
1

Multichannel Signal Processing with Deep Neural
Networks for Automatic Speech Recognition

Tara N. Sainath, Senior Member, IEEE, Ron J. Weiss, Member, IEEE,
Kevin W. Wilson, Member, IEEE, Bo Li, Member, IEEE, Arun Narayanan, Member, IEEE, Ehsan
Variani Member, IEEE, Michiel Bacchiani, Member, IEEE, Izhak Shafran Member, IEEE, Andrew

Senior Member, IEEE, Kean Chin Member, IEEE, Ananya Misra Member, IEEE, Chanwoo Kim Member, IEEE

Abstract—Multichannel ASR systems commonly separate
speech enhancement, including localization, beamforming and
postfiltering, from acoustic modeling. In this paper, we perform
multichannel enhancement jointly with acoustic modeling in
a deep neural network framework. Inspired by beamforming,
which leverages differences in the fine time structure of the
signal at different microphones to filter energy arriving from
different directions, we explore modeling the raw time-domain
waveform directly. We introduce a neural network architecture
which performs multichannel filtering in the first layer of the
network and show that this network learns to be robust to varying
target speaker direction of arrival, performing as well as a model
that is given oracle knowledge of the true target speaker direction.
Next, we show how performance can be improved by factoring the
first layer to separate the multichannel spatial filtering operation
from a single channel filterbank which computes a frequency
decomposition. We also introduce an adaptive variant, which
updates the spatial filter coefficients at each time frame based on
the previous inputs. Finally we demonstrate that these approaches
can be implemented more efficiently in the frequency domain.
Overall, we find that such multichannel neural networks give a
relative word error rate improvement of more than 5% compared
to a traditional beamforming-based multichannel ASR system
and more than 10% compared to a single channel waveform
model.

Index Terms—Beamforming, Deep Learning, Noise-robust
speech recognition

I. INTRODUCTION

While state-of-the-art automatic speech recognition (ASR)
systems perform reasonably well in close-talking microphone
conditions, performance degrades in conditions when the
microphone is far from the user. In such farfield cases, the
speech signal is degraded by reverberation and additive noise.
To improve recognition in such cases, ASR systems often
use signals from multiple microphones to enhance the speech
signal and reduce the impact of reverberation and noise [1],
[2], [3].

Multichannel ASR systems often use separate modules to
perform recognition. First, microphone array speech enhance-
ment is applied, typically broken into localization, beam-
forming and postfiltering stages. The resulting single channel
enhanced signal is passed to an conventional acoustic model
[4], [5]. A commonly used enhancement technique is filter-
and-sum beamforming [2], which begins by aligning signals
from different microphones in time (via localization) to adjust
for the propagation delay from the target speaker to each
microphone. The time-aligned signals are then passed through

a filter (different for each microphone) and summed to en-
hance the signal from the target direction and to attenuate
noise coming from other directions. Commonly used filter
design criteria are based on Minimum Variance Distortionless
Response (MVDR) [3], [6] or multichannel Wiener filtering
(MWF) [1].

When the end goal is to improve ASR performance, tun-
ing the enhancement model independently from the acoustic
model might not be optimal. In an early effort to address
this issue [7] proposed a likelihood-maximizing beamform-
ing (LIMABEAM) which optimizes beamformer parameters
jointly with those of the acoustic model. This technique was
shown to outperform conventional techniques such as delay-
and-sum beamforming (i.e. filter-and-sum where the filters
consist of impulses). Like most enhancement techniques,
LIMABEAM is a model-based scheme and requires an itera-
tive algorithm that alternates between acoustic model inference
and enhancement model parameter optimization. Contempo-
rary acoustic models are generally based on neural networks,
optimized using a gradient learning algorithm. Combining
model-based enhancement with an acoustic model that uses
gradient learning can lead to considerable complexity, e.g. [8].

In this paper we extend the idea of performing beamforming
jointly with acoustic modeling from [7], but do this within
the context of a deep neural network (DNN) framework
by training an acoustic model directly on the raw signal.
DNNs are attractive because they have been shown to be able
to perform feature extraction jointly with classification [9].
Previous work has demonstrated the possibility of training
deep networks directly on raw, single channel, time domain
waveform samples [10], [11], [12], [13], [14], [15]. The goal
of this paper is to explore a variety of different joint en-
hancement/acoustic modeling DNN architectures that operate
on multichannel signals. We will show that jointly optimizing
both stages is more effective than techniques which cascade
independently tuned enhancement algorithms with acoustic
models.

Since beamforming takes advantage of the fine time struc-
ture of the signal at different microphones, we begin by mod-
eling the raw time-domain waveform directly. In this model,
introduced in [14], [16], the first layer consists of multiple
time convolution filters, which map the multiple microphone
signals down to a single time-frequency representation. As we
will show, this layer learns bandpass filters which are spatially
selective, often learning several filters with nearly identical

2

frequency response, but with nulls steered toward different
directions of arrival. The output of this spectral filtering layer
is passed to an acoustic model, such as a convolutional long
short-term memory, deep neural network (CLDNN) acoustic
model [17]. All layers of the network are trained jointly.

As described above, it is common for multichannel speech
recognition systems to perform spatial filtering independently
from single channel feature extraction. With this in mind,
we next investigate explicitly factorizing these two operations
to be separate neural network layers. The first layer in this
“factored” raw waveform model consists of short-duration
multichannel time convolution filters which map multichannel
inputs down to a single channel, with the idea that the network
might learn to perform broadband spatial filtering in this layer.
By learning several filters in this “spatial filtering layer”, we
hypothesize that the network can learn filters for multiple
different spatial look directions. The single channel waveform
output of each spatial filter is passed to a longer-duration time
convolution “spectral filtering layer” intended to perform finer
frequency resolution spectral decomposition analogous to a
time-domain auditory filterbank as in [15]. The output of this
spectral filtering layer is also passed to an acoustic model, and
all layers of the network are trained jointly.

One issue with the two architectures above is that once
weights are learned during training, they remain fixed for
each test utterance. In contrast, some beamforming techniques,
such as the generalized sidelobe canceller [18], update weights
adaptively within each utterance. We explore an adaptive
neural net architecture, where an LSTM is used to predict
spatial filter coefficients that are updated at each frame. These
filters are used to filter and sum the multichannel input,
replacing the “spatial filtering layer” of the factored model
described above, before passing the enhanced single channel
output to a waveform acoustic model.

Finally, since convolution between two time domain signals
is equivalent to the element-wise product of their frequency
domain counterparts, we investigate speeding up the raw
waveform neural network architectures described above by
consuming the complex-valued fast Fourier transform of the
raw input and implementing filters in the frequency domain.

II. EXPERIMENTAL SETUP

A. Data

We conduct experiments on a dataset comprised of about
2,000 hours of noisy training data consisting of 3 million
English utterances. This data set is created by artificially
corrupting clean utterances using a room simulator to add
varying degrees of noise and reverberation. The clean ut-
terances are anonymized and hand-transcribed voice search
queries, and are representative of Google’s voice search traffic.
Noise signals, which include music and ambient noise sampled
from YouTube and recordings of “daily life” environments,
are added to the clean utterances at SNRs ranging from 0
to 20 dB, with an average of about 12 dB. Reverberation is
simulated using the image method [19] – room dimensions
and microphone array positions are randomly sampled from
100 possible room configurations with T60s ranging from 400

to 900 ms, with an average of about 600 ms. The simulation
uses an 8-channel uniform linear microphone array, with inter-
microphone spacing of 2 cm. Both noise source location
and target speaker locations change between utterances; the
distance between the sound source and the microphone array
varies between 1 to 4 meters.

The primary evaluation set consists of a separate set of about
30,000 utterances (over 20 hours), and is created by simulating
similar SNR and reverberation settings to the training set.
Care was taken to ensure that the room configurations, SNR
values, T60 times, and target speaker and noise positions
in the evaluation set differ from those in the training set.
The microphone array geometry between the training and
simulated test sets is identical. Most of the results we report
will be on this test set.

We obtained a second “rerecorded” test set by playing
the evaluation set and the noises separately using a mouth
simulator and a speaker, respectively, in a living room set-
ting. The signals are recorded using a 7-channel circular
microphony array with a radius of 3.75 cm. Assuming an x-
axis that passes through two diagonally opposite mics along
the circumference of the array, the angle of arrival of the target
speaker ranges from 0 to 180 degrees. Noise originates from
locations different from the target speaker. The distance of
the sources to the target ranges from 1 to 6 meters. To create
noisy rerecorded eval sets, the rerecorded speech and noise
signals are mixed artificially after scaling noise to obtain SNRs
ranging from 0 to 20 dB. The distribution of the SNR matches
the distribution used to generate the simulated evaluation set.
The average T60 for this set is around 200ms. We create
4 versions of the rerecorded sets to measure generalization
performance of our models. The first two have rerecorded
speech w/o any added noise. The mic array is placed at the
center of the room and closer to the wall, respectively, to
capture reasonably different reverberation characteristics. The
remaning two subsets correspond to the noisy versions of these
sets.

