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Abstract Multichannel ASR systems commonly separate speech enhancement, in-
cluding localization, beamforming and postfiltering, from acoustic modeling. In this
chapter, we perform multichannel enhancement jointly with acoustic modeling in a
deep neural network framework. Inspired by beamforming, which leverages differ-
ences in the fine time structure of the signal at different microphones to filter energy
arriving from different directions, we explore modeling the raw time-domain wave-
form directly. We introduce a neural network architecture which performs multi-
channel filtering in the first layer of the network and show that this network learns
to be robust to varying target speaker direction of arrival, performing as well as
a model that is given oracle knowledge of the true target speaker direction. Next,
we show how performance can be improved by factoring the first layer to separate
the multichannel spatial filtering operation from a single channel filterbank which
computes a frequency decomposition. We also introduce an adaptive variant, which
updates the spatial filter coefficients at each time frame based on the previous inputs.
Finally we demonstrate that these approaches can be implemented more efficiently
in the frequency domain. Overall, we find that such multichannel neural networks
give a relative word error rate improvement of more than 5% compared to a tradi-
tional beamforming-based multichannel ASR system and more than 10% compared
to a single channel waveform model.

1 Introduction

While state-of-the-art automatic speech recognition (ASR) systems perform reason-
ably well in close-talking microphone conditions, performance degrades in condi-
tions when the microphone is far from the user. In such farfield cases, the speech
signal is degraded by reverberation and additive noise. To improve recognition in
such cases, ASR systems often use signals from multiple microphones to enhance
the speech signal and reduce the impact of reverberation and noise [2, 6, 10].



2 Authors Suppressed Due to Excessive Length

Multichannel ASR systems often use separate modules to perform recognition.
First, microphone array speech enhancement is applied, typically broken into lo-
calization, beamforming and postfiltering stages. The resulting single channel en-
hanced signal is passed to an conventional acoustic model [15, 35]. A commonly
used enhancement technique is filter-and-sum beamforming [2], which begins by
aligning signals from different microphones in time (via localization) to adjust for
the propagation delay from the target speaker to each microphone. The time-aligned
signals are then passed through a filter for each microphone and summed to enhance
the signal from the target direction and to attenuate noise coming from other direc-
tions. Commonly used filter design criteria are based on Minimum Variance Distor-
tionless Response (MVDR) [10, 39] or multichannel Wiener filtering (MWF) [6].

When the end goal is to improve ASR performance, tuning the enhancement
model independently from the acoustic model might not be optimal. To address
this issue [34] proposed likelihood-maximizing beamforming (LIMABEAM) which
optimizes beamformer parameters jointly with those of the acoustic model. This
technique was shown to outperform conventional techniques such as delay-and-sum
beamforming (i.e. filter-and-sum where the filters consist of impulses). Like most
enhancement techniques, LIMABEAM is a model-based scheme and requires an
iterative algorithm that alternates between acoustic model inference and enhance-
ment model parameter optimization. Contemporary acoustic models are generally
based on neural networks, optimized using a gradient learning algorithm. Combin-
ing model-based enhancement with an acoustic model that uses gradient learning
can lead to considerable complexity, e.g. [17].

In this chapter we extend the idea of performing beamforming jointly with acous-
tic modeling from [34], but do this within the context of a deep neural network
(DNN) framework by training an acoustic model directly on the raw signal. DNN's
are attractive because they have been shown to be able to perform feature extrac-
tion jointly with classification [23]. Previous work has demonstrated the possibility
of training deep networks directly on raw, single channel, time domain waveform
samples [11, 18, 19, 24, 32, 37]. The goal of this chapter is to explore a variety of
different joint enhancement/acoustic modeling DNN architectures that operate on
multichannel signals. We will show that jointly optimizing both stages is more ef-
fective than techniques which cascade independently tuned enhancement algorithms
with acoustic models.

Since beamforming takes advantage of the fine time structure of the signal at
different microphones, we begin by modeling the raw time-domain waveform di-
rectly. In this model, introduced in [18, 31], the first layer consists of multiple time
convolution filters, which map the multiple microphone signals down to a single
time-frequency representation. As we will show, this layer learns bandpass filters
which are spatially selective, often learning several filters with nearly identical fre-
quency response, but with nulls steered toward different directions of arrival. The
output of this spectral filtering layer is passed to an acoustic model, such as a con-
volutional long short-term memory, deep neural network (CLDNN) acoustic model
[29]. All layers of the network are trained jointly.
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As described above, it is common for multichannel speech recognition systems
to perform spatial filtering independently from single channel feature extraction.
With this in mind, we next investigate explicitly factorizing these two operations to
be separate neural network layers. The first layer in this “factored” raw waveform
model consists of short-duration multichannel time convolution filters which map
multichannel inputs down to a single channel, with the idea that the network might
learn to perform broadband spatial filtering in this layer. By learning several filters
in this “spatial filtering layer”, we hypothesize that the network can learn filters for
multiple different spatial look directions. The single channel waveform output of
each spatial filter is passed to a longer-duration time convolution “spectral filtering
layer” intended to perform finer frequency resolution spectral decomposition anal-
ogous to a time-domain auditory filterbank as in [32]. The output of this spectral
filtering layer is also passed to an acoustic model.

One issue with the two architectures above is that once weights are learned during
training, they remain fixed for each test utterance. In contrast, some beamforming
techniques, such as the generalized sidelobe canceller [14], update weights adap-
tively within each utterance. We explore an adaptive neural net architecture, where
an LSTM is used to predict spatial filter coefficients that are updated at each frame.
These filters are used to filter and sum the multichannel input, replacing the “spatial
filtering layer” of the factored model described above, before passing the enhanced
single channel output to a waveform acoustic model.

