, a) (x1) global Max(a, 50) (x1)
(d) Facts after application of rules with reference counts with deghs:
nei ghbor (a, b) (x1) root(a) (x1) gl obal Max(b, 50) (x1@2)
nei ghbor (b,a) (x1) gl obal Max(a, 50) (x1@1; x1@3)
(e) Facts after deletion of maxTemp(a,50) using reference cotswith depths:
nei ghbor (a, b) (x1) neighbor(b,a) (x1) root (a) (x1)

Fig.5. Example of deletion with reference counts, and derivation counts witthdgpunts
and depths shown in parentheses after each fact). Based on thamprégm Fig. 2, the
gl obal Max(a, 50) fact can be cyclically derived from itself through obal Max(b, 50) .
Derivation counts that consider depth allow deletions to occur corredilje wimple reference
counts fail. Facts leading up texTenp(a, 50) are omitted for brevity and clarity.

were tried again, but produces a problem given our triggeggaication of rules. In
other words, a derivable fact that is “conservatively” detemay never be re-derived,
even though an alternate derivation may exist. Therefbienecessary to have an exact
solution to deletion in order to use our triggered approadietivation.

P2 addresses this issue by using reference counting tegegimilar to those used
in garbage collection. Instead of keeping track of the nunafebjects that point to
an object, it keeps track of the number of derivations thatmave a particular fact.
When a fact is deleted, this count is decremented. If the caathes zero, then the
fact is removed from the database and facts derived fromeitrecursively deleted.
This approach works for simple cases, but suffers from tleccSpointer” problem. In
Meld a fact is often used to derive another instance of itssfding to cyclic derivation
graphs (shown in Fig. 4(a)). In this case, simple referemaiing fails to properly
delete the fact, as illustrated in parts a—c of Fig. 5.

In the case of Meld, and unlike a reference counting garbatiector, we can re-
solve this problem by tracking the depth of each derivatfeor. facts that can be in-
volved in a cyclic derivation, we keep a reference count facheexisting derivation
depth. When a fact with a simple reference count is deletedpneeeed as before.
When a fact with reference counts for each derivation deptielisted, we decrement
the reference count for that derivation depth. If the snsaltkerivation depth is decre-
mented to zero, then we delete the fact and everything dkfieen it. If one or more
derivations still exist after this process completes, tveneinstantiate the fact with the
new derivation depth. This process serves to delete any dénivations of the fact that
depended upon the fact and eliminates the possibility oflycimg an infinite cyclic
derivation with no start. This solution is illustrated irgF#(b) and parts d—e of Fig. 5.

4.4 Concerning Deletion and Actions

Since the message queue contains both newly derived fatthawleletion of facts, an
opportunity for optimization presents itself. If a new féét) and the deletion of that
fact (F) both exist in the message queue, one might think that bo#imd /' can be

silently removed from the queue as they cancel one anothefTbis would be true
if all derived rules had no side-effects. However, the gmbsi of deriving an action

requires caution.

The key difference between facts and actions is that fosfaetneed to know only
whether it is true or not, while for an action we must act eactetit is derived. The
semantics of Meld require that deletions be completed dmiby,” taking priority over
any derivations of new facts. Thus, whé&hcomes before#, then silently removing
both from the queue is safe singeé undoes the derivation of any fact that might be
derived fromF'.

If, however’ comes beford’, then canceling them is not safe. In this case, process-
ing them in the order required by the semantics could resueieting and rederiving
an action, causing it to be correctly performed. Had we 8ijedeleted both* and//,
the action would not occur. Thus, this optimization breakgectness wheli’ occurs
beforeF in the queue. As a result, we only cancel out facts in the quéwen the fact
occurs before the deletion of the fact.

4.5 X-Y Stratification

A naive way to implement aggregates (ahar al | statements which require similar
considerations) is to assume that all values for the préslar@ known, and calculate the
aggregate accordingly. If a new value arrives, one caneléhetold value, recompute,
and instantiate the new one. At first glance, this appears toderfectly valid approach,
though somewhat inefficient due to the additional work taclep and update aggregate
values that were based on partial data. Unfortunately, Wieryvéhis is not the case, as
the additional work may be arbitrarily expensive. For exlaman aggregate computed
with partial data early in the program may cause the entiognam to execute with
the wrong value; an update to the aggregate effectivelyilemiscarding and deleting
all facts produced, and rerunning the program. As this capéa multiple, times, this
is clearly neither efficient nor scalable, particularly &mgregates that depend on other
aggregates. Finally, there is a potential for incorreclvedr—any actions based on the
wrong aggregate values may be incorrect and cannot be undone

Rather than relying on deletion, we ensure the correctneseficiency of aggre-
gates by usingK-Y stratification X-Y stratification, used by LDL++[22], is a method
for ensuring that all of the contributing values are knowfobe calculating the value
of an aggregate. This is done by imposing a global orderinthemprocessing of facts
to ensure that all possible derivations for the relevarisfhave been explored before
applying an aggregate. This guarantees that the correat \wlan aggregate will be
calculated and eliminates the need for expensive or implessorrections via deletion.

