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Abstract. We address how to write programs for distributed computing systems
in which the network topology can change dynamically. Examples of such sys-
tems, which we callensembles, include programmable sensor networks (where
the network topology can change due to failures in the nodes or links) and modu-
lar robotics systems (whose physical configuration can be rearranged under pro-
gram control). We extend Meld [1], a logic programming language that allows an
ensemble to be viewed as a single computing system. In addition to proving some
key properties of the language, we have also implemented a complete compiler
for Meld. It generates code for TinyOS [14] and for a Claytronics simulator [12].
We have successfully written correct, efficient, and complex programsfor ensem-
bles containing over one million nodes.

1 Introduction

Several types of distributed systems have the property thatthe network topology can
change dynamically. For example, inad hocsensor networks [6], it is common for the
network to change due to failures in both the nodes and network links. Modular robotic
systems [21] are another common example. Under software control, a modular robotic
system can rearrange how its modules are connected, which means that its network
topology changes, too. A third example is Claytronics [11],which can be viewed as a
type of modular robotic system containing, potentially, millions of unreliable modules.
We use the termensembleto refer to any such network-varying distributed system.

How shall we write programs for ensembles? Writing software is hard; writing soft-
ware for distributed systems is even harder. Add to that the possibility of a dynamic
network topology, and it is easy to see that we are faced with adaunting programming
problem. Furthermore, real-world ensembles such as robotsand sensor nets pose ad-
ditional challenges such as unreliable communications, imperfect or failing actuators,
and soft and hard compute errors. The complexity of writing code to recover from such
failures is magnified by the number of potential interactions within an ensemble.

Given these considerations, we have been extending the language Meld [1], that al-
lows ensembles to be programmed as a unified whole and then compiled automatically
into fully distributed code. This approach frees programmers from the need to under-
stand how or where in the system the program state is to be maintained or messages sent.
Furthermore, Meld programs are written in the logic programming paradigm, leading to
clear and concise programs. And as our early experiments have thus far demonstrated,



Meld programs are inherently robust to changes in network topology and provide for
simple fault handling. The initial design of Meld was influenced heavily by Datalog [4]
and, like Datalog, programs in Meld lend themselves to proofs of correctness.

We have made substantial progress on the design, implementation, and application
of Meld [1]. We have adopted X-Y stratification from LDL++ [22] and adapted it to
work in a distributed environment. We have addressed problems with the deletion al-
gorithm used in prior work, such as P2 [15]. We have achieved what we believe to be
a fully practical language for a range of modular robotics and sensor network applica-
tions, and have completed a thorough definition of the operational semantics, much of
which has been implemented in the Twelf [19] proof system. A complete compiler for
Meld has also been implemented, which generates code for TinyOS [14] and a Claytron-
ics simulator [12]. Using the compiler and simulator, we have written correct, efficient
programs for ensembles containing over one million nodes.

2 Related Work
The P2 [15] language and SNLog [5] language, which were designed for programming
overlay networks and sensor networks respectively, showedthat a logic programming
approach could be used to allow an ensemble to be programmed as a unified whole.
Meld adds, among other things, support for robot actuation and sensing, and is based
on a well-defined formal semantics. In principle, even very large ensembles can be
reasoned about formally.

Several languages have been proposed for sensor nets. Hood [20], Tinydb [16], and
Regiment [18] provide excellent support for applications such as data collection and
aggregation, but do not directly address more dynamic scenarios involving physical re-
configuration. Pleiades [13], also designed for sensor networks, can be used in situations
with dynamic network topologies. It adopts a programming style similar to OpenMP,
for example allowing one to write parallel loops that run across multiple modules. Of
course, this requires the programmer to specify whether a variable is to be stored locally
or propagated about the ensemble as the program runs. Thus, the programmer’s focus
is on the individual modules instead of the whole ensemble.

Origami Shape Language [17] and Proto [3] are effective for programming dis-
tributed systems as a whole. They were originally targeted towards stationary wireless
modules, rather than ensembles. Recently, Proto has been extended to mobile robots [2].
LDP [7] was derived from a method for distributed debugging.Originally designed for
modular robotics, LDP sends condition-matchers around theensemble. It is based on
a tick model, generating a new set of matchers throughout theensemble on each tick.
While this works well in highly dynamic systems, it can lead toexcessive messaging in
more static environments.