B. Baseline Acoustic Model

We compare the models proposed in this paper to a baseline
CLDNN acoustic model trained using log-mel features [17]
computed with a 25ms window and a 10ms hop. Single
channel models are trained using signals from channel 1,
C = 2 channel models use channels 1 and 8 (14 cm spacing),
C = 4 channel models use channels 1, 3, 6, and 8 (14 cm array
span, with adjacent microphone spacing of 4cm-6cm-4cm).

The baseline CLDNN architecture is shown in the CLDNN
module of Figure 1. First, the fConv layer performs convolu-
tion across the frequency dimension of the input log-mel time-
frequency feature to gain some invariance to pitch and vocal
tract length. The architecture used for this convolutional layer
is similar to that proposed in [20]. Specifically, a single con-
volutional layer with 256 filters of size 1×8 in time-frequency
is used. Our pooling strategy is to use non-overlapping max
pooling along the frequency axis, with a pooling size of 3. The
pooled output is given to a 256-dimensional linear low-rank
layer.

3

The output of frequency convolution is passed to a stack
of LSTM layers, which model the signal across long time
scales. We use 3 LSTM layers, each comprised of 832 cells,
and a 512 unit projection layer for dimensionality reduction
following [21]. Finally, we pass the final LSTM output to a
single fully connected DNN layer comprised of 1,024 hidden
units. Due to the high dimensionality of the 13,522 context-
dependent state output targets used by the language model,
a 512-dimensional linear output low rank projection layer
is used prior to the softmax layer to reduce the number of
parameters in the overall model [22]. Some experiments in
the paper do not use the frequency convolution layer, and we
will refer to such acoustic models as LDNNs. It is important
to note that all methods presented in this paper use an LSTM-
type architecture, which has been shown to work much better
with larger amounts of data [15] and is much more well-suited
for our task.

During training, the CLDNN is unrolled for 20 time steps
and trained using truncated backpropagation through time
(BPTT). In addition, the output state label is delayed by 5
frames, as we have observed that information about future
frames helps to better predict the current frame [17].

All neural networks are trained using asynchronous stochas-
tic gradient descent (ASGD) optimization [23] to optimize a
cross-entropy (CE) criterion. Unless otherwise indicated, all
word error rate (WER) numbers in this paper are presented
with the CE criterion. Additional sequence training experi-
ments also use distributed ASGD [24]. All networks have
13,522 context-dependent (CD) output targets. The weights
for all CNN and DNN layers are initialized using the Glorot-
Bengio strategy [25], while those of all LSTM layers are
randomly initialized using a uniform distribution between -
0.02 and 0.02. We use an exponentially decaying learning rate,
initialized to 0.004 and decaying by 0.1 over 15 billion frames.

III. MULTICHANNEL RAW WAVEFORM NEURAL NETWORK

A. Motivation

The proposed multichannel raw waveform CLDNN is re-
lated to filter-and-sum beamforming, a generalization of delay-
and-sum beamforming which filters the signal from each
microphone using a finite impulse response (FIR) filter before
summing them. Using similar notation to [7], filter-and-sum
enhancement can be written as follows:

y[t] =

C−1∑
c=0

N−1∑
n=0

hc[n]xc[t− n− τc] (1)

where hc[n] is the nth tap of the filter associated with
microphone c, xc[t], is the signal received by microphone c
at time t, τc is the steering time difference of arrival induced
in the signal received by microphone c used to align it to the
other array channels, and y[t] is the output signal. C is the
number of microphones in the array and N is the number of
FIR filter taps.

B. Multichannel filtering in the time domain

Enhancement algorithms implementing Equation 1 gener-
ally depend on an estimate of the steering delay τc obtained

using a separate localization model, and they compute filter
parameters hc[n] by optimizing an objective such as MVDR.
In contrast, our aim is to allow the network to jointly estimate
steering delays and filter parameters by optimizing an acoustic
modeling classification objective. The model captures different
steering delays using a bank of P multichannel filters. The
output of filter p ∈ {0, . . . , P − 1} can be written as follows:

yp[t] =

C−1∑
c=0

N−1∑
n=0

hpc [n]xc[t− n] =
C−1∑
c=0

xc[t] ∗ hpc (2)

where the steering delays are implicitly absorbed into the filter
parameters hpc [n]. In this equation, ‘*’ denotes the convolution
operation.

The first layer in our raw waveform architecture [26]
implements Equation 2 as a multichannel convolution (in
time) with a FIR spatial filterbank hc = {h1c , h2c , . . . hPc }
where hc ∈ <N×P for c ∈ 0, · · · , C − 1. Each filter hpc is
convolved with the corresponding input channel xc, and the
overall output for filter p is computed by summing the result
of this convolution across all channels c ∈ {0, · · · , C − 1}.
The operation within each filter is equivalent to an FIR filter-
and-sum beamformer, except that it does not explicitly shift
the signal in each channel by an estimated time difference
of arrival. As we will show, the network learns parameters
for a fixed set of filters that give good speech recognition
performance.

The output signal remains at the same sampling rate as
the input signal, which contains more information than is
typically relevant for acoustic modeling. In order to produce
an output that is invariant to perceptually and semantically
identical sounds appearing at different time shifts we pool the
outputs in time after filtering [14], [15], in an operation that
has an effect similar to discarding the phase in the short-time
Fourier transform. Specifically, the output of the filterbank
is max-pooled across time to give a degree of short term
shift invariance, and then passed through a compressive non-
linearity.

As shown in [14], [15], single channel time convolution
layers similar to the one described above implement a con-
ventional time-domain filterbank. Such layers are capable of
implementing, for example, a standard gammatone filterbank,
which consists of a bank of time-domain filters followed
by rectification and averaging over a small window. Given
sufficiently large P , the corresponding multichannel layer can
(and as we will show, does in fact) similarly implement a
frequency decomposition in addition to spatial filtering. We
will therefore subsequently refer to the output of this layer as
a “time-frequency” feature representation.

A schematic of the multichannel time convolution layer
is shown in the tConv block of Figure 1. First, we take a
small window of the raw waveform of length M samples
for each channel C, denoted as {x0[t], x1[t], . . . , xC−1[t]}
for t ∈ 1, · · · ,M . The signal from each channel xc is
convolved with a bank of P filters with N taps hc[n] =
{h1c [n], h2c [n], . . . , hPc [n]}. When the convolution is strided by
1 in time across M samples, the output from the convolution
in each channel is yc[t] ∈ <(M−N+1)×P . After summing

4

yc[t] across channels c, we max pool the filterbank output
in time (thereby discarding short term phase information),
over the entire time length of the output signal M − N + 1,
to produce y[t] ∈ <1×P . Finally, we apply a rectified non-
linearity, followed by a stabilized logarithm compression1, to
produce z[l], a P dimensional frame-level feature vector at
frame l. We then shift the window around the waveform by
10ms and repeat this time convolution, producing a sequence
of feature frames at 10ms intervals.

To match the time-scale of the log-mel features, the raw
waveform features are computed with an identical filter size
of 25ms, or N = 400 at a sampling rate of 16kHz. The
input window size is 35ms (M = 560) giving a 10ms fully
overlapping pooling window. Our experiments explore varying
the number of time-convolutional filters P .

Fig. 1: Multichannel raw waveform CLDNN architecture.

As shown in the CLDNN block of Figure 1, the output of
the time convolutional layer (tConv) produces a frame-level
feature, denoted as z[l] ∈ <1×P . This feature is then passed to
a CLDNN model [17] described in Section II, which predicts
context dependent state output targets.

C. Filterbank spatial diversity

Figure 2 plots example multichannel filter coefficients and
their corresponding spatial responses, or beampatterns, after
training for tConv. The beampatterns show the magnitude

1We use a small additive offset to truncate the output range and avoid
numerical instability with very small inputs: log(·+ 0.01).