Unfortunately, ensuring a global ordering on facts for X-¥&afification as de-
scribed for LDL++ requires global synchronization, an exgiee, inefficient process
for an ensemble. We propose a safe relaxation of X-Y Strati6io that requires only
local synchronization and leverages an understandingeo€dmmunications paths in
Meld programs. Because Meld has a notion of local rules and sdes (described in

§4.1), the compiler can determine whether a fact derivateEpedds on facts from only
the local module, the neighboring modules, or some modulavfay in the ensemble.
Aggregation of facts that originate locally can safely g®d once all such facts have
been derived locally. If a fact can come only from a neightgrnodule, then it is suf-
ficient to know that all of the neighboring modules have dattiall such facts and will
produce no more. In these two cases, only local synchraoizbetween a module and
its immediate neighbors is necessary to ensure stratditati

Therefore, locally on each node, we impose an ordering and@gvations. This
is precisely the ordering that is provided via X-Y stratifioa, but it is only enforced
within a node’s neighborhood, i.e., between a single nodkitardirect neighbors. An
aggregation of facts that can only be derived locally on glsinode is handled in the
usual way. Aggregation of facts that might come from a dineéghbor is deferred until
each neighbor has promised not to send any additional fathatdype. Thus, to ensure
that all the facts contributing to an aggregate are derivefdrehand, some nodes are
allowed to idle, even though they may be able to produce nets feased on aggregates
of partial sets of facts. For the rare program that aggredatets which can originate
from an arbitrary module in the ensemble, it may be neceseaynchronize the entire
ensemble. The compiler, therefore, disallows aggreghtgsdepend upon such facts.
To date we have not needed such an aggregate, but intendestigate this further in
the future.

5 Analysis and Discussion

In this section we discuss some of the advantages and drsades of writing pro-
grams in Meld. To facilitate this, we consider two real paorgs for modular robots that
have been implemented in Meld in addition to the temperaauezaging program for
sensor networks shown in Fig. 2. These programs implemédrd@eschange algorithm
as provided by Dewey et. al. [8] (a simplified version is shawhig. 6) and a localiza-
tion algorithm provided by Funiak et. al. [10]. The locatiba algorithm generates a
coordinate system for an ensemble by estimating node positfrom local sensor data
and then iteratively refining the estimation.

The shape change algorithm is a motion planner for modulawstso Planning for
individual modules is plagued by non-holomonic constsifiowever planning can
be done for groups, calleshetamoduleswith only holonomic constraints. Dewey'’s
algorithm runs on this metamodule abstraction rather timandividual modules. These
metamodules are not capable of motion themselves. Indhegdctn be absorbed into
(destroyed by) or extruded out of (created by) an adjacetameadule. An absorbed
metamodule can be transfered from one metamodule to aneadjane, allowing it
to travel throughout the ensemble as a resource. The plamalezs local decisions on
where to create new metamodules, destroy existing onefi@amtio move resources.

5.1 Fault Tolerance

As evident from the discussion f#, Meld inherently provides a degree of fault toler-
ance to programs. The operational semantics of Meld allowarbitrary changes in the
physical world; any visible change causes removal of fasdre no longer supported
by the derivation rules. In the event that a module ceasasictibn (fail-dead), every
fact that is derived from axioms about that module is deldtisv axioms, representing

/I Choose only best state:

/I FINAL=0, PATH=1, NEUTRAL=2

type state(nmodul e, min int).

type parent (nodul e, first nodul e).
type not Chi | d(nodul e, nodul e).

/I generate PATH state next to FINAL
state(B, PATH) :-
nei ghbor (A, B),
state(A, FINAL),
position(B, Spot),
0 = inTarget Shape(Spot).