3 Meld: Language and Meaning
A running Meld program consists of a database offactsand a set of production rules
for operating on and generating new facts. A Meld fact is a predicate and a tuple of val-
ues; the predicate denotes a particular relation for which the tuple is an element. Facts
represent the state of the world based on observations and inputs (e.g., sensor readings,
connectivity or topology information, runtime parameters, etc.), or they reflect the in-
ternal state of the program. Starting from an initial set of axioms, new facts are derived



Known Facts Γ ::= · | Γ, f(t̂)

Accumulated ActionsΨ ::= · | Ψ, a(t̂)

Set of Rules Σ ::= · | Σ, R

Actions A ::= a(x̂)

Facts F ::= f(x̂)

ConstraintsC ::= c(x̂)

ExpressionE ::= E ∧ E | F | ∀F.E | C

Rule R ::= E ⇒ F | E ⇒ A

| agg(F, g, y) ⇒ F

Fig. 1.Abstract syntax for Meld programs

and added to the database as the program runs. In addition to facts,actionsare also gen-
erated. They are syntactically similar to facts but cause side effects that change the state
of the world rather than the derivations of new facts. In a robotics application, for exam-
ple, actions are used to initiate motion or control devices.Meld rules can use a variety
of arithmetic, logical, and set-based expressions, as wellas aggregation operations.

3.1 Structure of a Meld Program
Fig. 1 shows the abstract syntax for states, rules, expressions, and constraints in Meld.
A Meld program consists of a set of production rules. A rule may contain variables,
the scope of which is the entire rule. Each rule has a head thatspecifies a fact to be
generated and a body of prerequisites to be satisfied. If all prerequisites are satisfied,
then the new fact is added to the database. Each prerequisiteexpression in the body
of the rule can either match a fact or specify a constraint. Matching is achieved by
finding a consistent substitution for the rule’s variables such that one or more facts in
the database are matched. A constraint is a boolean expression evaluated on facts in
the database; these can use arithmetic, logical, and set-based subexpressions. Finally,
forall statements iterate over all matching facts in the database and ensure that for
each one, a specified expression is satisfied.

Meld rules may also derive actions, rather than facts. Action rules have the same
syntax as rules, but have a different effect. When the body of this rule is proved true,
its head is not inserted into the database. Instead, it causes an action to be carried out in
the physical world. The action, much like a fact, has a predicate and a tuple, which can
be assigned values by the expressions in the rule.

An important concept in Meld is theaggregate. The purpose of an aggregate is
to define a type of predicate that combines the values in a collection of facts. As a
simple example, consider the program shown in Fig. 2, for computing the maximum
temperature across all the nodes in an ensemble. Theparent rules, (c) and (d), build
a spanning tree across the ensemble, and then themaxTemp rules, (e) and (f), use this
tree to compute the maximum temperature. Considering first the rules for calculating
the maximum, rule (e) sets the base case; rule (f) then propagates the maximum tem-
perature (T) of the subtree rooted at one node (A) to its parent (B). Applied across the
ensemble, this has the effect of producing the maximum temperature at the root of the
tree. To accomplish this, the rule prototype given in (b) specifies that whenmaxTemp is
matched, themax function should be used to aggregate all values in the secondfield for
those cases where the first field matches. In the case of theparent rules, the prototype
given in (a) indicates the use of thefirst aggregate, limiting each node to a single
parent. Thefirst aggregate keeps only the first value encountered in any matchon
the rest of the tuple. The meaning oflogical neighbor is explained in§4.1.



(a) type logical neighbor parent(module, first module).
(b) type maxTemp(module, max float).

(c) parent(A, A) :- root(A).
(d) parent(A, B) :- neighbor(A, B), parent(B, ).
(e) maxTemp(A, T) :- temperature(A, T).
(f) maxTemp(B, T) :- parent(A, B), maxTemp(A, T).

(g) type globalMax(module, float).
(h) globalMax(A, T) :- maxTemp(A, T), root(A).
(i) globalMax(B, T) :- neighbor(A, B), globalMax(A, T).

(j) type localMax(module).
(k) localMax(A) :- temperature(A, T),

forall neighbor(A, B) temperature(B, T’) T > T’.

Fig. 2. A data aggregation example coded in Meld. A spanning tree is built across the ensemble
and used to aggregate the max temperatures of all nodes to the root. The result is flood broadcast
back to all nodes. Each node also determines whether it is a local maximum.

