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Abstract
We describe the structure and application of an acoustic room
simulator to generate large-scale simulated data for training
deep neural networks for far-field speech recognition. The sys-
tem simulates millions of different room dimensions, a wide
distribution of reverberation time and signal-to-noise ratios,
and a range of microphone and sound source locations. We
start with a relatively clean training set as the source and ar-
tificially create simulated data by randomly sampling a noise
configuration for every new training example. As a result,
the acoustic model is trained using examples that are virtu-
ally never repeated. We evaluate performance of this approach
based on room simulation using a factored complex Fast Fourier
Transform (CFFT) acoustic model introduced in our earlier
work, which uses CFFT layers and LSTM AMs for joint multi-
channel processing and acoustic modeling. Results show that
the simulator-driven approach is quite effective in obtaining
large improvements not only in simulated test conditions, but
also in real / rerecorded conditions. This room simulation sys-
tem has been employed in training acoustic models including
the ones for the recently released Google Home.
Index Terms: Simulated data, room acoustics, robust speech
recognition, deep learning

1. Introduction
Recent advances in deep-learning techniques and the availabil-
ity of large training databases have resulted in significant im-
provements in speech recognition accuracy [1, 2, 3, 4]. Speech
recognition systems that use deep-neural network (DNN) has
shown much better performance than those that use the tra-
ditional Gaussian Mixture Model (GMM). Nevertheless, such
systems still remain sensitive to mismatch in training and test
conditions. The presence of additive noise, channel distortion,
and reverberation can cause such mismatch.

Traditional approaches for enhancing speech recognition
accuracy in the presence of noise include beam forming [5],
masking [6, 6, 7, 8, 9, 10], robust feature extraction [11, 12, 13,
14, 15], and auditory processing such as on-set enhancement
[16, 17, 18, 19]. But recent results have shown that robust-
ness of DNN-based models largely depends on the quality of
the data that it is trained on [4]. Typically, using a training set
that matches the final test conditions results in largest improve-
ments in performance. However, in many cases it may not be
practical to obtain such a set. For example, Google recently
released a new commercial product, Google Home [20], that
targets far-field use cases. Before releasing the product, it was
hard to obtain a large enough training set that closely matches
this use case. In such cases, deriving a set from existing train-
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Figure 1: An LDNN training architecture [21] using simulated
utterance data.

ing sets via simulation is a reasonable compromise. The qual-
ity of the model trained on derived sets depends on how good
the simulation is, and how closely it captures the wide variety
of use cases. For such use cases, we developed a simulation
system that synthesizes speech utterances in a wide variety of
conditions – rooms with varying dimensions, noise levels, re-
verberation time, target speaker and noise locations, and num-
ber of noise sources. This room simulation system processes
relatively clean, 1-channel utterance to create simulated noisy
far-field utterances.

The rest of the paper is organized as follows. We describe
the room simulator and acoustic model training using simulated
data in the following section. Experimental results that demon-
strate the utility of simulated data is presented in Section 3. We
conclude in Section 4.

2. Training using simulated data
An overview of the entire training system is shown in Fig. 1.
As mentioned, the goal of simulation is to create artificial ut-
terances that mimic real use cases like far-field speech recogni-
tion. The simulation uses an existing corpus of relatively clean
utterances as the source. Typically, the only prior knowledge
we have for simulation are the hardware characteristics like mi-
crophone spacing, and targeted use-case scenarios like expected
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room size distributions, reverberation times, background noise
levels, and target to microphone array distances. “Room config-
uration generator” in Fig. 1 generates a random configuration
based on the available prior knowledge. The configuration and
a pseudo-clean utterance from the source corpus are passed to a
“Room simulator” that performs the necessary simulation. The
output of the room simulator is a multi-channel simulated noisy
utterance, which is then fed as input to an acoustic model. For
the experiments in this paper, we use a factored CFFT LDNN
acoustic model, introduced in [22]. The model performs multi-
channel processing and acoustic modeling jointly, and has been
shown to provide comparable or better performance to tradi-
tional enhancement techniques like beamforming [23].

We describe the individual components of the system in de-
tail in the following subsections.