0.2

0.0

0.2

Filter coefficients

Chan 0 Chan 1
0

60

120

180

D
O

A
 (

d
e
g
)

Beampattern

0.5

0.0

0

60

120

180

D
O

A
 (

d
e
g
)

0.2

0.0

0.2

0

60

120

180

D
O

A
 (

d
e
g
)

0.2

0.0

0.2

0

60

120

180

D
O

A
 (

d
e
g
)

0.5

0.0

0.5

0

60

120

180

D
O

A
 (

d
e
g
)

1

0

1

0

60

120

180

D
O

A
 (

d
e
g
)

0.5

0.0

0.5

0

60

120

180

D
O

A
 (

d
e
g
)

1

0

1

0

60

120

180

D
O

A
 (

d
e
g
)

0 5 10 15 20 25

Time (milliseconds)

1

0

1

2

0 1 2 3 4 5 6 7 8

Frequency (kHz)

0

60

120

180

D
O

A
 (

d
e
g
) 0

3

6

9

12

15

18

21

24

27

30

Fig. 2: Example filter coefficients and corresponding spatial
response beampatterns learned in a network with 128 tConv
filters trained on 2 channel inputs. Some filters learned by this
network have nearly-identical center frequencies but different
spatial responses. For example, the top two example filters
both have center frequencies of about 440Hz, but the first filter
has a null at a direction of arrival of about 60 degrees, while
the second has a null at about 120 degrees. The corresponding
phase difference between the two channels of each filter is
visible in the time domain filter coefficients plotted on the
left.

response in dB as a function of frequency and direction of ar-
rival, i.e. each horizontal slice of the beampattern corresponds
to the filter’s magnitude response for a signal coming from a
particular direction, and each vertical slice corresponds to the
filter’s response across all spatial directions in a particular fre-
quency band. Lighter shades indicate regions of the frequency-
directions space which are passed through the filter, while
darker shades indicate regions which are filtered out. Within a
given beampattern, we refer to the frequency band containing
the maximum overall response as the filter’s center frequency
(since the filters are primarily bandpass in frequency), and
the direction corresponding to the minimum response in that

5

frequency as the filter’s null direction.
The network tends to learn filter coefficients with very

similar shapes in each channel except they are slightly shifted
relative to each other, consistent with the notion of a steering
delay τc described in Section III. Most filters have a bandpass
response in frequency, with bandwidths that increase with
center frequency, and many are steered to have stronger
response for signals arriving from a particular direction. Ap-
proximately two-thirds of the filters in the model shown in
Figure 2 demonstrate a significant spatial response, i.e. show
a difference of at least 6dB between the direction with the
minimum and maximum response at the filter center frequency.
Such strong spatial responses are clearly visible in the null
near 120 degrees in the second filter, and a similar null near
60 degrees in the fourth filter shown in Figure 2.

0 20 40 60 80 100 120

Filter index

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
e
q
u
e
n
cy

 (
H

z)

Filterbank center frequencies

mel

2ch

1ch

Fig. 3: Comparison of the peak response frequencies of wave-
form CLDNN filterbanks trained on one- and two-channel
inputs to the standard mel frequency scale.

Figure 3 plots the peak response frequencies of filterbanks
from networks trained on a one- and two-channel networks
of the form shown in 2. The two networks converge to
similar frequency scales, both consistently allocating many
more filters to low frequencies compared to the mel scale.
For example, the learned filterbanks have roughly 80 filters
with peak responses below 1000Hz, while a 128-band mel
scale has only 40 bands with center frequencies below 1000Hz.
The network furthermore tends to learn subsets of filters with
the same overall shape and frequency response but tuned to
have nulls in different directions, as illustrated by the top
two example filters in Figure 2. Such diversity in spatial
response gives upstream layers information that can be used to
discriminate between signals arriving from different directions.

The ability of the network to exploit directional cues is
constrained by the number of filters it uses. By increasing
the number of filters, we can potentially improve the spatial
diversity of the learned filters and therefore allow the network
to better exploit directional cues.

To see how the distribution of null directions learned by the
filters corresponds to the direction of arrival (DOA) of noise,
Figure 4 plots the distribution of noise DOA for the training

and test sets. Notice there is a strong correlation between the
noise DOA distrubtion and the learned filter null directions
in Figure 5, illustrating that the learned filters are learning to
filter out noise.

Fig. 4: Distribution of the Direction of Arrival of Noise in
Training and Test Set.

0 30 60 90 120 150 180

Null direction (degrees)

0

5

10

15

20

25

N
u
m

 f
ilt

e
rs

Fig. 5: Histogram of null directions of spatial filters from a 2
channel model with 128 filters. “Null direction” is computed
as the direction of minimum response for filters where the
minimum response is at least 6dB below the maximum. (Filters
for which minimum and maximum directional responses differ
by less than 6dB are not included in the plot.)

Table I demonstrates the effect of increasing the number
of filters on overall word error rate (WER). Improvements
saturate at 128 filters for networks trained on 2 channel inputs,
while 4 and 8 channels networks continue to improve with 256
filters. With additional input channels the tConv filters are
able to learn more complex spatial responses (even though the
total array span is unchanged), enabling the network to make
use of additional filterbank capacity to improve performance.

Filters 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

128 21.8 21.3 21.1
256 21.7 20.8 20.6
512 - 20.8 20.6

TABLE I: WER for raw waveform multichannel CLDNNs
with different number of input channels. The inter-microphone
spacing is given in parentheses.

Multi-microphone signal processing can help to enhance
the signal and suppress noise. Therefore, we should expect
to see improvements in WER as the number of microphones
increases, especially under more challenging conditions. A
breakdown of WER in Figure 6 shows that this is indeed the

6

case – the performance improvement of the 8 channel system
over the 1 and 2 channel systems is largest in low SNR and
high reverberation time. Notice also that there is very little
difference in performance going from 4 to 8 channels.

0 2 4 6 8 10 12 14 16 18 20

20

25

30

35

SNR

W
E

R

0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

22

24

W
E

R

Reverb Time (s)

1 1.5 2 2.5 3 3.5 4

20

22

24

Target To Mic Distance (m)

W
E

R

raw1ch

raw2ch

raw4ch

raw8ch

Fig. 6: WER breakdown for multichannel models.

D. Comparison to log-mel

We train baseline multichannel log-mel CLDNNs by com-
puting log-mel features for each channel, and treating these
as separate feature maps into the CLDNN. Since the raw
waveform model improves as we increase the number of
filters, we perform the same experiment for log-mel. Table II
shows that for log-mel, neither increasing the number of filters
(frequency bands) nor increasing the number of microphone
channels has a strong effect on word error rate. Since log-
mel features are computed from the FFT magnitude, the fine
time structure (stored in the phase), and therefore information
about inter-microphone delays, is discarded. Log-mel models
can therefore only make use of the weaker inter-microphone
level difference cues. However, the multichannel time-domain
filterbanks in the raw waveform models utilize the fine time
structure and show larger improvements as the number of
filters increase.

Filters 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

128 22.0 21.7 22.0
256 21.8 21.6 21.7

TABLE II: WER for log-mel multichannel CLDNNs.

Comparing Tables I and II we can see that raw waveform
models consistently outperform log-mel, particularly for larger
number of channels where more spatial diversity is possible.

E. Comparison to oracle knowledge of speech TDOA

Note that the models presented in the previous subsection
do not explicitly estimate the time delay of arrival of the target
source arriving at different microphones, which is commonly
done in beamforming [2]. Time delay of arrival (TDOA) esti-
mation is useful because time aligning and combining signals
steers the array such that the target speech signal is enhanced
relative to noise sources coming from other directions.

In this section, we analyze the behavior of raw waveform
CLDNNs when the signals are time aligned using the true
TDOA calculated using the room geometry. For the delay-
and-sum (D+S) approach, we shift the signal in each channel
by the corresponding TDOA, average them together, and
pass the result into a 1-channel raw waveform CLDNN. For
the time-aligned multichannel (TAM) approach, we align the
signals in time and pass them as separate channel inputs to
a multichannel raw waveform CLDNN. Thus the difference
between the multichannel raw waveform CLDNNs described
in Section 2 and TAM is solely in how the data is presented
to the network (whether or not they are first explicitly aligned
to “steer” toward the target speaker direction); the network
architectures are identical.

Feature 1ch 2ch (14cm) 4ch (4-6-4cm) 8ch (2cm)

oracle D+S 23.5 22.8 22.5 22.4
oracle TAM 23.5 21.7 21.3 21.3
raw, no tdoa 23.5 21.8 21.3 21.1

TABLE III: WER with oracle knowledge of the true target
TDOA. All models use 128 filters.

Table III compares the WER of D+S, TAM, and raw wave-
form models when we do not shift the signals by the TDOA.
First, notice that as we increase the number of channels, D+S
continues to improve, since finer spatial sampling reduces
the sidelobes of the spatial response, leading to increased
suppression of noise and reverberation energy arriving from
other directions. Second, notice that TAM always has better
performance than D+S, as TAM is more general than D+S
because it allows individual channels to be filtered before
being combined. But notice that the raw waveform CLDNN,
without any explicit time alignment or localization (TDOA
estimation), performs as well as TAM with the time alignment.
This shows us that the trained un-aligned network is implicitly
robust to varying TDOA.

F. Summary

Model Filters WER - CE WER - Seq

raw, 1ch 128 23.5 19.3
D+S, 8ch, oracle 128 22.4 18.8

MVDR, 8ch, oracle 128 22.5 18.7
raw, unfactored, 2ch 128 21.8 18.2
raw, unfactored, 4ch 256 20.8 17.2
raw, unfactored, 8ch 256 20.6 17.2

TABLE IV: Raw waveform model WER after sequence train-
ing.

To conclude this section, we show the results after sequence
training in Table IV. We compare to results for 8 channel
oracle D+S, where the true target speech TDOA is known, and
to oracle MVDR [6] where the true noise covariance is known
in addition to the target TDOA. Oracle MVDR has been shown
to perform well, especially on simulated spatialized data [27],
[28] similar to what we use here. Note that because we are
using the oracle noise covariance, our oracle MVDR does not

7

suffer from target cancelation due to reverberation, a common
failure mode for non-oracle MVDR. Table IV shows that the
raw unfactored model, even using only 2 channel inputs and
no oracle information, outperforms the single channel and
oracle signal processing methods. Using 4 channel inputs, the
raw-waveform unfactored model achieves between an 8-10%
relative improvement over single channel, D+S and MVDR.