/I propagate PATH/FINAL state
state(B, PATH) :-
nei ghbor (A, B),
state(A, PATH).

state(B, FINAL) :-
nei ghbor (A, B),
state(A, FINAL),
position(B, Spot),
1 = inTarget Shape(Spot).

/I construct deletion tree from FINAL
parent (B, A) :-

nei ghbor (A, B),

state(B, PATH),

state(A, FINAL).

I/l extend deletion tree along PATH
parent (B, A) :-
nei ghbor (A, B),
state(B, PATH),
parent (A,).

/I B is not a child of A
not Chi | d(A, B) :-
nei ghbor (A, B),

parent(B, C, A!=C

not Chi | d(A, B) :-
nei ghbor (A, B),
state(B, FINAL).

/[action to destroy A, give resources to B
/[can apply if Ais a leaf in deletion tree
destroy(A, B) :-

state(A, PATH),

nei ghbor (A, B),

resources(A, DESTROY),

resour ces(B, DESTROY),

forall nei ghbor (A, N)

not Chi l d(A, N).

/ action to transfer resource from A to B
give(A B) :-
nei ghbor (A, B),
resources(A, CREATE),
resour ces(B, DESTROY),
parent (A, B).

/I action to create new module
create(A, Spot) :-
state(A, FINAL),
vacant (A, Spot),
1 = inTarget Shape(Spot),
resources(A, CREATE).

Fig. 6. A metamodule-based shape planner based on [8] implemented in Mesésltin abstrac-
tion that provides metamodule creation, destruction, and resourcéetraissbasic operations.
The code ensures the ensemble stays connected by forming treeslatinlgdonly leaf nodes.
This code has been tested in simulations with up to 1 million metamodules, deatmgsthe
scalability of the distributed Meld implementation.

: \\O O
c) O d o

Fig. 7. (The max temperature program (in Fig. 2) (a) creates a tree. Whemr{bjle fails, the
Meld runtime is able to (c) destroy the subtree rooted at the failed node lgiogteand (d) re-
connect the tree.

the new state of the world, are introduced and affected gastof the algorithm are re-
run. This allows the program to run as though the failed metiad never been present,
modulo actions that have already occurred. As long as thgrano has no special de-
pendence on this module, it continues to run and toleratetlure. Other failures can
also be tolerated as long as the program can proceed witheldgt functionality.

For the temperature averaging program, this feature of Meldry effective. If, for
instance, a module fails then a break occurs in the constiucte. In a rize imple-
mentation in another language, this could result in a faitar complete execution or
a failure to include observations from the subtree rootdti@failed node. An imple-
mentation that can tolerate such a fault and reconstrudteegassuming the ensemble
is still connected) requires significant additional codegesight, and effort from the
programmer. The Meld implementation, however, requirghing additional. When a
module fails, Meld automatically deletes the subtree matehe failed node and, if the
network is still connected, adds these modules back inttrélee as shown in Fig. 7.

5.2 Provability

As Meld is a logic programming language, Meld programs ameegaly well-suited
for use in correctness proofs. In particular, the structumé semantics let one directly
reason about and apply proof methods to Meld program impi¢atiens, rather than
on just the specifications or translated pseudo-code rejptasons. Furthermore, Meld
code is amenable to mechanized analysis via theorem cleeskeh as Twelf [19].
Twelf is designed for analyzing program logics, but can bedu®r analyzing logic
program implementations as well.

Proofs of correctness for programs involving actions, h@remay need to make
assumptions about what happens when an action is attenfjoetthe planner example,
a proof of correctness has been carried out with the assombitat actions are always
performed exactly as specified. The planner has been prowshteve a correct target
shape in finite time while maintaining the connectivity oé tansemblé. These sim-
plifying assumptions, however, prevent any formal reasgribout fault tolerance, as
discussed i85.1. Although empirical evidence shows that the Meld impatation is
indeed tolerant to some faults, a good fault model will beunesgl to formally analyze
this aspect of the program.

L A sketch of the proofs is available in [8] and the full proofs on the Meldrsewode are
available in [9].