2.1. Room configuration generation

The room configuration generator takes distributions of prior
knowledge as input and outputs an arbitrary number of ran-
domly generated room configurations. Specifically for the
Google Home use case, we created 3,000,100 room configu-
rations to include a large number of room sizes, source posi-
tions, signal to noise ratios (SNRs), reverberation times, and
number of noise sources. The size of the room was randomly
set to have a width uniformly between 3 meters to 10 meters,
and a length between 3 meters to 8 meters and a height between
2.5 meters to 6 meters. Within the room, the target and noise
source locations are randomly selected with respect to the mi-
crophone. For the target source, the azimuth, θ, and elevation,
φ, are randomly selected to be in the interval [−180.0o, 180.0o]
and [45.0o, 135.0o], respectively. The number of noise sources
is randomly set to be between zero and three. The location of
the noise source is also randomly selected, but the distribution
of θ and φ is constrained to be between −180.0o and 180.0o

and −30.0o and 180.0o, respectively. We intentionally set the
distribution of the noise sources to be wider than that of the tar-
get source. When the sound source locations (target or nosie)
are chosen, we assume that they are at least 0.5 meters away
from the wall. The noise source intensities are set so that the ut-
terance level Signal-to-noise Ratio (SNR) is between 0 dB and
30 dB, with an average of 12 dB over the entire corpus. The
SNR distribution was also conditioned on the target to mic dis-
tance. Fig. 2(a) shows the distribution of the SNR from which
the SNR level of specific utterance is pulled. Reverberation of
each room is randomly chosen to be between 0 milliseconds
(no reverberation) and 900 milliseconds. Fig. 2(b) shows the
distribution of the reverberation time given in T60.

The distributions were chosen with two goals in mind: 1)
The distribution should cover a wide range of use cases, and 2)
The distribution should be biased towards the typical use cases
the device is targeting. We did not spend a lot of effort trying
to tune the parameters, but rather chose a wide range in order to
make sure that the acoustic model sees a high level of variation
in the simulated training data.

2.2. Room Simulation

Fig. 3(a) shows an illustration of a room structure in our room
simulator. The room is assumed to be a cuboid with one or more
microphones in the room. There is exactly one target sound
source. There may be zero, one, or multiple noise sound sources
inside the same room. All sound sources are assumed to be
omni-directional. In Fig. 3(a), the target sound source and noise
sound sources are represented by a black ball and light gray

(a)

(b)

(c)

Figure 2: (a) The SNR distribution, (b) The reverberation time
(T60) distribution, and (c) The distribution of the distance from
the target source to microphone.

balls, respectively.
Assuming that there are I sound sources including one

target source, and J microphones, and assuming that acous-
tic reflection inside a room is modeled by a Linear Time-
Invariant(LTI) system, the received signal at microphone j, 0 ≤
j < J is expressed by the following equation:

yj [n] =

I−1∑
i=0

(αijhij [n] ∗ xi[n]) (1)

where xi[n], 0 ≤ i < I is a sound source, and αij are coeffi-
cients that control signal level. Among the sound sources, we
define x0[n] to be the target sound source, while the remaining
xi[n], 1 ≤ i < I are noise sound sources. To reduce the
computational cost, all computations in (1) are performed in the
frequency domain.

2.3. Room impulse response modeling

We use the image method to model the room impulse responses
hij [n] [24, 25, 26] in (1). Given the sound source position,
the microphone position, and the reverberation time, we obtain
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Figure 3: (a) A simulated room: There may be multiple mi-
crophones, a single target sound source, multiple noise sources
in a cuboid-shape room with acoustically reflective walls. (b)
Spherical coordinates.

Figure 4: A diagram showing the location of the real and the
virtual sound sources assuming that the walls reflects acoustic
wave like a mirror

the location of impulses by calculating the distance between the
microphone and the real and the virtual sound sources shown in
Fig. 4. Following the image method, the impulse response is
calculated using the following equation [24, 25]:

h[n] =

I−1∑
i=0

rgi

di
δ

[
n−

⌈
difi

c0

⌉]
(2)

where i is the index of each virtual sound source, and di is the
distance from that sound source to the microphone, r is the re-
flection coefficient of the wall , and gi is the number of the
reflections to that sound source, and c0 is the speed of sound in
the air. To reduce the computational cost of the room impulse
response calculation in (2), we adopted the efficient RIR calcu-
lation approach proposed by S. McGovern [26]. Reverberation
is controlled via the reflection coefficient r. To convert a ran-

domly sampled T60 time into the reflection coefficient r, we use
the Eyring’s empirical equation in the inverse form [27]:

α = 1− exp

(
−0.16

V

ST60

)
, (3)

r =
√

1− α2, (4)

where V and S are the volume and the total surface area of the
room, respectively. I in (2) is the total number of true and vir-
tual sound sources for a single true sound source. This can be
set arbitrarily, but the chosen value will directly affect computa-
tion speed. In training the acoustic model for Google Home, we
used I = 173 = 4912 sound sources including one true source
for each true sound source.