Finally, since convolution between two time domain signals is equivalent to the
element-wise product of their frequency domain counterparts, we investigate speed-
ing up the raw waveform neural network architectures described above by consum-
ing the complex-valued fast Fourier transform of the raw input and implementing
filters in the frequency domain.

2 Experimental Details

2.1 Data

We conduct experiments on a dataset comprised of about 2,000 hours of noisy train-
ing data consisting of 3 million English utterances. This data set is created by artifi-
cially corrupting clean utterances using a room simulator to add varying degrees of
noise and reverberation. The clean utterances are anonymized and hand-transcribed
voice search queries, and are representative of Google’s voice search traffic. Noise
signals, which include music and ambient noise sampled from YouTube and record-
ings of “daily life” environments, are added to the clean utterances at SNRs ranging
from O to 20 dB, with an average of about 12 dB. Reverberation is simulated using
the image method [1] — room dimensions and microphone array positions are ran-
domly sampled from 100 possible room configurations with 7gos ranging from 400
to 900 ms, with an average of about 600 ms. The simulation uses an 8-channel uni-
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form linear microphone array, with inter-microphone spacing of 2 cm. Both noise
source location and target speaker locations change between utterances; the distance
between the sound source and the microphone array varies between 1 to 4 meters.

The primary evaluation set consists of a separate set of about 30,000 utterances
(over 20 hours), and is created by simulating similar SNR and reverberation settings
to the training set. Care was taken to ensure that the room configurations, SNR
values, Ty times, and target speaker and noise positions in the evaluation set differ
from those in the training set. The microphone array geometry between the training
and simulated test sets is identical.

We obtained a second “rerecorded” test set by playing the evaluation set and the
noises separately using a mouth simulator and a speaker, respectively, in a living
room setting. The signals are recorded using a 7-channel circular microphony array
with a radius of 3.75 cm. Assuming an x-axis that passes through two diagonally
opposite mics along the circumference of the array, the angle of arrival of the target
speaker ranges from O to 180 degrees. Noise originates from locations different
from the target speaker. The distance of the sources to the target ranges from 1
to 6 meters. To create noisy rerecorded eval sets, the rerecorded speech and noise
signals are mixed artificially after scaling noise to obtain SNRs ranging from 0 to
20 dB. The distribution of the SNR matches the distribution used to generate the
simulated evaluation set. We create 4 versions of the rerecorded sets to measure
generalization performance of our models. The first two have rerecorded speech
w/o any added noise. The mic array is placed at the center of the room and closer to
the wall, respectively, to capture reasonably different reverberation characteristics.
The remaning two subsets correspond to the noisy versions of these sets.

2.2 Baseline Acoustic Model

We compare the models proposed in this chapter to a baseline CLDNN acoustic
model trained using log-mel features [29] computed with a 25ms window and a
10ms hop. Single channel models are trained using signals from channel 1, C = 2
channel models use channels 1 and 8 (14 cm spacing), C = 4 channel models use
channels 1, 3, 6, and 8 (14 cm array span, with a microphone spacing of 4cm-6cm-
4cm).

The baseline CLDNN architecture is shown in the CLDNN module of Figure 1.
First, the fConv layer performs convolution across the frequency dimension of the
input log-mel time-frequency feature to gain some invariance to pitch and vocal tract
length. The architecture used for this convolutional layer is similar to that proposed
in [25]. Specifically, a single convolutional layer with 256 filters of size 1 x 8 in
time-frequency is used. Our pooling strategy is to use non-overlapping max pooling
along the frequency axis, with a pooling size of 3. The pooled output is given to a
256-dimensional linear low-rank layer.

The output of frequency convolution is passed to a stack of LSTM layers, which
model the signal across long time scales. We use 3 LSTM layers, each comprised
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of 832 cells, and a 512 unit projection layer for dimensionality reduction fol-
lowing [33]. Finally, we pass the final LSTM output to a single fully connected
DNN layer comprised of 1,024 hidden units. Due to the high dimensionality of the
13,522 context-dependent state output targets used by the language model, a 512-
dimensional linear output low rank projection layer is used prior to the softmax layer
to reduce the number of parameters in the overall model [26]. Some experiments in
the chapter do not use the frequency convolution layer, and we will refer to such
acoustic models as LDNNSs.

During training, the CLDNN is unrolled for 20 time steps and trained using trun-
cated backpropagation through time (BPTT). In addition, the output state label is
delayed by 5 frames, as we have observed that information about future frames
helps to better predict the current frame [29].

Unless otherwise indicated, all neural networks are trained using asynchronous
stochastic gradient descent (ASGD) optimization [9] to optimize a cross-entropy
(CE) criterion. Additional sequence training experiments also use distributed ASGD
[16]. All networks have 13,522 context-dependent (CD) output targets. The weights
for all CNN and DNN layers are initialized using the Glorot-Bengio strategy [13],
while those of all LSTM layers are randomly initialized using a uniform distribution
between -0.02 and 0.02. We use an exponentially decaying learning rate, initialized
to 0.004 and decaying by 0.1 over 15 billion frames.