IV. FACTORING SPATIAL AND SPECTRAL SELECTIVITY

A. Architecture

In multichannel speech recognition systems, multichannel
spatial filtering is often performed separately from single
channel feature extraction. However, in the unfactored raw-
waveform model, spatial and spectral filtering are done in one
layer of the network. In this section, we factor out spatial and
spectral filtering into separate layers [26], as shown in Figure
7.

The motivation for this architecture is to design the first
layer to be spatially selective, while implementing a frequency
decomposition shared across all spatial filters in the second
layer. Thus the combined output of the second layer will be
the Cartesian product of all spatial and spectral filters.

The first layer, denoted by tConv1 in the figure, again
models Equation 2 and performs a multichannel time-
convolution with a FIR spatial filterbank. The operation of
each filter p ∈ {0, . . . , P − 1}, which we will refer to as
a spatial look direction in the factored model, can again be
interpreted as a filter-and-sum beamformer, except that any
overall time shift is implicit in the filter coefficients rather
than being explicitly represented as in Equation 1. The main
differences between the unfactored and factored approaches
are as follows. First, both the filter size N and number of
filters P are much smaller in order to encourage the network
to learn filters with a broadband response in frequency that
span a small number of spatial look directions needed to cover
all possible target speaker locations. The shorter filters in this
layer will have worse frequency resolution than those in the
unfactored model, but that will be dealt with in the next layer.
We hope that this poor frequency resolution will encourage
the network to use this first layer to focus on spatial filtering,
with a limited spectral response. To make the combination of
the first two layers of the factored model conceptually similar
to the first layer of the unfactored model (i.e., a bank of
bandpassed beamformers), the multi-channel (first) filter layer
is not followed by any non-linear compression (i.e. ReLU,
log), and we do not perform any pooling between the first and
second layers.

The second time-convolution layer, denoted by tConv2 in
the figure, consists of longer-duration single-channel filters.
It therefore can learn a decomposition with better frequency
resolution than the first layer but is incapable of doing any
spatial filtering. Given the P feature maps from the first layer,
we perform a time convolution on each of these signals, very
similar to the single-channel time-convolution layer described
in [15], except that the time convolution is shared across all
P feature maps or “look directions”. We denote this layer’s
filters as g ∈ <L×F×1, where 1 indicates sharing across the

P input feature maps. The “valid” convolution produces an
output w[t] ∈ <(M−L+1)×F×P . The output of the spectral
convolution layer, for each look direction p and each filter f ,
is given by Equation 3.

wpf [t] = yp[t] ∗ gf (3)

Next, we pool the filterbank output in time thereby discard-
ing short-time (i.e. phase) information, over the entire time
length of the output signal, to produce an output of dimension
1×F×P . Finally, we apply a rectified non-linearity, followed
by a stabilized logarithm compression, to produce a frame-
level feature vector at frame l, i.e., zl ∈ <1×F×P , which is
then passed to a CLDNN model. We then shift the window
of the raw waveform by a small (10ms) hop and repeat this
time convolution to produce a set of time-frequency-direction
frames at 10ms intervals.

fConv

CLDNN

output targets

x2[t] 2 <M

pool +
nonlin

x1[t] 2 <M

.

.

h1
1 2 <N

h2
1 2 <N

.

.

h1
2 2 <N

h2
2 2 <N

tConv2
y[t] 2 <M⇥1⇥P

hP
1 2 <N hP

2 2 <N
tConv1

g 2 <L⇥F⇥1

w[t] 2 <M�L+1⇥F⇥P

z[l] 2 <1⇥F⇥P

Fig. 7: Factored multichannel raw waveform CLDNN archi-
tecture for P look directions. The figure shows two channels
for simplicity.

The output out of the time convolutional layer (tConv2)
produces a frame-level feature, denoted as z[l] ∈ <1×F×P ,
which is then passed to a CLDNN acoustic model.

B. Number of Spatial Filters

We first explore the behavior of the proposed factored
multichannel architecture as the number of spatial filters P
varies. Table V shows that we get good improvements up to
10 spatial filters. We did not explore above 10 filters due to the
computational complexities of passing 10 feature maps to the
tConv2 layer. Furthermore, we later found that after sequence
training, there was no difference in performance between 5 and
10 spatial filters [29].

The factored network, with 10 spatial filters, achieves a
WER of 20.4%, a 6% relative improvement over the 2 channel
unfactored multichannel raw-waveform CLDNN. It is impor-
tant to note that since the tConv2 layer is shared across all
look directions P , the total number of parameters is actually
less than the unfactored model.

8

Spatial Filters P WER

baseline 2 ch, raw [16] 21.8

1 23.6
3 21.6
5 20.7

10 20.4

TABLE V: WER when varying the size of the spatial filters in
tConv1. All models use 128 filters for tConv2 and results
are presented for 2 channels.

C. Filter Analysis

To better understand what the tConv1 layer learns, Figure
8 plots two-channel filter coefficients and the corresponding
spatial responses, or beampatterns, after training.

Despite the intuition described in Section IV, the first layer
filters appear to perform both spatial and spectral filtering.
However, the beampatterns can nevertheless be categorized
into a few broad classes. For example, filters 2, 3, 5, 7,
and 9 in Figure 8 only pass through some low frequency
subbands below about 1.5 kHz, where most vowel energy
occurs, but steered to have nulls in different directions. Very
little spatial filtering is done in high-frequency regions, where
many fricatives and stops occur. The low frequencies are most
useful for localization because they are not subject to spatial
aliasing and because they contain much of the energy in the
speech signal; perhaps that is why the network exhibits this
structure.

4
2
0
2
4
6

p
=

1

Impulse responses
Channel 0 Channel 1

0
60

120
180

D
O

A

Beampattern

0

6

12

18

24

30

0.4
0.2
0.0
0.2
0.4

p
=

2

0
60

120
180

D
O

A

0.4
0.2
0.0
0.2
0.4

p
=

3

0
60

120
180

D
O

A

2
1
0
1
2

p
=

4

0
60

120
180

D
O

A

0.2
0.0
0.2

p
=

5

0
60

120
180

D
O

A

1.0
0.5
0.0
0.5
1.0

p
=

6

0
60

120
180

D
O

A

0.2
0.1
0.0
0.1
0.2

p
=

7

0
60

120
180

D
O

A

5

0

5

p
=

8

0
60

120
180

D
O

A

0.4
0.2
0.0
0.2
0.4

p
=

9

0
60

120
180

D
O

A

0 1 2 3 4 5
Time (milliseconds)

1.0
0.5
0.0
0.5
1.0

p
=

1
0

0 1 2 3 4 5 6 7 8
Frequency (kHz)

0
60

120
180

D
O

A

Fig. 8: Trained filters and spatial responses for 10 spatial
directions.

To further understand the benefit of the spatial and spectral
filtering in tConv1, we enforce this layer to only perform
spatial filtering by initializing the filters to be an impulse
centered at a delay of zero for channel 0, and offset from zero
in channel 1 by different delays for each filter. By not training
this layer, this amounts to performing delay-and-sum filtering
across a set of fixed look directions. Table VI compares
performance when fixing vs. training the tConv1 layer. The
results demonstrate that learning the filter parameters, and
therefore performing some spectral decomposition, improves
performance over keeping this layer fixed.

Spatial Filters P tConv1 Layer WER

5 fixed 21.9
5 trained 20.7

TABLE VI: WER for training vs. fixing the tConv1 layer, 2
channel.

D. Results Summary

To conclude this section, we show the results after sequence
training, comparing the factored and unfactored models. No-
tice that the 2 channel factored model provides 6% relative
improvement over the unfactored model, while the 4 channel
model provides 5% relative improvment. We do not go above
4 channels, as results from Table IV in Section III-F show that
there is no difference between 4 and 8 channels.

Method WER - CE WER - Seq

raw, unfactored, 2ch 21.8 18.2
raw, factored, 2ch 20.4 17.2

raw, unfactored, 4ch 20.8 17.2
raw, factored, 4ch 19.6 16.3

TABLE VII: Factored Model WER after sequence training,
simulated

V. ADAPTIVE BEAMFORMING

While the unfactored model improves over the factored
model, the model also suffers from a few drawbacks. First,
the learned filters in this model are fixed during decoding,
which potentially limits the ability of these models to adapt
to previously unseen or changing conditions. In addition,
since the factored model must perform spectral filtering for
every look direction, this comes with a large computational
complexity.

A. NAB Model

To address the limited adaptability and reduce the compu-
tational complexity of the models from [16], [26], we propose
a neural network adaptive beamforming (NAB) model [30]
which re-estimates a set of spatial filter coefficients at each
input frame using a neural network.

The NAB model is depicted in Figure 9. At each time
frame l, it takes in a small window of M waveform samples
for each channel c from the C channel inputs, denoted as
x0(l)[t], x1(l)[t], · · · , xC−1(l)[t] for t ∈ {0, · · · ,M − 1}.
Additional to previous notations, the frame index l is explicitly
used in this section to emphasize the frame dependent filtering
coefficients. For simplicity, the figure shows an NAB model
with C = 2 channels. We will describe the different modules
of this model in subsequent subsections.