Even though speech samples are usually sampled at either
8 kHz or 16 kHz, we need much higher sampling rate for the
RIR creation in (2). This is because h[n] in (2) is a series of
impulses, and time delay difference the simulator can model
is limited by the time delay between two adjacent impulses. If
we represent the time delay between two impulses as τ , then the
relationship between the angle θ and τ is given by the following
equation:

θ = arcsin

(
cairτ

fsd

)
. (5)

Form the above equation, to have at least θ0 resolution for 1-
sample delay, the sampling rate should satisfy the following
equation:

fs ≥
cair

d sin(θ0)
(6)

To have 0.5-degree resolution assuming the microphone spac-
ing of 7.1-cm, the above equation yields 548.8 kHz. To have
some margin for other microphone spacing, in our room simu-
lator, the default impulse response is sampled at 1, 024-kHz.

One of the limitations of the image method is if there
is strong reverberation, then it introduces an unwanted low-
frequency component as shown in Fig. 6(c) [24]. In speech
recognition experiments, we found that this low frequency com-
ponent does no harm since the frequency of such components
are usually lower than 10.0 Hz. But to remove this low fre-
quency components for other cases, we optionally process a
linear-phase Finite-duration Impulse Response (FIR) filter af-
ter down-sampling to 128 kHz. We chose the cut-off frequency
of 80-Hz.

After the aforementioned pre-processing, the final RIR is
down-sampled to have the same sampling rate as the speech
signal. For the Google Home use case, we assume two micro-
phones with a mic-spacing of 71 millimeters.

2.4. Acoustic model training

For the experiments, the simulated data is used to train a
CFFT factored complex linear projection (fCLP) LDNN acous-
tic model. fCLP LDNN is chosen as it takes complex FFT as
input with the potential of doing implicity multichannel spatial
processing. the fCLP layer uses 5 look directions and a 128 di-
mensional CLP layer. This is followed by a low rank projection
and the LDNN acoustic model. We use four layers of LSTMs
each of which has 1024 units, and a 1024 dimensional DNN
before the final softmax layer (see [20] for additional details).
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Figure 5: The procedure for calculating Room Impulse Re-
sponses (RIRs).
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Figure 6: (a) Simulated room impulse responses. (a) Small
reverberation (T60 = 70 ms) without high-pass filtering. (b)
Small reverberation (T60 = 70 ms) with a sharp linear-phase
high -pass filtering. (c) Strong reverberation (T60 = 400 ms)
without high-pass filtering. (d) Strong reverberation (T60 = 400
ms) with a sharp linear-phase high-pass filtering.

3. Experimental results
In this section, we show speech recognition experimental results
with and without using the room simulator. For the recognition

Table 1: Speech recognition Word Error Rates(WERs)
Trained with

the room simulator Baseline system

Original Test Set 11.97 % 12.02 %
Simulated Noise Set 19.55 % 47.88 %

Device 1 21.98 % 50.14 %
Device 2 22.23 % 48.65 %
Device 3 22.05 % 56.27 %
Device 3

(Noisy Condition) 34.83 % 76.01 %

Device 3
(Multi-talker Condition) 44.79 % 78.95 %

system using the room simulator, we used the configuration de-
scribed in Sec. 2.1. For the baseline system, we used the same
pipeline in Fig. 1, but we exclude the room simulation stage – in
effect, the model is trained on pseudo-clean utterances. For this
baseline system, we replicate the original signal-channel audio
to make two-channel input.

For training the acoustic model, we used anonymized
18,000-hour English utterances (22-million utterances), which
are hand-transcribed. For each epoch, simulated utterances are
regenerated assuming different noise and room configurations
from the original 18,000-hour utterances. The acoustic model
is trained to minimize the Cross-Entropy (CE) as the objective
function. The supervised labels for CE training are always gen-
erated from the clean utterance. We chose not to use more com-
plex acoustic models and skipped the sequence training step for
faster turnaround times. We expect the gains to remain even af-
ter these stages as they are somewhat orthogonal to the quality
of training data. The main goal of the experimental results in
this section is to compare Word Error Rates (WERs) between
system trained w/ and w/o simulated far-field data.

To evaluate our speech recognizer, we used an evaluation
set of around 15-hour of utterances (13,795 utterances) obtained
from anonymized voice search queries. Since our objective is
deploying our speech recognition systems on far-field stand-
alone devices such as Google Home, we rerecorded this eval-
uation set using the actual hardware in far-field environment.
Note that the actual Google Home hardware has two micro-
phones with microphone spacing of 7.1 cm, which matches the
configuration of the room simulator. Three different devices
were used in rerecording, and each device was placed in five
different locations in an actual room resembling a real living
room. These devices are listed in Table 1 as ”Device 1”, ”De-
vice 3”, and ”Device 3”. As shown in Table 1, the acoustic
model trained using simulated utterances performs much better
than the original baseline.

4. Conclusions
In this paper, we described our system to simulate millions of
different utterances in millions of virtual rooms. We described
the design decisions of the simulator and showed how we used
this system to train deep-neural network models. This simula-
tion based approach was employed in our Google Home product
and brought significant performance improvement.
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