3 Multichannel Raw Waveform Neural Network

3.1 Motivation

The proposed multichannel raw waveform CLDNN is related to filter-and-sum
beamforming, a generalization of delay-and-sum beamforming which filters the
signal from each microphone using a finite impulse response (FIR) filter before
summing them. Using similar notation to [34], filter-and-sum enhancement can be

written as follows:
C—IN-1

=Y Y helnlxcft—n—1] (1)
¢=0 n=0
where h.[n] is the nth tap of the filter associated with microphone ¢, x.[t], is the
signal received by microphone c at time ¢, 7. is the steering time difference of arrival
induced in the signal received by microphone ¢ used to align it to the other array
channels, and y[t] is the output signal. C is the number of microphones in the array
and N is the number of FIR filter taps.
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3.2 Multichannel filtering in the time domain

Enhancement algorithms implementing Equation 1 generally depend on an estimate
of the steering delay 7. obtained using a separate localization model, and they com-
pute filter parameters /. [n] by optimizing an objective such as MVDR. In contrast,
our aim is to allow the network to jointly estimate steering delays and filter parame-
ters by optimizing an acoustic modeling classification objective. The model captures
different steering delays using a bank of P multichannel filters. The output of filter
p €{0,...,P—1} can be written as follows:

C—1N-1 c-1
Y[t = Z Z he[n)x.[t —n] = Z Xc[t] % h? (2)
c=0 n=0 c=0

where the steering delays are implicitly absorbed into the filter parameters % [n]. In
this equation, ‘*’ denotes the convolution operation

The first layer in our raw waveform architecture implements Equation 2 as a
multichannel convolution (in time) with a FIR spatial filterbank . = {h},h2,...hl}
where h. € RV*P for ¢ € {0, ,C — 1}. Each filter hZ is convolved with the corre-
sponding input channel x,, and the overall output for filter p is computed by sum-
ming the result of this convolution across all channels ¢ € {0,---,C —1}. The op-
eration within each filter is equivalent to an FIR filter-and-sum beamformer, except
that it does not explicitly shift the signal in each channel by an estimated time dif-
ference of arrival. As we will show, the network learns the steering delay and filter
parameters implicitly.

The output signal remains at the same sampling rate as the input signal, which
contains more information than is typically relevant for acoustic modeling. In or-
der to produce an output that is invariant to perceptually and semantically identical
sounds appearing at different time shifts we pool the outputs in time after filter-
ing [18, 32], in an operation that has an effect similar to discarding the phase in the
short-time Fourier transform. Specifically, the output of the filterbank is max-pooled
across time to give a degree of short term shift invariance, and then passed through
a compressive non-linearity.

As shown in [18, 32], single channel time convolution layers similar to the one
described above implement a conventional time-domain filterbank. Such layers are
capable of implementing, for example, a standard gammatone filterbank, which con-
sists of a bank of time-domain filters followed by rectification and averaging over a
small window. Given sufficiently large P, the corresponding multichannel layer can
(and as we will show, does in fact) similarly implement a frequency decomposition
in addition to spatial filtering. We will therefore subsequently refer to the output of
this layer as a “time-frequency” feature representation.

A schematic of the multichannel time convolution layer is shown in the t Conv
block of Figure 1. First, we take a small window of the raw waveform of length M
samples for each channel C, denoted as {xo[t],xi[t],...,xc_1[t]} fort € 1,--- M.
The signal from each channel x, is convolved with a bank of P filters with N taps
he = {h!,h%,... hT}. When the convolution is strided by 1 in time across M sam-
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ples, the output from the convolution in each channel is y[t] € RM-N+DxP After
summing y.[f] across channels ¢, we max pool the filterbank output in time (thereby
discarding short term phase information), over the entire time length of the output
signal M — N + 1, to produce y[t] € R'*F. Finally, we apply a rectified non-linearity,
followed by a stabilized logarithm compression!, to produce z[/], a P dimensional
frame-level feature vector at frame /. We then shift the window around the waveform
by 10ms and repeat this time convolution, producing a sequence of feature frames
at 10ms intervals.

To match the time-scale of the log-mel features, the raw waveform features are
computed with an identical filter size of 25ms, or N = 400 at a sampling rate of
16kHz. The input window size is 35ms (M = 560) giving a 10ms fully overlapping
pooling window. Our experiments explore varying the number of time-convolutional
filters P.

output targets

CLDNN
i tConv i
w yilt] € i
i §W yelt] 3
i) e RV<P | | halt] € RYXP| oo ol € RV |
La[t] € RM zalt] € RM zolt] € RM

Fig. 1: Multichannel raw waveform CLDNN architecture.

! We use a small additive offset to truncate the output range and avoid numerical instability with
very small inputs: log(-+0.01).
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As shown in the CLDNN block of Figure 1, the output of the time convolutional
layer (tConv) produces a frame-level feature, denoted as z[I] € R'*P. This fea-
ture is then passed to a CLDNN model [29] described in Section 2, which predicts
context dependent state output targets.

3.3 Filterbank spatial diversity
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Fig. 2: Example filter coefficients and corresponding spatial response beampatterns
learned in a network with 128 t Conv filters trained on 2 channel inputs. Some filters
learned by this network have nearly-identical center frequencies but different spatial
responses. For example, the top two example filters both have center frequencies
of about 440Hz, but the first filter has a null at a direction of arrival of about 60
degrees, while the second has a null at about 120 degrees. The corresponding phase
difference between the two channels of each filter is visible in the time domain filter
coefficients plotted on the left.

Figure 2 plots example multichannel filter coefficients and their corresponding
spatial responses, or beampatterns, after training for tConv. The beampatterns
show the magnitude response in dB as a function of frequency and direction of
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arrival, i.e. each horizontal slice of the beampattern corresponds to the filter’s mag-
nitude response for a signal coming from a particular direction, and each vertical
slice corresponds to the filter’s response across all spatial directions in a particular
frequency band. Lighter shades indicate regions of the frequency-directions space
which are passed through the filter, while darker shades indicate regions which are
filtered out. Within a given beampattern, we refer to the frequency band containing
the maximum overall response as the filter’s center frequency (since the filters are
primarily bandpass in frequency), and the direction corresponding to the minimum
response in that frequency as the filter’s null direction.

The network tends to learn filter coefficients with very similar shapes in each
channel except they are slightly shifted relative to each other, consistent with the
notion of a steering delay 7. described in Section 3. Most filters have a bandpass
response in frequency, with bandwidths that increase with center frequency, and
many are steered to have stronger response for signals arriving from a particular
direction. Approximately two-thirds of the filters in the model shown in Figure 2
demonstrate a significant spatial response, i.e. show a difference of at least 6dB
between the direction with the minimum and maximum response at the filter center
frequency. Such strong spatial responses are clearly visible in the null near 120
degrees in the second filter, and a similar null near 60 degrees in the fourth filter
shown in Figure 2.