Note that our NAB model is similar to the model proposed
in [31], although filtering was performed in the frequency
domain, as opposed to our model which processes time domain
signals. We will show in Section VI-D that performing NAB
in the time domain requires estimation of many fewer filter
coefficients, and results in better WER compared to frequency
domain filter prediction.

9

x1(l)[t] x2(l)[t]

DNN LSTM

DNNDNN

LSTM

LSTM

pool +
nonlin

tConv

h1(l)[t] h2(l)[t]

LSTM LSTM

LSTM

DNN

clean features

FP

AM

MTL

FS

G
ated F

eedba
ck

output targets

y(l)[t]

Linear Linear

Linear

Linear

Linear

Fig. 9: Neural network adaptive beamforming (NAB) model
architecture. It consists of filter prediction (FP), filter-and-
sum (FS) beamforming, acoustic modeling (AM) and multi-
task learning (MTL). The figure shows only two channels just
for simplicity.

1) Adaptive Filters: The adaptive filtering layer is given by
Equation 4, where hc(l)[n] is the estimated filter for channel
c at time frame l. This model is very similar to the FS model
from Equation 1, except now the steering delay τc is implicitly
absorbed into the estimated filter parameters.

y(l)[t] =

C−1∑
c=0

N−1∑
n=0

hc(l)[n]xc(l)[t− n] (4)

In order to estimate hc(l)[t], we train a filter prediction
(FP) module with one shared LSTM layer, one layer of
channel-dependent LSTMs and linear output projection layers
to predict N filter coefficients for each channel. The input
to the FP module is a concatenation of frames of raw input
samples xc(l)[t] from all the channels, and can also include
features typically computed for localization such as cross
correlation features [32], [31], [33]. The estimation of FP
module parameters are jointly done with AM parameters by
directly minimizing a cross-entropy or sequence loss function.
Following Equation 4 the estimated filter coefficients hc(l)[t]
are convolved with input samples xc(l)[t] for each channel.
The outputs of the convolution are summed across channels
to produce a single channel signal y(l)[t].

After adaptive FS, the single channel enhanced signal y(l)[t]
is passed to an AM module (Figure 9). We adopt the single
channel raw waveform CLDNN model [15] for acoustic mod-
eling, except that we now skip the frequency convolution layer
as it has recently been shown in [34] to not help for noisier
tasks. During training, the AM and FP (Figure 9) are trained

jointly.
2) Gated Feedback: Augmenting the network input at each

frame with the prediction from the previous frame has been
shown to improve performance [35]. To investigate the benefit
of feedback in the NAB model, we pass the AM prediction
at frame l − 1 back to the FP model at time frame l (red
line in Figure 9). Since the softmax prediction is very high
dimensional, we feed back the low-rank activations preceding
the softmax to the FP module to limit the increase of model
parameters [36].

This feedback connection gives the FP module high level
information about the phonemic content of the signal to aid
in estimating beamforming filter coefficients. This feedback
is comprised of model predictions which may contain er-
rors, particularly early in training, and therefore might lead
to poor model training [35]. A gating mechanism [37] is
hence introduced to the connection to modulate the degree
of feedback. Unlike conventional LSTM gates, which control
each dimension independently, we use a global scalar gate to
moderate the feedback. The gate gfb(l) at time frame l, is
computed from the input waveform samples x(l), the state of
the first FP LSTM layer s(l − 1), and the feedback vector
v(l − 1), as follows:

gfb(l) = σ(wT
x · x(l) +wT

s · s(l − 1) +wT
v · v(l − 1)) (5)

where wx, ws and wv are the corresponding weight vectors
and σ is an elementwise non-linearity. We use a logistic
function for σ which outputs values in the range [0, 1],
where 0 cuts off the feedback connection and 1 directly
passes the feedback through. The effective FP input is hence[
x(l), gfb(l)v(l − 1)

]
.

3) Regularization with MTL: Multi-task learning has been
shown to yield improved robustness [26], [38], [39]. We
adopt an MTL module similar to [26] during training by
configuring the network to have two outputs, one recognition
output which predicts CD states and a second denoising output
which reconstructs 128 log-mel features derived from the
underlying clean signal. The denoising output is only used
in training to regularize the model parameters; the associated
layers are discarded during inference. In the NAB model the
MTL module branches off of the first LSTM layer of the AM
module, as shown in Figure 9. The MTL module is composed
of two fully connected DNN layers followed by a linear
output layer which predicts clean features. During training the
gradients back propagated from the two outputs are weighted
by α and 1 − α for the recognition and denoising outputs
respectively.

B. NAB Filter Analysis

The best NAB model found in [30] has the following
configurations:

1) the FP module has one shared 512-cell LSTM layer
across channels, one layer of channel-dependent 256-
cell LSTMs and one layer of channel-dependent 25-
dimensional linear projection layer;

2) the FP module takes in the concatenation of raw wave-
form samples from each channel;

10

0 50 100 150 2000

2

4

6

8

N
o
is

y
 S

p
e
e
ch

0

3

6

9

12

0 50 100 150 2000

2

4

6

8

C
le

a
n
 S

p
e
e
ch

0

3

6

9

12

0 50 100 150 2000

2

4

6

8

T
a
rg

e
t

0

8

16

24

32

0 20 40 60 80 100 120 140 160 180 200

Time frame index

0

2

4

6

8

N
o
is

e

0

8

16

24

32

Fig. 10: Visualizations of the predicted beamformer responses
at different frequency (Y-axis) across time (X-axis) at the target
speech direction (3rd) and interfering noise direction (4th)
with the noisy (1st) and clean (2nd) speech spectrograms.

3) the FP module outputs a 1.5ms filter (25-dimensional
vector) for each channel;

4) the AM module is a single channel raw waveform LDNN
model [15] with 256 tConv filters and without the
frequency convolution layer [34], which is also similar
to other multichannel models discussed in this paper;

5) 128-dimensional clean log-mel features are used as the
secondary reconstruction objectives with a weight of 0.1
for MTL;

6) per-frame gated feedback connection from the bottle-
neck layer right before the AM module’s softmax layer
is appended to the FP module’s input.

Figure 10 illustrates the frequency responses of the pre-
dicted beamforming filters at the target speech and interfering
noise directions. The SNR for this utterance is 12dB. The
responses in the target speech direction have relatively more
speech-dependent variations than those in the noise direction.
This may indicate that the predicted filters are attending to the
speech signal. Besides, the responses at high speech-energy
regions are generally lower than others, which suggests the
automatic gain control effect of the predicted filters.

C. Result Summary

Finally, to conclude this section, we show the results af-
ter sequence training compared to the factored model. To
understand the impact of WER with respect to each factor
discussed in Section V, we refer the reader to [30]. Instead,
in this paper we show the results for the best NAB setup,
which uses the factors outlined in Section V-B. Since the NAB
model is trained without frequency convolution (i.e., LDNN),
we do the same for the factored model. In addition, we show
results for the factored model with MTL to be comparable to
the NAB model. Table VIII shows that the factored model
can potentially handle different directions by enumerating
many look directions in the spatial filtering layer and can
achieve slightly better performance compared to the adaptive
model. However, the adaptive model has less computational

complexity, as measured by the number of multiplies and
additions (MultAdd) of the model, as shown in the Table.

Model WER (%) Param MultAdd
CE Seq

factored (w/MTL) 20.1 16.9 18.9M 35.1M
NAB (w/MTL) 20.5 17.2 24.0M 28.8M

TABLE VIII: Comparison between 2-channel factored and
adaptive models, in terms of WER at cross-entropy (CE)
and sequence (Seq) training, as well as the total number of
multiplies and adds (MultAdd) in millions.

VI. FILTERING IN THE FREQUENCY DOMAIN

Until now, we have presented three multichannel models
in the time domain. However, it is well know that “circular”
convolution between two time domain signals is equivalent to
the element-wise product of their frequency domain counter-
parts [40], [41]. A benefit of operating in the complex FFT
space is that element-wise products are much faster to compute
compared to convolutions, particularly when the convolution
filters and input size is large as in our multichannel raw
waveform models. In this section, we describe how we can
implement both the factored Model from Section IV and the
NAB Model from Section V, in the frequency domain [29].

A. Factored Model

In this section, we describe the factored model in the
frequency domain.

1) Spatial Filtering: For frame index l and channel c,
we denote Xc[l] ∈ CK as the result of an M -point Fast
Fourier Transform (FFT) of xc[t] and Hp

c ∈ CK as the FFT
of hpc . Note that we ignore negative frequencies because the
time domain inputs are real, and thus our frequency domain
representation of an M -point FFT contains only K =M/2+1
unique complex-valued frequency bands. The spatial convolu-
tion layer in Equation 2 can be represented by Equation 6 in
the frequency domain, where · denotes element-wise product.
We denote the output of this layer as Y p[l] ∈ CK for each
look direction p:

Y p[l] =

C−1∑
c=0

Xc[l] ·Hp
c (6)

In this paper, we explore two different methods for imple-
menting the “spectral filtering” layer in the frequency domain.