5.3 Messaging Efficiency

The distributed implementation of Meld is effective at paigating just the information
needed for making forward progress on the program. As atresMeld program’s
message complexity can be competitive with hand-craftessaging written in other
languages. This was demonstrated in [1] for small prograngsaur enhancements
carry this through for more complex programs that use agdgesgIn particular, the use
of aggregates can cause high message complexity. BefomagaddyY stratification,
aggregates that depend on data received from neighbolsasubose used in the itera-
tive refinement steps of the localization algorithm, cowddse multiple re-evaluations
of the aggregate as data trickled in. In the worst case, thiklccause an avalanche of
facts with intermediate values to be sent throughout therabte, each of which is then
deleted and replaced with another partial result. For ipatibn, this resulted in a lack
of progress due to an explosion of messages on all but tyi\gatall examples in the
original implementation of Meld. Our addition of X-Y-stifitation to Meld alleviates
this issue: the result of an aggregate is not generated pegated until all supporting
facts have been seen, limiting both messaging and computatierheads. With X-Y
stratification, localization has been demonstrated onrehbkes of up to 10,000 nodes,
with a message complexity logarithmic in the number of meduéxactly as one would
expect from a high level description of the algorithm.

5.4 Memory Efficiency

Although the Meld compiler is not fully optimized for memomany Meld programs

have small memory footprints and can, therefore, fit intolithéed memory available

on sensor network motes and on modular robots. To test tleisneasure the maxi-
mum memory used among all the modules in an ensemble exgth&rexample Meld

programs. Both the temperature aggregation program anshtigge change algorithm
prove to have very small memory footprints, requiring at huody 488 and 932 bytes
per module, respectively. The aggregation program is 8em$o neighborhood size;
this was assumed to be 6, and the memory required grows by 88 by each ad-

ditional neighbor. Furthermore, these numbers assumet3Bdaule identifiers and

temperature readings; 16-bit module identifiers and dataldvbalve the maximum

memory footprint. Both of these programs fit comfortablyoitihe memory available
on a mote or a modular robot.

The localization algorithm, on the other hand, requires terhundreds of kilobytes
of memory depending on the ensemble size. This is due to tkeofasupport within
Meld for dynamic state. Because of this limitation, the l@aion algorithm is written
such that it produces a new (static) estimated positionftaceach step of iterative
refinement. Furthermore, as the old estimates are used dethation of the new ones,
these are not discarded and they quickly accumulate. Asweneble grows, more steps
of iterative refinement are required, generating even faggantities of outdated facts
that only serve to establish a long chain of derivation framdxioms. Thus, programs
that require dynamic state (such as algorithms involviegpiive refinement) can not
currently be efficiently run in Meld.

6 Conclusions and Future Work

Meld has grown into a substantially more effective languaggrogramming ensem-
bles of independently executing nodes. Our early expeltisrigave shown that concise

and efficient programs involving very large numbers of nocks be developed suc-
cessfully. Both of the example programs in this paper (ftewdating max temperature
in a sensor network and for achieving a desired 3D shape indalaorobotics system)
were shown to be concise and efficient in our extended veddiMeld.

The Meld programs we have written thus far are, to a surgridegree, tolerant of
node failure. Such robust behavior in the face of individuzde failures is, we believe,
an important property, especially as ensemble size grovesaldb showed that Meld
programs are amenable to formal analysis and proof. Inquéati, because of Meld’s
logic-programming roots, programs written in Meld can bedudirectly in proofs of
correctness, e.g., the shape-change planner has been poovect in this manner.

We have extended Meld in ways that enable better efficiendarger ensembles,
and believe that large ensembles are precisely where trantadjes of Meld become
most valuable. We described results from simulations ofdyebgrams running on up
to 1 million nodes. For systems of this scale, we found Me#digity to generate all
of the needed messaging and distribution of state acrossoiifes to be a great aid in
helping the programmer to understand, control, and redsout&he program.

Despite all of this progress, Meld is still not an ideal laage language for certain
problem domains. For instance, problems requiring the teaamnce of dynamic state,
as demonstrated via the iterative gradient decent in thedifation algorithm, are not
efficiently executable in Meld. While such state can be endadéVield, the lack of
direct support leads to suboptimal behavior. In particidach encodings can require
unbounded quantities of memory and may fall apart in thetesesfault. This issue of
dynamic state will need to be addressed for Meld to becomdesai language for writ-
ing a more general class of ensemble programs. In the megntiield offers distinct
advantages for implementing many classes of distributgariéhms for execution on a
variety of ensemble types.

Acknowledgements We thank Robert J. Simmons and Frank Pfenning for providing
feedback on and insights into Meld and this paper. We thaalattonymous reviewers
for their helpful comments. This work was supported by li@elporation, Microsoft
Corporation, and the National Science Foundation undemtG/@NS-0428738.