Filterbank center frequencies
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Fig. 3: Comparison of the peak response frequencies of waveform CLDNN filter-
banks trained on one- and two-channel inputs to the standard mel frequency scale.

Figure 3 plots the peak response frequencies of filterbanks from networks trained
on a one- and two-channel networks of the form shown in 2. The two networks con-
verge to similar frequency scales, both consistently allocating many more filters to
low frequencies compared to the mel scale. For example, the learned filterbanks
have roughly 80 filters with peak responses below 1000Hz, while a 128-band mel
scale has only 40 bands with center frequencies below 1000Hz. The network also
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learns subsets of filters with the same overall shape and frequency response but
tuned to have nulls in different directions, as illustrated by the top two example fil-
ters in Figure 2. Such diversity in spatial response gives upstream layers information
that can be used to discriminate between signals arriving from different directions.

Because each filter has a fixed directional response, the ability of the network to
exploit directional cues is constrained by the number of filters it uses. By increasing
the number of filters, we can potentially improve the spatial diversity of the learned
filters and therefore allow the network to better exploit directional cues. Table 1
demonstrates the effect of increasing the number of filters on overall word error
rate (WER). Improvements saturate at 128 filters for networks trained on 2 channel
inputs, while 4 and 8 channels networks continue to improve with 256 filters. With
additional input channels the t Conv filters are able to learn more complex spatial
responses (even though the total array span is unchanged), enabling the network to
make use of additional filterbank capacity to improve performance.

Filters 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

128 21.8 21.3 21.1
256 21.7 20.8 20.6
512 - 20.8 20.6

Table 1: WER for raw waveform multichannel CLDNNs with different number of
input channels. The inter-microphone spacing is given in parentheses.

3.4 Comparison to log-mel

We train baseline multichannel log-mel CLDNNs by computing log-mel features for
each channel, and treating these as separate feature maps into the CLDNN. Since
the raw waveform model improves as we increase the number of filters, we perform
the same experiment for log-mel. It should be noted that concatenating magnitude-
based features (i.e., log-mel) from different channels into a neural network has been
shown to give improvements over single channel [36, 22].

Table 2 shows that for log-mel, neither increasing the number of filters (fre-
quency bands) nor increasing the number of microphone channels has a strong effect
on word error rate. Since log-mel features are computed from the FFT magnitude,
the fine time structure (stored in the phase), and therefore information about inter-
microphone delays, is discarded. Log-mel models can therefore only make use of
the weaker inter-microphone level difference cues. However, the multichannel time-
domain filterbanks in the raw waveform models utilize the fine time structure and
show larger improvements as the number of filters increase.

Comparing Tables 1 and 2 we can see that raw waveform models consistently
outperform log-mel, particularly for larger number of channels where more spatial
diversity is possible.
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Filters 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

128 22.0 21.7 22.0
256 21.8 21.6 21.7

Table 2: WER for log-mel multichannel CLDNN .

3.5 Comparison to oracle knowledge of speech TDOA

Note that the models presented in the previous subsection do not explicitly estimate
the time difference of arrival of the target source arriving at different microphones,
which is commonly done in beamforming [2]. Time difference of arrival (TDOA)
estimation is useful because time aligning and combining signals steers the array
such that the target speech signal is enhanced relative to noise sources coming from
other directions.

In this section, we analyze the behavior of raw waveform CLDNNs when the sig-
nals are time aligned using the true TDOA calculated using the room geometry. For
the delay-and-sum (D+S) approach, we shift the signal in each channel by the cor-
responding TDOA, average them together, and pass the result into a 1-channel raw
waveform CLDNN. For the time-aligned multichannel (TAM) approach, we align
the signals in time and pass them as separate channel inputs to a multichannel raw
waveform CLDNN. Thus the difference between the multichannel raw waveform
CLDNN:Ss described in Section 2 and TAM is solely in how the data is presented to
the network (whether or not they are first explicitly aligned to “steer”” toward the
target speaker direction); the network architectures are identical.

Feature  Ich 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

oracle D+S 23.5 22.8 22.5 22.4
oracle TAM 23.5 21.7 21.3 21.3
raw, no tdoa 23.5 21.8 21.3 21.1

Table 3: WER with oracle knowledge of the true target TDOA. All models use 128
filters.

Table 3 compares the WER of D+S, TAM, and raw waveform models when we
do not shift the signals by the TDOA. First, notice that as we increase the num-
ber of channels, D+S continues to improve, since finer spatial sampling reduces the
sidelobes of the spatial response, leading to increased suppression of noise and re-
verberation energy arriving from other directions. Second, notice that TAM always
has better performance than D+S, as TAM is more general than D+S because it al-
lows individual channels to be filtered before being combined. But notice that the
raw waveform CLDNN, without any explicit time alignment or localization (TDOA
estimation), performs as well as TAM with the time alignment. This shows us that
the trained un-aligned network is implicitly robust to varying TDOA.
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3.6 Summary

Model WER - CE WER - Seq
raw, 1ch 235 19.3
D+S, 8ch, oracle 22.4 18.8
MVDR, 8ch, oracle 22.5 18.7
raw, unfactored, 2ch 21.8 18.2
raw, unfactored, 4ch 20.8 17.2
raw, unfactored, 8ch 20.6 17.2

Table 4: Raw waveform model WER after sequence training. All models use 128
filters.

To conclude this section, we show the results after sequence training in Table
4. We also include results for 8 channel oracle D+S, where the true target speech
TDOA is known, as well as oracle MVDR [39] where the true speech and noise
estimates are known in addition to the target TDOA. Table 4 shows that the raw
unfactored model, even using only 2 channel inputs and no oracle information, out-
performs the single channel and oracle signal processing methods. Using 4 channel
inputs, the raw-waveform unfactored model achieves between an 8-10% relative
improvement over single channel, D+S and MVDR.