2) Spectral Filtering: Complex Linear Projection: It is
straightforward to rewrite the convolution in Equation 3 as
an element-wise product in frequency, for each filter f and
look direction p:

W p
f [l] = Y p[l] ·Gf (7)

In the above equation, W p
f [l] ∈ CK and Gf ∈ CK is the

FFT of the time domain filter gf in Equation 3. There is
no frequency domain equivalent to the max-pooling operation
in the time domain. Therefore to mimic max-pooling exactly
requires taking the inverse FFT of W p

f [l] and performing the

11

pooling operation in the time domain, which is computation-
ally expensive to do for each look direction p and filter output
f .

As an alternative [42] recently proposed the Complex Linear
Projection (CLP) model which performs average pooling in
the frequency domain and results in similar performance
to a single channel raw waveform model. Similar to the
waveform model the pooling operation is followed by a point-
wise absolute-value non-linearity and log compression. The 1-
dimensional output for look direction p and filter f is given
by:

Zpf [l] = log

∣∣∣∣∣
N∑
k=1

W p
f [l, k]

∣∣∣∣∣ (8)

Collecting the output for all look directions and fil-
ters, the feature at frame index l is denoted as Z[l] ∈
{Z1

1 [l], . . . Z
P
F [l]} ∈ <1×F×P , with the same dimensions as

the corresponding feature frame in the waveform model, z[l].
3) Spectral Filtering: Linear Projection of Energy: We also

explore an alternative decomposition that is motivated by the
log-mel filterbank. Given the complex-valued FFT for each
look direction, Y p[l], we first compute the energy at each time-
frequency bin (l, k):

Ŷ p[l, k] = |Y p[l, k]|2 (9)

After applying a power compression with α = 0.1, Ŷ p[l]
is linearly projected down to an F dimensional space, in a
process similar to the mel filterbank, albeit with learned filter
shapes:

Zpf [l] = Gf × (Ŷ p[l])α (10)

As in the other models, the projection weights G ∈ <K×F ,
are shared across all look directions.

The main difference between the CLP and LPE models is
that the former retains phase information when performing
the filterbank decomposition with matrix G. In contrast, LPE
operates directly on the energy in each frequency band with the
assumption that phase not important for computing features.

B. NAB Model

In the frequency-domain NAB setup, we have an LSTM
which predicts complex FFT (CFFT) inputs for both channels.
Given a 512-pt FFT input, this amounts to predicting 4× 257
frequency points for real and imaginary components for 2
channels, which is much more than the predicted filter size
in the time domain (i.e., 1.5ms = 25 taps). After the complex
filters are predicted for each channel, element-wise product is
done with the FFT of the input for each channel, mimicking
the convolution in Equation 4 in the frequency domain. The
output of this is given to a single channel LDNN in the
frequency domain, which does spectral decomposition, using
either CLP or LPE, and acoustic modeling.

C. Results: Factored Model

1) Performance: First, we explore the performance of the
frequency domain factored model. Note this model does not
have any frequency convolution layer. We explore this for a

similar setting to most efficient raw-waveform factored setup
[29], namely P = 5 look directions in the spatial layer and
F = 128 filters in the spectral layer. The input is 32ms
instead of 35ms like raw-waveform, as this allows us to take a
D = 512-point DFT without zero-padding at a sampling rate
of 16kHz. A 35-ms input would have required us to take a
1024-point DFT, and we have not found any big difference in
performance between 32 and 35ms inputs for raw-waveform.

Table IX shows that the WER performance of both the CLP
and LPE factored models are similar. The table also indicates
the total number of multiplication and addition operations
(MultAdd) for different layers of the model. Both models
reduce the number of operations by a factor of 1.9x over the
best waveform model, with a small degradation in WER.

Model Spatial Spectral Total WER WER
MultAdd MultAdd MultAdd CE Seq

time 525.6K 15.71M 35.1M 20.4 17.1
CLP 10.3K 655.4K 19.6M 20.5 17.2
LPE 10.3K 165.1K 19.1M 20.7 17.2

TABLE IX: Frequency Domain Factored Model Performance,
in terms of WER at cross-entropy (CE) and sequence (Seq)
training, as well as the total number of multiplies and adds
(MultAdd) in millions.

However, given that the frequency models are more compu-
tationally efficient, we explore improving WER by increasing
the window size (and therefore computational complexity) of
the factored models. Specifically, since longer windows typi-
cally help with localization [6], we explore using 64ms input
windows for both models. With a 64ms input, the frequency
models require a 1024-point FFT. Table X shows that the
frequency models improve the WER over using a smaller
32ms input, and still perform roughly the same. However,
the frequency model now has an even larger computational
complexity savings of 2.7x savings compared to the time
domain model.

Feat Spatial Spectral Total WER
MultAdd MultAdd MultAdd Seq

time 906.1K 33.81M 53.6M 17.1
CLP 20.5K 1.3M 20.2M 17.1
LPE 20.5K 329.0K 19.3M 16.9

TABLE X: Results with a 64ms Window Size, in terms of
WER at cross-entropy (CE) and sequence (Seq) training, as
well as the total number of multiplies and adds (MultAdd) in
millions.

2) Comparison between learning in time vs. frequency:
Figure 11 shows the spatial responses (i.e., beampatterns) for
both the time and frequency domain spatial layers. Since the
LPE and CLP models have the same spatial layer and we have
found the beampatterns to look similar, we only plot the CLP
model for simplicity. The beampatterns show the magnitude
response in dB as a function of frequency and direction of ar-
rival, i.e. each horizontal slice of the beampattern corresponds
to the filter’s magnitude response for a signal coming from
a particular direction. In each frequency band (vertical slice),

12

lighter shades indicate that sounds from those directions are
passed through, while darker shades indicate directions whose
energy is attenuated. The figures show that the spatial filters
learned in the time domain are band-limited, unlike those
learned in the frequency domain. Furthermore, the peaks and
nulls are aligned well across frequencies for the time domain
filters. One hypothesis we have for the band-limited nature
of the raw waveform spatial filters is that they are short (i.e.,
5ms), compared to the frequency-domain spatial filters which
span over the entire 32 or 64-ms input.

(a) Factored model, time (b) Factored model, frequency

Fig. 11: Beampatterns of Time and Frequency Models

The differences between these models can further be seen
in the magnitude responses of the spectral layer filters, as
well as in the outputs of the spectral layers from different
look directions plotted for an example signal. Figure 12
illustrates that the magnitude responses in both time and CLP
models look qualitatively similar, and learn bandpass filters
with increasing center frequency. However, because the spatial
layers in time and frequency are quite different, we see that
the spectral layer outputs in time are much more diverse in
different spatial directions compared to the CLP model. In
contrast to these models, the LPE spectral layer does not seem
to learn bandpass filters.

At some level, time-domain and frequency-domain repre-
sentations are interchangeable, but they result in networks
that are parameterized very differently. Even though the time
and frequency models all learn different spatial filters, they
all seem to have similar WERs. In addition, even though
the spatial layer of the CLP and LPE models are different,
they too seem to have similar performance. There are roughly
18M parameters in the LDNN model that sits above the
spatial/spectral layers, which accounts for over 90% of the
parameters in the model. Any differences between the spatial
layers in time and frequency are likely accounted for in the
LDNN part of the network.

D. Results: Adaptive Model

Next, we explore the performance of the frequency domain
NAB model. Table XI shows the WER at CE and com-
putational complexity of the raw-waveform and CLP NAB

(b) - Spectral Features, CLP(a) - Spectral Features, Raw

(b) - Spectral Layer, CLP(a) - Spectral Layer, Raw

(c) - Spectral Features, LPE

(c) - Spectral Layer, LPE

Fig. 12: The first row shows the magnitude response of the
spectral layer for the (a) raw-waveform, (b) CLP and (c)
LPE models. The second and third rows show the output
of the spectral layers of these models for two different look
directions.

models. While using CLP features greatly reduces compu-
tational complexity, the performance is worse than the raw-
waveform model. One hypothesis we have is that frequency
domain processing requires predicting a higher dimensional
filter, which we can see from the table leads to a degradation
in performance. Since the CLP and LPE models perform
similarly for the factored model, and the CLP NAB model
degraded performance over raw NAB, we did not repeat the
experiment for LPE NAB.

Model WER (%) Param (M) MultAdd (M)

raw 20.4 18.9 35.1
CLP 21.0 24.7 25.1

TABLE XI: Comparison between time and frequency NAB
models.

VII. FINAL COMPARISON, RE-RECORDED DATA

Finally, to show that a model trained on simulated data can
handle real reverberation, we also evaluated the performance
of different multichannel models presented in this paper on a
real “Rerecorded” test set. Reverberation-I is when the micro-
phone is placed on a coffee table, whereas Reverberation-II is
when the mic is placed on a TV stand. Since this set contains
a circular microphone geometry but our models are trained
on a linear microphone geometry, we only report results with
2 channels to form a linear array with a 7.5cm spacing (in
contrast to the 14cm spacing during training). In spite of these
mismatches in reverberation and in microphone spacing, our
technique performs well.