In general, aggregates may use arbitrary functions to calculate the aggregate value.
In the abstract syntax, this is given as a functiong that calculates the value of the ag-
gregate given all of the individual values. The result of applying g is then substituted
for y in F . In practice, as described by LDL++[22], the programmer implements this as
three functions: two to create an aggregate and one to retrieve the final value. The first
two functions consist of one to create an aggregate from a single value and a second to
update the value of an existing aggregate given another value. The third function, which
produces the final value of the aggregate, permits the aggregate to keep additional state
necessary to compute the aggregate. For example, an aggregate to compute the average
would keep around the sum of all values and the number of values seen. When the fi-
nal value of the aggregate is requested, the current value ofsum is divided by the total
number of values seen to produce the requested average.

3.2 Meaning of a Meld Program

The state of an ensemble running a Meld program consists of two parts: derived facts
and derived actions.Γ is the set of facts that have been derived in the current world.
Γ is a list of facts that are known to be true. Initially,Γ is populated with observations
that modules make about the world.Ψ , is the set of actions derived in the current world.
These are much like the derived facts that make upΓ , except that they are intended to
have an effect upon the ensemble rather than be used to derivefurther facts.

As a Meld program runs, new facts and actions are derived fromexisting facts which
are then added toΓ andΨ . Once one or more actions have been derived, they can be
applied to bring about a change in the physical world. When theactions have been
applied to the world, all derived facts are discarded and replaced with a set of new
observations about the world. The program then restarts execution in the new world.

The evaluation rules for Meld allow for significant uncertainty with respect to ac-
tions and their effects. This underspecification has two purposes. First, it does not make
assumptions about the type of ensemble nor the kinds of actions which can be trig-



gered by a Meld program. Second, it admits the possibility ofnoisy sensors and faulty
actuators. In the case of modular robotics, for instance, a derived action may request
that a robot move to a particular location. External constraints, however, may prevent
the robot from moving to the desired location. It is, therefore, important thatΓ end up
containing the actual position of the robot rather than the location it desired to reach.

This result is achieved by discardingΓ when an action is applied and starting fresh.
By doing this, we erase all history from the system, removingany dependencies on the
intended effect of the action. This interpretation also accounts for the fact that sensors
may fail, be noisy, and even in the best case that observations of the real world that are
known to the ensemble are only a subset of those that are available in the real world.
To account for changes that arise due to external forces we also allow the program to
restart even whenΨ is empty.

This interpretation permits us to give Meld programs a well-defined meaning even
when actuators fail, external forces change the ensemble, or sensors are noisy. In turn,
this imbues Meld with an inherent form of fault tolerance. The greatest limitation of
this approach, however, is in our ability to reason about programs. By allowing the
ensemble to enter a state other than the one intended by the action, we eliminate the
ability to directly reason about what a program does. To circumvent this, it is necessary
to make assumptions about how likely an action is to go awry and in what ways it’s
possible for it to go awry. This is discussed further in§5.2.

4 Distributed Implementation of Meld programs
In this section we describe how Meld programs can be run as forward-chaining logic
programs across an ensemble. We first explain the basic ideasthat make this possible.
We then describe the additional techniques of deletion and X-Y stratification that are
required to make this feasible and efficient.

4.1 Basic Distribution/Implementation Approach
Meld is an ensemble programming language; efficient and scalable execution requires
Meld programs to be distributed across the nodes of the ensemble. To facilitate this, we
require the first variable of a fact, called thehome variable, to refer to the node where
the fact will be stored. This convention permits the compiler to distribute the facts in
a Meld program to the correct nodes in the ensemble. It also permits the runtime to
introduce facts representing the state of the world at the right nodes, i.e., facts that
result from local observations are available at the corresponding module, e.g.,A in the
temperature predicate of Fig. 2 refers to the temperature observed at nodeA.

Just as the data is distributed to nodes in the ensemble, the rules need to be trans-
formed to run on individual modules. Extending a technique from the P2 compiler, the
rules of a program arelocalized— split into rules with local bodies — such that two
kinds of rules exist. The first of these arelocal rulesin which every fact in the body and
head of the rule share the same home node. The second kind of rule is asend rulefor
which the entire body of the rule resides on one module while the head of the rule is
instantiated on another module.