4 Factoring Spatial and Spectral Selectivity

4.1 Architecture

In multichannel speech recognition systems, multichannel spatial filtering is often
performed separately from single channel feature extraction. However, in the unfac-
tored raw-waveform model, spatial and spectral filtering are done in one layer of
the network. In this section, we factor out spatial and spectral filtering into separate
layers, as shown in Figure 4.

The motivation for this architecture is to design the first layer to be spatially
selective, while implementing a frequency decomposition shared across all spatial
filters in the second layer. Thus the combined output of the second layer will be the
Cartesian product of all spatial and spectral filters.

The first layer, denoted by tConv1 in the figure, again models Equation 2 and
performs a multichannel time-convolution with a FIR spatial filterbank. The op-
eration of each filter p € {0,...,P — 1}, which we will refer to as a spatial look
direction in the factored model, can again be interpreted as a filter-and-sum beam-
former, except that any overall time shift is implicit in the filter coefficients rather
than being explicitly represented as in Equation 1. The main differences between
the unfactored and factored approaches are as follows. First, both the filter size N
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and number of filters P are much smaller in order to encourage the network to learn
filters with a broadband response in frequency that span a small number of spatial
look directions needed to cover all possible target speaker locations. The shorter fil-
ters in this layer will have worse frequency resolution than those in the unfactored
model, but that will be dealt with in the next layer. We hope that this poor frequency
resolution will encourage the network to use this first layer to focus on spatial filter-
ing, with a limited spectral response. To make the combination of the first two layers
of the factored model conceptually similar to the first layer of the unfactored model
(i.e., a bank of bandpassed beamformers), the multi-channel (first) filter layer is not
followed by any non-linear compression (i.e. ReLU, log), and we do not perform
any pooling between the first and second layers.

The second time-convolution layer, denoted by tConv2 in the figure, consists
of longer-duration single-channel filters. It therefore can learn a decomposition with
better frequency resolution than the first layer but is incapable of doing any spatial
filtering. Given the P feature maps from the first layer, we perform a time convo-
lution on each of these signals, very similar to the single-channel time-convolution
layer described in [32], except that the time convolution is shared across all P fea-
ture maps or “look directions”. We denote this layer’s filters as g € RE*F <1 where 1
indicates sharing across the P input feature maps. The “valid” convolution produces
an output w[t] € RM-L+D>FxP The output of the spectral convolution layer, for
each look direction p and each filter f, is given by Equation 3.

wfc[t] =y [t] x g 3)

Next, we pool the filterbank output in time thereby discarding short-time (i.e.
phase) information, over the entire time length of the output signal, to produce an
output of dimension 1 x F' x P. Finally, we apply a rectified non-linearity, followed
by a stabilized logarithm compression, to produce a frame-level feature vector at
frame /, i.e., z7 € RF*P which is then passed to a CLDNN model. We then shift
the window of the raw waveform by a small (10ms) hop and repeat this time convo-
lution to produce a set of time-frequency-direction frames at 10ms intervals.

4.2 Number of Spatial Filters

We first explore the behavior of the proposed factored multichannel architecture as
the number of spatial filters P varies. Table 5 shows that we get good improvements
up to 10 spatial filters. We did not explore above 10 filters due to the computational
complexities of passing 10 feature maps to the t Conv2 layer. The factored network,
with 10 spatial filters, achieves a WER of 20.4%, a 6% relative improvement over
the 2 channel unfactored multichannel raw-waveform CLDNN. It is important to
note that since the tConv2 layer is shared across all look directions P, the total
number of parameters is actually less than the unfactored model.
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Fig. 4: Factored multichannel raw waveform CLDNN architecture for P look direc-
tions. The figure shows two channels for simplicity.

# Spatial Filters P WER
baseline 2 ch, raw [31] 21.8

1 23.6
3 21.6
5 20.7
10 204

Table 5: WER when varying the size of the spatial filters in tConv1. All models
use 128 filters for t Conv2 and results are presented for 2 channels.

4.3 Filter Analysis

To better understand what the t Conv1 layer learns, Figure 5 plots two-channel filter
coefficients and the corresponding spatial responses, or beampatterns, after training.

Despite the intuition described in Section 4, the first layer filters appear to per-
form both spatial and spectral filtering. However, the beampatterns can nevertheless
be categorized into a few broad classes. For example, filters 2, 3, 5, 7, and 9 in Fig-
ure 5 only pass through some low frequency subbands below about 1.5 kHz, where
most vowel energy occurs, but steered to have nulls in different directions. Very
little spatial filtering is done in high-frequency regions, where many fricatives and
stops occur. The low frequencies are most useful for localization because they are
not subject to spatial aliasing and because they contain much of the energy in the
speech signal; perhaps that is why the network exhibits this structure.

To further understand the benefit of the spatial and spectral filtering in tConv1,
we enforce this layer to only perform spatial filtering by initializing the filters to
be an impulse centered at a delay of zero for channel 0, and offset from zero in
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Fig. 5: Trained filters and spatial responses for 10 spatial directions.

channel 1 by different delays for each filter. By not training this layer, this amounts
to performing delay-and-sum filtering across a set of fixed look directions. Table
6 compares performance when fixing vs. training the tConv1 layer. The results
demonstrate that learning the filter parameters, and therefore performing some spec-
tral decomposition, improves performance over keeping this layer fixed.

# Spatial Filters P tConv1 Layer WER

5 fixed 21.9
5 trained 20.9

Table 6: WER for training vs. fixing the t Conv1 layer, 2 channel.