Table XII shows the results with different multichannel
models after sequence training. All raw-waveform models are
trained with 35-ms inputs and 128 spectral decomposition
filters. The factored model has 5 look directions. The LPE
factored model is trained with a 64-ms input, 5 look directions,
and 128 spectral decomposition filters. All frontends use an
LDNN architecture in the upper layers of the network.

Notice that the 2 channel raw factored model gives a
13% relative improvement over single channel, with larger

13

improvements in noisier test sets, which is to be expected.
In addition, the LPE factored model performs similar to the
raw factored model. Finally, the NAB model performs much
worse than the factored model. We have not investigated this
performance difference in detail, but one hypothesis is that
because the NAB model adapts its filters over the course of
an utterance, it may sometimes adapt its filters into a bad
configuration from which it cannot recover when presented
with mismatched test data.

We also include results on the noisier reverberation sets with
oracle localization and a robust superdirective beamformer
similar to [43], [44] with oracle knowledge of the speech and
noise. Note that our superdirective beamformer is a fixed filter
and sum beamformer similar in spirit to a maximum signal-
to-noise ratio filter [2]. The table shows that for the noisier
reverberation sets, our factored models, with just 2 channels
and no oracle information, are able to match the performance
of the oracle superdirective beamformer with 7 channels.

Model Rev.-I Rev.-II Rev.-I Rev.-II Ave
Noisy Noisy

1 channel raw 18.6 18.5 27.8 26.7 22.9
2 channel raw, unfactored 17.9 17.6 25.9 24.7 21.5

2 channel raw, factored 17.1 16.9 24.6 24.2 20.7
2 channel LPE, factored 17.4 16.8 25.2 23.5 20.7

2 channel raw, NAB 17.8 18.1 27.1 26.1 22.3
7 channel, superdirective - - 25.3 23.7 -

TABLE XII: WER on “Rerecorded” set after sequence train-
ing.

It is important to note that the motivation of the above
results is to show the robustness of the neural network methods
when there is slight mismatch in microphone array geometry
and noise conditions between training and test, as this condi-
tion matches the real-world scenarios we currently deal with.
For very severe microphone array geometry mismatch, we
have noticed a larger degradation in performance, as shown
in Section 4.4 of our paper [16]. In order to address severe
mismatch, we have found that we must train the system with
a variety of microphone spacings to make the model more
robust.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a methodology to do multichan-
nel enhancement and acoustic modeling jointly within a neural
network framework. First, we developed a unfactored raw-
waveform multichannel model, and showed that this model
performed as well as a model given oracle knowledge of the
true location. Next, we introduced a factored multichannel
model to separate out spatial and spectral filtering operations,
and found that this offered an improvement over the unfactored
model. Next, we introduced an adaptive beamforming method,
which we found to match the performance of the multichannel
model with far fewer computations. Finally, we showed that
we can match the performance of the raw-waveform factored
model, with far fewer computations, with a frequency-domain
factored model. Overall, the factored model provides between
a 5-13% relative improvement over single channel and tra-

ditional signal processing techniques, on both simulated and
rerecorded test sets.

ACKNOWLEDGEMENTS

Thank you to Yedid Hoshen and Arden Huang for discus-
sions related to multichannel processing.

REFERENCES

[1] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing
Techniques and Applications. Springer, 2001.

[2] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing.
Springer, 2009.

[3] M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fujimoto, N. Ito,
K. Kinoshita, M. Espi, T. Hori, T. Nakatani, and A. Nakamura, “Linear
Prediction-based Dereverberation with Advanced Speech Enhancement
and Recognition Technologies for the REVERB Challenge,” in REVERB
Workshop, 2014.

[4] T. Hain, L. Burget, J. Dines, P. Garner, F. Grezl, A. Hannani, M. Hui-
jbregts, M. Karafiat, M. Lincoln, and V. Wan, “Transcribing Meetings
with the AMIDA Systems,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 2, pp. 486–498, 2012.

[5] A. Stolcke, X. Anguera, K. Boakye, O. Çetin, A. Janin, M. Magimai-
Doss, C. Wooters, and J. Zheng, “The SRI-ICSI Spring 2007 Meeting
and Lecture Recognition System,” Multimodal Technologies for Percep-
tion of Humans, vol. Lecture Notes in Computer Science, no. 2, pp.
450–463, 2008.

[6] B. D. Veen and K. M. Buckley, “Beamforming: A Versatile Approach to
Spatial Filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.

[7] M. Seltzer, B. Raj, and R. M. Stern, “Likelihood-maximizing Beam-
forming for Robust Handsfree Speech Recognition,” IEEE Trascations
on Audio, Speech and Language Processing, vol. 12, no. 5, pp. 489–498,
2004.

[8] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep Unfolding:
Model-Based Inspiration of Novel Deep Architectures,” CoRR, vol.
abs/1409.2574, 2014.

[9] A. Mohamed, G. Hinton, and G. Penn, “Understanding how Deep Belief
Networks Perform Acoustic Modelling,” in ICASSP, 2012.

[10] N. Jaitly and G. Hinton, “Learning a Better Representation of Speech
Soundwaves using Restricted Boltzmann Machines,” in Proc. ICASSP,
2011.

[11] D. Palaz, R. Collobert, and M. Doss, “Estimating Phoneme Class
Conditional Probabilities From Raw Speech Signal using Convolutional
Neural Networks,” in Proc. Interspeech, 2014.

[12] Z. Tüske, P. Golik, R. Schlüter, and H. Ney, “Acoustic Modeling with
Deep Neural Networks using Raw Time Signal for LVCSR,” in Proc.
Interspeech, 2014.

[13] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 6964–6968.

[14] Y. Hoshen, R. J. Weiss, and K. W. Wilson, “Speech Acoustic Modeling
from Raw Multichannel Waveforms,” in Proc. ICASSP, 2015.

[15] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Senior, and O. Vinyals,
“Learning the Speech Front-end with Raw Waveform CLDNNs,” in
Proc. Interspeech, 2015.

[16] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bacchiani,
and A. Senior, “Speaker Localization and Microphone Spacing Invariant
Acoustic Modeling from Raw Multichannel Waveforms,” in Proc. ASRU,
2015.

[17] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, Long
Short-Term Memory, Fully Connected Deep Neural Networks,” in Proc.
ICASSP, 2015.

[18] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly
constrained adaptive beamforming,” IEEE Transactions on Antennas and
Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[19] J. B. Allen and D. A. Berkley, “Image Method for Efficiently Simulation
Room-Small Acoustics,” Journal of the Acoustical Society of America,
vol. 65, no. 4, pp. 943 – 950, April 1979.

[20] T. N. Sainath, B. Kingsbury, A. Mohamed, G. Dahl, G. Saon, H. Soltau,
T. Beran, A. Aravkin, and B. Ramabhadran, “Improvements to Deep
Convolutional Neural Networks for LVCSR,” in Proc. ASRU, 2013.

[21] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Recur-
rent Neural Network Architectures for Large Scale Acoustic Modeling,”
in Proc. Interspeech, 2014.

14

[22] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ram-
abhadran, “”Low-Rank Matrix Factorization for Deep Neural Network
Training with High-Dimensional Output Targets,” in Proc. ICASSP,
2013.

[23] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng, “Large Scale
Distributed Deep Networks,” in Proc. NIPS, 2012.

[24] G. Heigold, E. McDermott, V. Vanhoucke, A. Senior, and M. Bacchiani,
“Asynchronous Stochastic Optimization for Sequence Training of Deep
Neural Networks,” in Proc. ICASSP, 2014.

[25] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep
Feedforward Neural Networks,” in Proc. AISTATS, 2010.

[26] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, and M. Bac-
chiani, “Factored Spatial and Spectral Multichannel Raw Waveform
CLDNNs,” in in Proc. ICASSP, 2016.

[27] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime’
speech separation and recognition challenge: Dataset, task and base-
lines,” in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE, 2015, pp. 504–511.

[28] D. Bagchi, M. I. Mandel, Z. Wang, Y. He, A. Plummer, and E. Fosler-
Lussier, “Combining spectral feature mapping and multi-channel model-
based source separation for noise-robust automatic speech recognition,”
in 2015 IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU). IEEE, 2015, pp. 496–503.

[29] T. N. Sainath, A. Narayanan, R. J. Weiss, K. W. Wilson, M. Bacchiani,
and I. Shafran, “Improvements to Factorized Neural Network Multichan-
nel Models,” in in Proc. Interspeech, 2016.

[30] B. Li, T. N. Sainath, R. J. Weiss, K. W. Wilson, and M. Bacchiani, “Neu-
ral Network Adaptive Beamforming for Robust Multichannel Speech
Recognition,” in in Proc. Interspeech, 2016.

[31] X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L. Seltzer,
G. Chen, Y. Zhang, M. Mandel, and D. Yu, “Deep beamforming
networks for multi-channel speech recognition,” in Proc. ICASSP, 2016.