To support communication for the send rules, the compiler requires a means of de-
termining what routes will be available at runtime. This is facilitated by special facts,
called logical neighbor facts, which indicate runtime connectivity between pairs of
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original rule from the temperature example:
localMax(A) :- temperature(A, T),

forall neighbor(A, B)
[temperature(B, T’),
T > T’].

send rule after splitting:
remote LM(A, B, T’) :- neighbor(B, A),

temperature(B, T’).

local rule after splitting:
localMax(A) :- temperature(A, T),

forall neighbor(A, B)
[ remote LM(A, B, T’),
T > T’].

Fig. 3. Example of splitting a rule into its local and send parts. On the left, the spanningtree for
home nodes is shown. On the right is a rule from the program in Fig. 2 alongwith the two rules
that result from localizing it.

modules, and potentially multi-hop routes between them. Among the axioms introduced
by the runtime system are logical neighbor facts calledneighbor facts, which indicate
a node’s direct communication partners. Beyond an ability to communicate (assumed
to be symmetric), any meaning attributed to these facts are implementation-dependent
(e.g. for Claytronics, these indicate physically neighboring modules; for sensor net-
works, these indicate motes within wireless range). Additional logical neighbor facts
(e.g.parent) can be derived transitively from existing ones (e.g. twoneighbor
facts) with the route automatically generated by concatenation. Symmetry is preserved
automatically by the creation of a new predicate to support the inverted version of the
fact (which contains the reverse route at runtime).

Using the connectivity relations guaranteed by logical neighbor facts, the compiler
is able to localize the rules and ensure that routes will be known for all send rules. The
compiler considers the graph of the home nodes for all facts involved in the a rule, using
the connectivity relations supplied by logical neighbor facts as edges. A spanning tree,
rooted at the home node of the head of the rule, is generated (as shown in Fig. 3).

For each leaf in the tree, the compiler generates a new predicate (e.g. remote LM),
which will reside on the parent node, and creates a send rule for deriving this predicate
based on all of the relevant facts that reside on the leaf node. The new predicate is added
as a requirement in the parent, replacing the facts from the leaf node, and the leaf node
is removed from the graph. This is repeated until only the root node remains at which
point we are left with a local rule. Note that this process mayadd dependencies on
symmetric versions of logical neighbor facts, such asneighbor(B, A) in Fig. 3.

Constraints from the original rule can be placed in the localrule’s body to produce
a correct implementation of the program. A better, more efficient alternative, however,
places the constraints in the send rules. This way, if a constraint does not hold, then a
message is not sent, effectively short-circuiting the original rule’s evaluation. To this
end, constraints are pushed as far down the spanning tree as possible to short-circut the
process as early as possible.
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maxTemp(a, 50)

neighbor(a,b)root(a) neighbor(b,a)

globalMax(a,50) globalMax(b,50)

...

...

maxTemp(a, 50)

neighbor(a,b)root(a) neighbor(b,a)

globalMax(b,50[,2])

globalMax(a,50[,1])

globalMax(a,50[,3])

(a) (b)

Fig. 4. Partial derivation graph for the program in Fig. 2. The graph on the leftshows the deriva-
tion graph for this program using the simple reference counting approach. Note the cycle in the
graph which prevents this approach from working correctly. The graph on the right shows how
the cycle is eliminated through the usage of the derivation counting approach.

The techniques of assigning home nodes, generating logicalneighbors for multi-
hop communications, and automaticly tranforming rules into local and send parts allow
Meld to execute a program on a distributed set of communicating nodes.

4.2 Triggered Derivations

A Meld program, as a bottom-up logic, executes by deriving new facts from existing
facts via application of rules. Efficient execution requires applying rules that are likely
to find new derivations. Meld accomplishes this by ensuring that a new fact is used in
every attempt at finding a derivation. Meld maintains amessage queuewhich contains
all the new facts. As a Meld program executes, a fact is pulledout of the queue. Then,
all the rules that use the fact in their body are selected as candidates rules. For each
candidate, the rest of its rule body is matched against the database and, if the candidate
can be proven, the head of the rule is instantiated and added to the message queue. This
triggered activation of rules by newly derived facts is essential to make Meld efficient.

4.3 Deletion

One of the largest hurdles to efficiently implementing Meld is that whenever the world
changes we must discard all known facts and start the programover from the begin-
ning, as described in§3.2. Fortunately, we can more selectively handle such changes by
borrowing the notion ofdeletionfrom P2. P2 was designed for programming network
overlays and uses deletion to correctly handle occasional link failures. Although the
ensembles we consider may experience more frequent changesin their world, these can
be handled effectively with a local, efficient implementation of deletion.