4.4 Results Summary

To conclude this section, we show the results after sequence training, comparing the
factored and unfactored models. Notice that the 2 channel factored model provides
6% relative improvement over the unfactored model, while the 4 channel model
provides 5% relative improvement. We do not go above 4 channels, as results from
Table 4 in Section 3.6 show that there is no difference between 4 and 8§ channels.
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Method WER - CE WER - Seq
raw, unfactored, 2ch 21.8 18.2
raw, factored, 2ch 20.4 17.2
raw, unfactored, 4ch 20.8 17.2
raw, factored, 4ch 19.6 16.3

Table 7: Factored Model WER after sequence training, simulated

5 Adaptive Beamforming

While the unfactored model improves over the factored model, the model also suf-
fers from a few drawbacks. First, the learned filters in this model are fixed during
decoding, which potentially limits the ability to adapt to previously unseen or chang-
ing conditions. In addition, since the factored model must perform spectral filtering
for every look direction, this comes with a large computational complexity.

5.1 NAB Model

To address the limited adaptability and reduce the computational complexity of the
models from [31, 30], we propose a neural network adaptive beamforming (NAB)
model [21] which re-estimates a set of spatial filter coefficients at each input frame.
The NAB model is depicted in Figure 6. At each time frame /, it takes in a small win-
dow of M waveform samples for each channel ¢ from the C channel inputs, denoted
as xo(1)[t],x1 (D[t], -+ ,xc—1(1)[t] for t € {0,--- ,M — 1}. Additional to previous no-
tations, the frame index [ is explicitly used in this section to emphasize the frame
dependent filtering coefficients. For simplicity, the figure shows an NAB model with
C =2 channels. We will describe the different NAB modules in subsequent subsec-
tions.

5.1.1 Adaptive Filters

The adaptive filtering layer is given by Equation 4, where h.(I)[n] is the estimated
filter for channel ¢ at time frame /. This model is very similar to the FS model
from Equation 1, except now the steering delay 7. is implicitly absorbed into the
estimated filter parameters.

C—1N-1
YOI =), Y he(D)nlxe(D)[t —n] )

¢=0 n=0
In order to estimate h.(!)[t], we train a filter prediction (FP) module with one
shared LSTM layer, one layer of channel-dependent LSTMs and linear output pro-
jection layers to predict N filter coefficients for each channel. The input to the FP
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Fig. 6: Neural network adaptive beamforming (NAB) model architecture. It consists
of filter prediction (FP), filter-and-sum (FS) beamforming, acoustic modeling (AM)
and multi-task learning (MTL). The figure shows two channels for simplicity.

module is a concatenation of frames of raw input samples x.(/)[¢] from all the chan-
nels, and can also include features typically computed for localization such as cross
correlation features [20, 40, 41]. The estimation of F'P module parameters are jointly
done with AM parameters by directly minimizing a cross-entropy or sequence 1oss
function. Following Equation 4 the estimated filter coefficients h.(/)[r] are con-
volved with input samples x.(!)[¢] for each channel. The outputs of the convolution
are summed across channels to produce a single channel signal y(I)][t].

After adaptive FS, the single channel enhanced signal y(I)[t] is passed to an AM
module (Figure 6). We adopt the single channel raw waveform CLDNN model [32]
for acoustic modeling, except that we now skip the frequency convolution layer as
it has recently been shown in [27] to not help for noisier tasks. During training, the
AM and FP (Figure 6) are trained jointly.

5.1.2 Gated Feedback

Augmenting the network input at each frame with the prediction from the previous
frame has been shown to improve performance [3]. To investigate the benefit of



18 Authors Suppressed Due to Excessive Length

feedback in the NAB model, we pass the AM prediction at frame [ — 1 back to the
FP model at time frame / (red line in Figure 6). Since the softmax prediction is very
high dimensional, we feed back the low-rank activations preceding the softmax to
the FP module to limit the increase of model parameters [42].

This feedback connection gives the F'P module high level information about the
phonemic content of the signal to aid in estimating beamforming filter coefficients.
This feedback is comprised of model predictions which may contain errors, par-
ticularly early in training, and therefore might lead to poor model training [3]. A
gating mechanism [8] is hence introduced to the connection to modulate the degree
of feedback. Unlike conventional LSTM gates, which control each dimension inde-
pendently, we use a global scalar gate to moderate the feedback. The gate g™ (/) at
time frame /, is computed from the input waveform samples x(/), the state of the
first FP LSTM layer s(/ — 1), and the feedback vector v(I — 1), as follows:

FP()=cw! -x()+wl -s(I—1)+wl -v(I-1)) (5)

where w,, wy and w, are the corresponding weight vectors and ¢ is an elementwise
non-linearity. We use a logistic function for ¢ which outputs values in the range
[0,1], where 0 cuts off the feedback connection and 1 directly passes the feedback

through. The effective FP input is hence [x(l ), g(v(l—1)].

5.1.3 Regularization with MTL

Multi-task learning has been shown to yield improved robustness [30, 12, 7]. We
adopt an MTL module similar to [30] during training by configuring the network
to have two outputs, one recognition output which predicts CD states and a second
denoising output which reconstructs 128 log-mel features derived from the under-
lying clean signal. The denoising output is only used in training to regularize the
model parameters; the associated layers are discarded during inference. In the NAB
model the MTL module branches off of the first LSTM layer of the AM module, as
shown in Figure 6. The MTL module is composed of two fully connected DNN lay-
ers followed by a linear output layer which predicts clean features. During training
the gradients back propagated from the two outputs are weighted by ¢ and 1 — «
for the recognition and denoising outputs respectively.

5.2 NAB Filter Analysis

The best NAB model found in [21] has the following configurations:

1. the FP module has one shared 512-cell LSTM layer across channels, one layer
of channel-dependent 256-cell LSTMs and one layer of channel-dependent 25-
dimensional linear projection layer;
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Fig. 7: Visualizations of the predicted beamformer responses at different frequency
(Y-axis) across time (X-axis) at the target speech direction (3rd) and interfering
noise direction (4th) with the noisy (1st) and clean (2nd) speech spectrograms.