References

1. Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Toltb®ry, and Padman-
abhan Pillai. Meld: A declarative approach to programming ensembi€sot. of the IEEE
Int’l Conf. on Intelligent Robots and Systen@xt. 2007.

2. Jonathan Bachrach, James McLurkin, and Anthony Grue. PratosvA language for pro-
gramming multi-robot systems using the amorphous medium abstractidnt’lIConf. in
Autonomous Agents and Multiagent Systems (AAMA&) 2008.

3. Jacob Beal and Jonathan Bachrach. Infrastructure for emgthesmergence on sen-
sor/actuator network$EEE Intelligent System&1(2):10-19, 2006.

4. Stefand Ceri, Georg Gottlob, and Letizia Tanca. What you alwaysedan know about
Datalog (and never dared to askEEE Transactions on Knowledge and Data Engineering
1(1):146-166, 1989.

5. David Chu, Arsalan Tavakoli, Lucian Popa, and Joseph Hellersteittirey declarative
sensor network systems. 2006.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

. David Culler, Deborah Estrin, and Mani Srivastava. Guest editotigiduction: Overview

of sensor networksComputey 37(8):41-49, Aug. 2004.

. Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D. CigrapdePadmanabhan

Pillai. Programming modular robots with locally distributed predicate®rtit. of the IEEE
Int’l Conf. on Robotics and Automatip8008.

. Daniel Dewey, Siddhartha Srinivasa, Michael P. Ashley-Rollmaichi&kl De Rosa, Pad-

manabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copers@wid General-
izing metamodules to simplify planning in modular robotic systemsPrort. of Int’l Conf.
on Intelligent Robots and Systemce, France, Sept. 2008.

. Daniel Dewey, Siddhartha Srinivasa, Michael P. Ashley-Rollmaichkel De Rosa, Pad-

manabhan Pillai, Todd Mowry, Jason D. Campbell, and Seth Copen Gald&teneralizing
metamodules to simplify planning in modular robotic systems. TechnicadfREMU-CS-
08-139, Carnegie Mellon University, 2008.

Stano Funiak, Michael P. Ashley-Rollman, Padmanabhan Pillain Jas&€ampbell, and
Seth Copen Goldstein. Distributed localization of modular robot ensemibl€soc. of the
3rd Robotics Science and Syste2308.

Seth Goldstein, Jason Campbell, and Todd Mowry. ProgrammaltiermlBEE Computer
June 2005.

Intel Corporation and Carnegie Mellon University. Dprsim: Theashgit physical rendering
simulator.ht t p: / / www. pi tt sburgh.intel - research. net/dprweb/, 2006.
Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesfin@an. Reliable
and efficient programming abstractions for wireless sensor netwbrl_DI '07: Proc. of
the 2007 ACM SIGPLAN conference on Programming language destjimgolementation
pages 200-210, New York, NY, USA, 2007. ACM.

Philip Levis.TinyOS ProgrammingUC - Berkeley, 2006.

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gageph M. Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and lon Stbieearative net-
working: language, execution and optimization. Aroc. of the 2006 ACM SIGMOD int'l
conf. on Management of datpages 97—108, New York, NY, USA, 2006. ACM Press.
Samuel R. Madden, Michael J. Franklin, Joseph M. Hellersteuh,Veei Hong. Tinydb:
an acquisitional query processing system for sensor netwé®#1 Trans. Database Syst.
30(1):122-173, 2005.

Radhika Nagpal. Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathemati&hD thesis, MIT, 2001.
MIT Al Lab Technical Memo 2001-008.

Ryan Newton, Greg Morrisett, and Matt Welsh. The Regiment masgopmming system.
In Proc. of the Int'l conf. on Information Processing in Sensor Netw@fRSN'07) April
2007.

Frank Pfenning and Carsten 8amann. System description: Twelf - a meta-logical frame-
work for deductive systems. Proc. of Int'l Conf. on Automated Deductigpages 202—206,
1999.

Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler.ddameighborhood ab-
straction for sensor networks. Rroc. of the 2nd int’l conf. on Mobile systems, applications,
and servicespages 99-110, New York, NY, USA, 2004. ACM Press.

Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hagdsbn, Eric
Klavins, and Gregory S. Chirikjian. Modular self-reconfigurable tatystems [grand chal-
lenges of robotics]Robotics and Automation Magazine, IEEE(1):43-52, March 2007.
Carlo Zaniolo, Natraj Arni, and KayLiang Ong. Negation and agaesgin recursive rules:
the LDL++ approach. lDOOD, pages 204—-221, 1993.