Deletion avoids the problem of simultaneously discarding every fact at every node
and restarting the program by carefully removing only thosefacts from the system
which can no longer be derived. Deletion works by considering a deleted fact and
matching the rules in exactly the same way as derivations aredone to determine which
other facts depend on the deleted one. Each of these facts is then, in turn, deleted.
Strictly following this approach will result in a “conservative” approach that deletes too
many facts, e.g., ones with alternative derivations that donot depend on the previously
deleted facts. This approach would be correct if at each stepall possible derivations



(a) Initial facts with ref counts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
maxTemp(a,50) (×1)

(b) Facts after application of rules with reference counts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
maxTemp(a,50) (×1)

globalMax(b,50) (×1)
globalMax(a,50) (×2)

(c) Facts after deletion of maxTemp(a,50) using basic referencecounts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
globalMax(a,50) (×1)

globalMax(b,50) (×1)

(d) Facts after application of rules with reference counts with depths:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
globalMax(a,50) (×1@1;×1@3)

globalMax(b,50)(×1@2)

(e) Facts after deletion of maxTemp(a,50) using reference counts with depths:
neighbor(a,b) (×1) neighbor(b,a) (×1) root(a) (×1)

Fig. 5. Example of deletion with reference counts, and derivation counts with depth (counts
and depths shown in parentheses after each fact). Based on the program from Fig. 2, the
globalMax(a,50) fact can be cyclically derived from itself throughglobalMax(b,50).
Derivation counts that consider depth allow deletions to occur correctly, while simple reference
counts fail. Facts leading up tomaxTemp(a,50) are omitted for brevity and clarity.

were tried again, but produces a problem given our triggeredapplication of rules. In
other words, a derivable fact that is “conservatively” deleted may never be re-derived,
even though an alternate derivation may exist. Therefore, it is necessary to have an exact
solution to deletion in order to use our triggered approach to derivation.

P2 addresses this issue by using reference counting techniques similar to those used
in garbage collection. Instead of keeping track of the number of objects that point to
an object, it keeps track of the number of derivations that can prove a particular fact.
When a fact is deleted, this count is decremented. If the countreaches zero, then the
fact is removed from the database and facts derived from it are recursively deleted.
This approach works for simple cases, but suffers from the cyclic “pointer” problem. In
Meld a fact is often used to derive another instance of itself, leading to cyclic derivation
graphs (shown in Fig. 4(a)). In this case, simple reference counting fails to properly
delete the fact, as illustrated in parts a–c of Fig. 5.

In the case of Meld, and unlike a reference counting garbage collector, we can re-
solve this problem by tracking the depth of each derivation.For facts that can be in-
volved in a cyclic derivation, we keep a reference count for each existing derivation
depth. When a fact with a simple reference count is deleted, weproceed as before.
When a fact with reference counts for each derivation depth isdeleted, we decrement
the reference count for that derivation depth. If the smallest derivation depth is decre-
mented to zero, then we delete the fact and everything derived from it. If one or more
derivations still exist after this process completes, thenwe reinstantiate the fact with the
new derivation depth. This process serves to delete any other derivations of the fact that
depended upon the fact and eliminates the possibility of producing an infinite cyclic
derivation with no start. This solution is illustrated in Fig. 4(b) and parts d–e of Fig. 5.



4.4 Concerning Deletion and Actions
Since the message queue contains both newly derived facts and the deletion of facts, an
opportunity for optimization presents itself. If a new fact(F ) and the deletion of that
fact (6F ) both exist in the message queue, one might think that bothF and 6F can be
silently removed from the queue as they cancel one another out. This would be true
if all derived rules had no side-effects. However, the possibility of deriving an action
requires caution.

The key difference between facts and actions is that for facts we need to know only
whether it is true or not, while for an action we must act each time it is derived. The
semantics of Meld require that deletions be completed “instantly,” taking priority over
any derivations of new facts. Thus, whenF comes before6F , then silently removing
both from the queue is safe since6F undoes the derivation of any fact that might be
derived fromF .

If, however,6F comes beforeF , then canceling them is not safe. In this case, process-
ing them in the order required by the semantics could result in deleting and rederiving
an action, causing it to be correctly performed. Had we silently deleted bothF and 6F ,
the action would not occur. Thus, this optimization breaks correctness when6F occurs
beforeF in the queue. As a result, we only cancel out facts in the queuewhen the fact
occurs before the deletion of the fact.