2. the FP module takes in the concatenation of raw waveform samples from each
channel,

. the FP module outputs a 1.5ms filter (25-dimensional vector) for each channel,

4. the AM module is a single channel raw waveform LDNN model [32] with 256
tConv filters and without the frequency convolution layer [27], which is also
similar to other multichannel models discussed in this chapter;

5. 128-dimensional clean log-mel features are used as the secondary reconstruction
objectives with a weight of 0.1 for MTL;

6. per-frame gated feedback connection from the bottleneck layer right before the
AM module’s softmax layer is appended to the FP module’s input.

(O8]

Figure 7 illustrates the frequency responses of the predicted beamforming filters
at the target speech and interfering noise directions. The SNR for this utterance is
12dB. The responses in the target speech direction have relatively more speech-
dependent variations than those in the noise direction. This may indicate that the
predicted filters are attending to the speech signal. Besides, the responses at high
speech-energy regions are generally lower than others, which suggests the automatic
gain control effect of the predicted filters.

5.3 Result Summary

Finally, to conclude this section, we show the results after sequence training com-
pared to the factored model. Since the NAB model is trained without frequency
convolution (i.e., LDNN), we do the same for the factored model. Table 8 shows
that while the factored model can potentially handle different directions by enu-
merating many look directions in the spatial filtering layer, the adaptive model can
achieve similar performance with much less computational complexity, as measured
by both the parameters and multiplies and additions (M+A) of the model, as shown
in the Table.
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WER (%) Param MultAdd
CE Seq. M) (M)

factored 20.4 17.1 18.9 35.1
NAB 20.517.2 240 288

Model

Table 8: Comparison between 2-channel factored and adaptive models.
6 Filtering in the Frequency Domain

Until now, we have presented three multichannel models in the time domain. How-
ever, it is well know that convolution between two time domain signals is equivalent
to the element-wise product of their frequency domain counterparts [4, 5]. A benefit
of operating in the complex FFT space is that element-wise products are much faster
to compute compared to convolutions, particularly when the convolution filters and
input size is large as in our multichannel raw waveform models. In this section, we
describe how we can implement both the factored Model from Section 4 and the
NAB Model from Section 5, in the frequency domain.

6.1 Factored Model

In this section, we describe the factored model in the frequency domain.

6.1.1 Spatial Filtering

For frame index [ and channel ¢, we denote X.[I] € CK as the result of an M-point
Fast Fourier Transform (FFT) of x.[t] and HY € CX as the FFT of h%. Note that we
ignore negative frequencies because the time domain inputs are real, and thus our
frequency domain representation of an M-point FFT contains only K = M /2 + 1
unique complex-valued frequency bands. The spatial convolution layer in Equa-
tion 2 can be represented by Equation 6 in the frequency domain, where - denotes
element-wise product. We denote the output of this layer as Y”[I] € CX for each
look direction p:

YP[ =Y X [l]-HY (6)

There are many different algorithms for implementing the “spectral filtering”
layer in the frequency domain, some of which are presented here [28]. Just to give
readers a high level overview of “spectral filtering”, in this chapter we choose to
describe only the Complex Linear Projection [38] method.
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6.1.2 Spectral Filtering: Complex Linear Projection

It is straightforward to rewrite the convolution in Equation 3 as an element-wise
product in frequency, for each filter f and look direction p:

W =YP[l]- Gy ©)

In the above equation, W;’ 1] € CX and G/ € CK is the FFT of the time domain
filter g in Equation 3. There is no frequency domain equivalent to the max-pooling
operation in the time domain. Therefore to mimic max-pooling exactly requires
taking the inverse FFT of Wf’.’ [/] and performing the pooling operation in the time
domain, which is computationally expensive to do for each look direction p and
filter output f.

As an alternative [38] recently proposed the Complex Linear Projection (CLP)
model which performs average pooling in the frequency domain and results in sim-
ilar performance to a single channel raw waveform model. Similar to the wave-
form model the pooling operation is followed by a point-wise absolute-value non-
linearity and log compression. The 1-dimensional output for look direction p and
filter f is given by:

Z;[l] =log (8)

N
Y WPlLK
k=1

6.2 NAB Model

In the frequency-domain NAB setup, we have an LSTM which predicts complex
FFT (CFFT) inputs for both channels. Given a 512-point FFT input, this amounts
to predicting 4 x 257 frequency points for real and imaginary components for 2
channels, which is much more than the predicted filter size in the time domain (i.e.,
1.5ms = 25 taps). After the complex filters are predicted for each channel, element-
wise product is done with the FFT of the input for each channel, mimicking the
convolution in Equation 4 in the frequency domain. The output of this is given to a
single channel LDNN in the frequency domain, which does spectral decomposition
using the CLP method, and then acoustic modeling.

6.3 Results: Factored Model

6.3.1 Performance

First, we explore the performance of the frequency domain factored model. Note
this model does not have any frequency convolution layer. We explore this for a
similar setting to most efficient raw-waveform factored setup [28], namely P =5
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look directions in the spatial layer and F = 128 filters in the spectral layer. The input
is 32ms instead of 35ms like raw-waveform, as this allows us to take a D = 512-point
FFT without zero-padding at a sampling rate of 16kHz. A 35-ms input would have
required us to take a 1024-point FFT, and we have not found any big difference in
performance between 32 and 35ms inputs for raw-waveform.

Table 9 shows the performance of the time and frequency domain factored mod-
els, as well as the total number of multiplication and addition operations (M+A) for
different layers of the model. The table shows that the CLP factored model reduces
the number of operations by a factor of 1.9x over the best waveform model, with a
small degradation in WER.