[32] C. H. Knapp and G. C. Carter, “The generalized correlation method
for estimation of time delay,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 24, no. 4, pp. 320–327, 1976.

[33] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A
learning-based approach to direction of arrival estimation in noisy and
reverberant environments,” in Proc. ICASSP, 2015, pp. 2814–2818.

[34] T. N. Sainath and B. Li, “Modeling Time-Frequency Patterns with
LSTM vs. Convolutional Architectures for LVCSR Tasks,” in in Proc.
Interspeech, 2016.

[35] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 1171–1179.

[36] Y. Zhang, E. Chuangsuwanich, and J. R. Glass, “Extracting deep neural
network bottleneck features using low-rank matrix factorization.” in
ICASSP, 2014, pp. 185–189.

[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback
recurrent neural networks,” arXiv preprint arXiv:1502.02367, 2015.

[38] R. Giri, M. L. Seltzer, J. Droppo, and D. Yu, “Improving speech
recognition in reverberation using a room-aware deep neural network
and multi-task learning,” in Proc. ICASSP. IEEE, 2015, pp. 5014–
5018.

[39] Z. Chen, S. Watanabe, H. Erdoğan, and J. R. Hershey, “Speech en-
hancement and recognition using multi-task learning of long short-term
memory recurrent neural networks,” in Proc. Interspeech. ISCA, 2015,
pp. 3274–3278.

[40] Y. Bengio and Y. Lecun, “Scaling Learning Algorithms Towards AI,”
Large Scale Kernel Machines, 2007.

[41] R. Bracewell, The Fourier Transform and Its Applications, 3rd ed.
McGraw-Hill, 1999.

[42] E. Variani, T. N. Sainath, I. Shafran, and M. Bacchiani, “Complex Linear
Projection (CLP): A Discriminative Approach to Joint Feature Extraction
and Acoustic Modeling,” in in Proc. Interspeech, 2016.

[43] S. Doclo and M. Moonen, “Superdirective beamforming robust against
microphone mismatch,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 2, pp. 617–631, 2007.

[44] K. D, K. Yao, and F. Lorenzelli, “Broadband maximum energy array
with user imposed spatial and frequency constraints,” in Proc. ICASSP,
1994.

Tara N. Sainath received her B.S (2004), M. Eng
(2005) and Ph.D. (2009) in Electrical Engineering
and Computer Science all from MIT. The main focus
of her PhD work was in acoustic modeling for noise
robust speech recognition. After her PhD, she spent
5 years at the Speech and Language Algorithms
group at IBM T.J. Watson Research Center, before
joining Google Research. She has co-organized a
special session on Sparse Representations at Inter-
speech 2010 in Japan. She has also organized a
special session on Deep Learning at ICML 2013 in

Atlanta. In addition, she is a staff reporter for the IEEE Speech and Language
Processing Technical Committee (SLTC) Newsletter. Her research interests are
mainly in acoustic modeling and deep neural networks.

Ron J. Weiss is a software engineer at Google
where he has worked on content-based audio anal-
ysis, recommender systems for music, and noise
robust speech recognition. Ron completed his Ph.D.
in electrical engineering from Columbia University
in 2009 where he worked in the Laboratory for
the Recognition of Speech and Audio. From 2009
to 2010 he was a postdoctoral researcher in the
Music and Audio Research Laboratory at New York
University.

Kevin W. Wilson is a software engineer at Google,
where he works on audio content analysis, with
applications to speech acoustic modeling and audio
event detection. He received his B.S (1999), M. Eng
(2000), and Ph.D. (2006) in Electrical Engineering
and Computer Science, all from MIT. His Ph.D.
work was on multi-microphone audio-visual source
localization and tracking. From 2006 to 2010, he
worked on multimedia content analysis as a Member
Technical Staff at the Mitsubishi Electric Research
Lab.

Bo Li is a research scientist at Google, where
he works on acoustic modeling for robust speech
recognition. He received his Ph.D. in School of
Computing from National University of Singapore
in 2014. His Ph.D. work was on noise robust speech
recognition with deep neural networks. Bo received
his B. Eng (2008) in School of Computer from
Northewestern Polytechnical University in China.
His research interests are mainly in robust acoustic
modeling and deep neural networks.

Arun Narayanan received his M.S. and the Ph.D.
degrees in computer science from the Ohio State
University, Columbus, USA, in 2012 and 2014,
respectively. Since 2014, he has been a Research
Scientist at Google, Inc. His research interests in-
clude robust automatic speech recognition, speech
separation, and machine learning.

Ehsan Variani received his M.S. and the Ph.D. de-
grees in Electrical and Computer Engineering from
the Johns Hopkins University, Baltimore, Maryland,
USA, in 2011 and 2015, respectively. Since 2015,
he has been a Research Scientist at Google, Inc. His
research interests include machine learning, infor-
mation theory and automatic speech recognition.

15

Michiel Bacchiani has worked in various areas
of speech recognition research for more than 20
years with an emphasis on acoustic modeling. He
currently manages the acoustic modeling team at
Google responsible for developing the technology
backing all Google speech applications. At Google,
he previously lead the efforts around voicemail tran-
scription and YouTube automatic captioning. Before
joining Google, Michiel Bacchiani worked as a
member of technical staff at IBM Research. Before
that he worked at AT&T Research Labs and ATR

International in Kyoto Japan. At all these assignments he focused on various
aspects of speech recognition algorithm research. Michiel Bacchiani received
the “ingenieur” (ir.) degree from the Technical University of Eindhoven, The
Netherlands and the Ph.D degree from Boston University. He has authored
numerous scientific publications. He is elected to be the chair of the IEEE
Speech and Language Processing Technical Committee. He is a board member
and subject editor of Speech Communication. He has served on various
conference and workshop technical committees and served as area chair for
major international conferences (ICASSP, Interspeech).

Izhak Shafran is a speech and machine learning
researcher, who has been working on acoustic mod-
eling for speech recognition. Before joining Google
in 2014, he was an Associate Professor and a mem-
ber of the Center for Spoken Language Processing
at OHSU, where he also focused on medical appli-
cation of spoken language technology. He graduated
from University of Washington in Seattle in 2001
and subsequently worked at AT&T Research Labs
at Florham Park with the speech algorithms group.
In summer of 2006, he was a visiting professor at

University of Paris-South, working at LIMSI. Subsequently, he was a research
faculty at the Center for Language and Speech Processing (CLSP) in Johns
Hopkins University. He received an NIH Career Development Award in 2010.

Andrew Senior received his PhD from Cambridge
University for his thesis “Recurrent Neural Networks
for Offline Cursive Handwriting Recognition”. He
is currently a research scientist in deep learning at
Google DeepMind in London. Previously he worked
on research into deep and recurrent neural networks
for acoustic modelling in Googles speech recogni-
tion system. Before joining Google, he worked at
IBM Research in the areas of handwriting, audio-
visual speech, face and fingerprint recognition as
well as video privacy protection and visual tracking.

He has taught at Columbia University, written over 100 papers and holds 49
patents.

Kean Chin received the B.Sc. degree in computer
engineering from University of Warwick, Coven-
try, U.K., in 1995 and the M.Phil. degree from
the University of Cambridge, Cambridge, U.K., in
1999. He started his Ph.D. degree in the Speech,
Vision, and Robotics Group, Engineering Depart-
ment, University of Cambridge in 1999. After the
B.Sc. degree, he began work as a Researcher in
the Articial Intelligence Laboratory, Standards and
Industrial Research Institute of Malaysia (SIRIM).
He joined the Speech Technology Group (STG),

Cambridge Research Laboratory, Toshiba Research Europe, Ltd., in 2002.
He lead the ASR group in STG, Toshiba since 2008. He is currently a senior
research scientist at Google Inc.

Ananya Misra received her A.B. in Computer Sci-
ence and Mathematics from Bryn Mawr College,
and her M.A. and Ph.D. in Computer Science from
Princeton University. Her dissertation focused on
interactive analysis and re-synthesis of real-world
sounds for new music composition. She has since
worked on automatic speech recognition at Google,
with special interest in noise-robust acoustic model-
ing.

Chanwoo Kim has been a software engineer at
Google, Inc. since 2013. He was a speech scientist
and software development engineer at Microsoft
from 2011 to 2013. Dr. Kim received a Ph.D. from
the Language Technologies Institute of the Carnegie
Mellon University School of Computer Science in
2010. He received his B.S and M.S. degrees in Elec-
trical Engineering from Seoul National University
in 1998 and 2001, respectively. Dr. Kim’s doctoral
research was focused on enhancing the robustness
of automatic speech recognition systems in noisy

environments. Toward this end he has developed a number of different
algorithms for single-microphone applications, dual-microphone applications,
and multiple-microphone applications which have been applied to various
real-world applications. Between 2003 and 2005 Dr. Kim was a Senior Re-
search Engineer at LG Electronics, where he worked primarily on embedded
signal processing and protocol stacks for multimedia systems. Prior to his
employment at LG, he worked for EdumediaTek and SK Teletech as a R&D
engineer.