4.5 X-Y Stratification
A näıve way to implement aggregates (andforall statements which require similar
considerations) is to assume that all values for the predicate are known, and calculate the
aggregate accordingly. If a new value arrives, one can delete the old value, recompute,
and instantiate the new one. At first glance, this appears to be a perfectly valid approach,
though somewhat inefficient due to the additional work to clean up and update aggregate
values that were based on partial data. Unfortunately, however, this is not the case, as
the additional work may be arbitrarily expensive. For example, an aggregate computed
with partial data early in the program may cause the entire program to execute with
the wrong value; an update to the aggregate effectively entails discarding and deleting
all facts produced, and rerunning the program. As this can happen multiple, times, this
is clearly neither efficient nor scalable, particularly foraggregates that depend on other
aggregates. Finally, there is a potential for incorrect behavior—any actions based on the
wrong aggregate values may be incorrect and cannot be undone.

Rather than relying on deletion, we ensure the correctness and efficiency of aggre-
gates by usingX-Y stratification. X-Y stratification, used by LDL++[22], is a method
for ensuring that all of the contributing values are known before calculating the value
of an aggregate. This is done by imposing a global ordering onthe processing of facts
to ensure that all possible derivations for the relevant facts have been explored before
applying an aggregate. This guarantees that the correct value of an aggregate will be
calculated and eliminates the need for expensive or impossible corrections via deletion.

Unfortunately, ensuring a global ordering on facts for X-Y Stratification as de-
scribed for LDL++ requires global synchronization, an expensive, inefficient process
for an ensemble. We propose a safe relaxation of X-Y Stratification that requires only
local synchronization and leverages an understanding of the communications paths in
Meld programs. Because Meld has a notion of local rules and send rules (described in



§4.1), the compiler can determine whether a fact derivation depends on facts from only
the local module, the neighboring modules, or some module far away in the ensemble.
Aggregation of facts that originate locally can safely proceed once all such facts have
been derived locally. If a fact can come only from a neighboring module, then it is suf-
ficient to know that all of the neighboring modules have derived all such facts and will
produce no more. In these two cases, only local synchronization between a module and
its immediate neighbors is necessary to ensure stratification.

Therefore, locally on each node, we impose an ordering on fact derivations. This
is precisely the ordering that is provided via X-Y stratification, but it is only enforced
within a node’s neighborhood, i.e., between a single node and its direct neighbors. An
aggregation of facts that can only be derived locally on a single node is handled in the
usual way. Aggregation of facts that might come from a directneighbor is deferred until
each neighbor has promised not to send any additional facts of that type. Thus, to ensure
that all the facts contributing to an aggregate are derived beforehand, some nodes are
allowed to idle, even though they may be able to produce new facts based on aggregates
of partial sets of facts. For the rare program that aggregates facts which can originate
from an arbitrary module in the ensemble, it may be necessaryto synchronize the entire
ensemble. The compiler, therefore, disallows aggregates that depend upon such facts.
To date we have not needed such an aggregate, but intend to investigate this further in
the future.

5 Analysis and Discussion
In this section we discuss some of the advantages and disadvantages of writing pro-
grams in Meld. To facilitate this, we consider two real programs for modular robots that
have been implemented in Meld in addition to the temperatureaveraging program for
sensor networks shown in Fig. 2. These programs implement a shape change algorithm
as provided by Dewey et. al. [8] (a simplified version is shownin Fig. 6) and a localiza-
tion algorithm provided by Funiak et. al. [10]. The localization algorithm generates a
coordinate system for an ensemble by estimating node positions from local sensor data
and then iteratively refining the estimation.

The shape change algorithm is a motion planner for modular robots. Planning for
individual modules is plagued by non-holomonic constraints, however planning can
be done for groups, calledmetamodules, with only holonomic constraints. Dewey’s
algorithm runs on this metamodule abstraction rather than on individual modules. These
metamodules are not capable of motion themselves. Instead they can be absorbed into
(destroyed by) or extruded out of (created by) an adjacent metamodule. An absorbed
metamodule can be transfered from one metamodule to an adjacent one, allowing it
to travel throughout the ensemble as a resource. The plannermakes local decisions on
where to create new metamodules, destroy existing ones, andhow to move resources.