Model Spatial Spectral Total WER WER
M+A M+A M+A CE ST

time 525.6K 15.71M 35.IM 204 17.1
CLP 10.3K 655.4K 19.6M 20.5 17.2

Table 9: Frequency Domain Factored Model Performance

However, given that the frequency models are more computationally efficient,
we explore improving WER by increasing the window size (and therefore com-
putational complexity) of the factored models. Specifically, since longer windows
typically help with localization [39], we explore using 64ms input windows for both
models. With a 64ms input, the frequency models require a 1024-point FFT. Table
10 shows that the frequency models improve the WER over using a smaller 32ms
input, and still perform roughly the same. However, the frequency model now has
an even larger computational complexity savings of 2.7x savings compared to the
time domain model.

Feat Spatial Spectral Total WER
M+A M+A M+A ST

time 906.1K 33.81M 53.6M 17.1
CLP 20.5K 1.3M 20.2M 17.1

Table 10: Results with a 64ms Window Size

6.3.2 Comparison between learning in time vs. frequency

Figure 8a shows the spatial responses (i.e., beampatterns) for both the time and fre-
quency domain spatial layers. The beampatterns show the magnitude response in
dB as a function of frequency and direction of arrival, i.e. each horizontal slice of
the beampattern corresponds to the filter’s magnitude response for a signal coming
from a particular direction. In each frequency band (vertical slice), lighter shades in-
dicate that sounds from those directions are passed through, while darker shades in-
dicate directions whose energy is attenuated. The figures show that the spatial filters
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learned in the time domain are band-limited, unlike those learned in the frequency
domain. Furthermore, the peaks and nulls are aligned well across frequencies for
the time domain filters.
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(a) Factored model, time (b) Factored mode, frequency
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The differences between these models can further be seen in the magnitude re-
sponses of the spectral layer filters, as well as in the outputs of the spectral layers
from different look directions plotted for an example signal. Figure 8b illustrates
that the magnitude responses in both time and CLP models look qualitatively sim-
ilar, and learn bandpass filters with increasing center frequency. However, because
the spatial layers in time and frequency are quite different, we see that the spectral
layer outputs in time are much more diverse in different spatial directions compared
to the CLP model.

At some level, time-domain and frequency-domain representations are inter-
changeable, but they result in networks that are parameterized very differently. Even
though the time and frequency models all learn different spatial filters, they all seem
to have similar WERs. There are roughly 18M parameters in the LDNN model that
sits above the spatial/spectral layers, which accounts for over 90% of the parameters
in the model. Any differences between the spatial layers in time and frequency are
likely accounted for in the LDNN part of the network.

6.4 Results: Adaptive Model

Next, we explore the performance of the frequency domain NAB model. Table 11
shows the WER and computational complexity of the raw-waveform and CLP NAB
models. While using CLP features greatly reduces computational complexity, the
performance is worse than the raw-waveform model. One hypothesis we have is
that frequency domain processing requires predicting a higher dimensional filter,
which we can see from the table leads to a degradation in performance.
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Model WER (%) Param (M) MultAdd (M)

raw 20.5 24.6 35.3
CLP 21.0 24.7 25.1

Table 11: Comparison between time and frequency NAB models.

7 Final Comparison, Re-recorded Data

Finally, we also evaluated the performance of different multichannel models pre-
sented in this chapter on a real “Rerecorded” test set. Reverberation-I is when the
microphone is placed on a coffee table, whereas Reverberation-II is when the mic
is placed on a TV stand. Since this set contains a circular microphone geometry but
our models are trained on a linear microphone geometry, we only report results with
2 channels to form a linear array with a 7.5cm spacing. The models however are
trained with a 14cm spacing.

Table 12 shows the results with different multichannel models. All raw-waveform
models are trained with 35-ms inputs and 128 spectral decomposition filters. The
factored model has 5 look directions. The CLP factored model is trained with a 64-
ms input, 5 look directions, and 256 spectral decomposition filters. All frontends
use an LDNN architecture in the upper layers of the network.

Notice that the 2 channel raw factored model gives a 13% relative improvement
over single channel, with larger improvements in noisier test sets, which is to be
expected. In addition, the CLP factored model performs slightly worse than the
raw factored model on this test set. One hypothesis is that the CLP factored model
captures much less spatial diversity than the raw waveform model, as shown in
Figures 8a and 8b. Finally, the NAB model performs much worse than the factored
model. Perhaps because the NAB model learns a set of adaptive filters, it is more
sensitive to mismatches between training and test conditions compared to the other
models.

Model Rev.-I Rev.-II Rev.-I Rev.-11| Ave
Noisy Noisy
1 channel raw 186 185 27.8 26.7 |22.9

2 channel raw, unfactored 17.9 17.6 259 247 (215
2 channel raw, factored 17.1 169 246 24.2 (20.7
2 channel CLP, factored 17.4 17.1 25.7 244 |21.2

2 channel raw, NAB 17.8 18.1 27.1 26.1 |22.3

Table 12: WER on “Rerecorded” set
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8 Conclusions and Future Work

In this chapter, we introduced a methodology to do multichannel enhancement and
acoustic modeling jointly within a neural network framework. First, we developed
a unfactored raw-waveform multichannel model, and showed that this model per-
formed as well as a model given oracle knowledge of the true location. Next, we in-
troduced a factored multichannel model to separate out spatial and spectral filtering
operations, and found that this offered an improvement over the unfactored model.
Next, we introduced an adaptive beamforming method, which we found to match
the performance of the multichannel model with far fewer computations. Finally, we
showed that we can match the performance of the raw-waveform factored model,
with far fewer computations, with a frequency-domain factored model. Overall, the
factored model provides between a 5-13% relative improvement over single chan-
nel and traditional signal processing techniques, on both simulated and rerecorded
sets.
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