5.1 Fault Tolerance
As evident from the discussion in§4, Meld inherently provides a degree of fault toler-
ance to programs. The operational semantics of Meld allows for arbitrary changes in the
physical world; any visible change causes removal of facts that are no longer supported
by the derivation rules. In the event that a module ceases to function (fail-dead), every
fact that is derived from axioms about that module is deleted. New axioms, representing



// Choose only best state:
// FINAL=0, PATH=1, NEUTRAL=2
type state(module, min int).
type parent(module, first module).
type notChild(module, module).

// generate PATH state next to FINAL
state(B, PATH) :-

neighbor(A, B),
state(A, FINAL),
position(B, Spot),
0 = inTargetShape(Spot).

// propagate PATH/FINAL state
state(B, PATH) :-

neighbor(A, B),
state(A, PATH).

state(B, FINAL) :-
neighbor(A, B),
state(A, FINAL),
position(B, Spot),
1 = inTargetShape(Spot).

// construct deletion tree from FINAL
parent(B, A) :-

neighbor(A, B),
state(B, PATH),
state(A, FINAL).

// extend deletion tree along PATH
parent(B, A) :-

neighbor(A, B),
state(B, PATH),
parent(A, ).

// B is not a child of A
notChild(A, B) :-

neighbor(A, B),
parent(B, C), A != C.

notChild(A, B) :-
neighbor(A, B),
state(B, FINAL).

// action to destroy A, give resources to B
// can apply if A is a leaf in deletion tree
destroy(A, B) :-

state(A, PATH),
neighbor(A, B),
resources(A, DESTROY),
resources(B, DESTROY),
forall neighbor(A, N)

notChild(A, N).

// action to transfer resource from A to B
give(A, B) :-

neighbor(A, B),
resources(A, CREATE),
resources(B, DESTROY),
parent(A, B).

// action to create new module
create(A, Spot) :-

state(A, FINAL),
vacant(A, Spot),
1 = inTargetShape(Spot),
resources(A, CREATE).

Fig. 6.A metamodule-based shape planner based on [8] implemented in Meld. Ituses an abstrac-
tion that provides metamodule creation, destruction, and resource transfer as basic operations.
The code ensures the ensemble stays connected by forming trees and deleting only leaf nodes.
This code has been tested in simulations with up to 1 million metamodules, demonstrating the
scalability of the distributed Meld implementation.
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Fig. 7. (The max temperature program (in Fig. 2) (a) creates a tree. When (b)a node fails, the
Meld runtime is able to (c) destroy the subtree rooted at the failed node via deletion and (d) re-
connect the tree.

the new state of the world, are introduced and affected portions of the algorithm are re-
run. This allows the program to run as though the failed module had never been present,
modulo actions that have already occurred. As long as the program has no special de-
pendence on this module, it continues to run and tolerates the failure. Other failures can
also be tolerated as long as the program can proceed without the lost functionality.

For the temperature averaging program, this feature of Meldis very effective. If, for
instance, a module fails then a break occurs in the constructed tree. In a näıve imple-
mentation in another language, this could result in a failure to complete execution or
a failure to include observations from the subtree rooted atthe failed node. An imple-
mentation that can tolerate such a fault and reconstruct thetree (assuming the ensemble
is still connected) requires significant additional code, foresight, and effort from the
programmer. The Meld implementation, however, requires nothing additional. When a
module fails, Meld automatically deletes the subtree rooted at the failed node and, if the
network is still connected, adds these modules back into thetree, as shown in Fig. 7.

5.2 Provability

As Meld is a logic programming language, Meld programs are generally well-suited
for use in correctness proofs. In particular, the structureand semantics let one directly
reason about and apply proof methods to Meld program implementations, rather than
on just the specifications or translated pseudo-code representations. Furthermore, Meld
code is amenable to mechanized analysis via theorem checkers such as Twelf [19].
Twelf is designed for analyzing program logics, but can be used for analyzing logic
program implementations as well.

Proofs of correctness for programs involving actions, however, may need to make
assumptions about what happens when an action is attempted.For the planner example,
a proof of correctness has been carried out with the assumption that actions are always
performed exactly as specified. The planner has been proven to achieve a correct target
shape in finite time while maintaining the connectivity of the ensemble.1 These sim-
plifying assumptions, however, prevent any formal reasoning about fault tolerance, as
discussed in§5.1. Although empirical evidence shows that the Meld implementation is
indeed tolerant to some faults, a good fault model will be required to formally analyze
this aspect of the program.

1 A sketch of the proofs is available in [8] and the full proofs on the Meld source code are
available in [9].



5.3 Messaging Efficiency
The distributed implementation of Meld is effective at propagating just the information
needed for making forward progress on the program. As a result, a Meld program’s
message complexity can be competitive with hand-crafted messaging written in other
languages. This was demonstrated in [1] for small programs and our enhancements
carry this through for more complex programs that use aggregates. In particular, the use
of aggregates can cause high message complexity. Before adding X-Y stratification,
aggregates that depend on data received from neighbors, such as those used in the itera-
tive refinement steps of the localization algorithm, could cause multiple re-evaluations
of the aggregate as data trickled in. In the worst case, this could cause an avalanche of
facts with intermediate values to be sent throughout the ensemble, each of which is then
deleted and replaced with another partial result. For localization, this resulted in a lack
of progress due to an explosion of messages on all but trivially small examples in the
original implementation of Meld. Our addition of X-Y-stratification to Meld alleviates
this issue: the result of an aggregate is not generated or propagated until all supporting
facts have been seen, limiting both messaging and computation overheads. With X-Y
stratification, localization has been demonstrated on ensembles of up to 10,000 nodes,
with a message complexity logarithmic in the number of modules, exactly as one would
expect from a high level description of the algorithm.

5.4 Memory Efficiency
Although the Meld compiler is not fully optimized for memory, many Meld programs
have small memory footprints and can, therefore, fit into thelimited memory available
on sensor network motes and on modular robots. To test this, we measure the maxi-
mum memory used among all the modules in an ensemble executing the example Meld
programs. Both the temperature aggregation program and theshape change algorithm
prove to have very small memory footprints, requiring at most only 488 and 932 bytes
per module, respectively. The aggregation program is sensitive to neighborhood size;
this was assumed to be 6, and the memory required grows by 38 bytes for each ad-
ditional neighbor. Furthermore, these numbers assume 32-bit module identifiers and
temperature readings; 16-bit module identifiers and data would halve the maximum
memory footprint. Both of these programs fit comfortably into the memory available
on a mote or a modular robot.

The localization algorithm, on the other hand, requires tens to hundreds of kilobytes
of memory depending on the ensemble size. This is due to the lack of support within
Meld for dynamic state. Because of this limitation, the localization algorithm is written
such that it produces a new (static) estimated position factfor each step of iterative
refinement. Furthermore, as the old estimates are used in thederivation of the new ones,
these are not discarded and they quickly accumulate. As the ensemble grows, more steps
of iterative refinement are required, generating even larger quantities of outdated facts
that only serve to establish a long chain of derivation from the axioms. Thus, programs
that require dynamic state (such as algorithms involving iterative refinement) can not
currently be efficiently run in Meld.

6 Conclusions and Future Work
Meld has grown into a substantially more effective languagefor programming ensem-
bles of independently executing nodes. Our early experiments have shown that concise



and efficient programs involving very large numbers of nodescan be developed suc-
cessfully. Both of the example programs in this paper (for calculating max temperature
in a sensor network and for achieving a desired 3D shape in a modular robotics system)
were shown to be concise and efficient in our extended versionof Meld.

The Meld programs we have written thus far are, to a surprising degree, tolerant of
node failure. Such robust behavior in the face of individualnode failures is, we believe,
an important property, especially as ensemble size grows. We also showed that Meld
programs are amenable to formal analysis and proof. In particular, because of Meld’s
logic-programming roots, programs written in Meld can be used directly in proofs of
correctness, e.g., the shape-change planner has been proven correct in this manner.

We have extended Meld in ways that enable better efficiency onlarger ensembles,
and believe that large ensembles are precisely where the advantages of Meld become
most valuable. We described results from simulations of Meld programs running on up
to 1 million nodes. For systems of this scale, we found Meld’sability to generate all
of the needed messaging and distribution of state across thenodes to be a great aid in
helping the programmer to understand, control, and reason about the program.

Despite all of this progress, Meld is still not an ideal language language for certain
problem domains. For instance, problems requiring the maintenance of dynamic state,
as demonstrated via the iterative gradient decent in the localization algorithm, are not
efficiently executable in Meld. While such state can be encoded in Meld, the lack of
direct support leads to suboptimal behavior. In particular, such encodings can require
unbounded quantities of memory and may fall apart in the event of a fault. This issue of
dynamic state will need to be addressed for Meld to become an ideal language for writ-
ing a more general class of ensemble programs. In the meantime, Meld offers distinct
advantages for implementing many classes of distributed algorithms for execution on a
variety of ensemble types.
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