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ABSTRACT

This paper discusses a new combination of techniques that
help in improving the accuracy of speech recognition in ad-
verse conditions using two microphones. Classic approaches
toward binaural speech processing use some form of cross-
correlation over time across the two sensors to effectively iso-
late target speech from interferers. Several additional tech-
niques using temporal and spatial masking have been pro-
posed in the past to improve recognition accuracy in the pres-
ence of reverberation and interfering talkers. In this paper, we
consider the use of cross-correlation across frequency over
some limited range of frequency channels in addition to the
existing methods of monaural and binaural processing. This
has the effect of locating and reinforcing coincident peaks
across frequency over the representation of binaural interac-
tion and provides local smoothing over the specified range of
frequencies. Combined with the temporal and spatial mask-
ing techniques mentioned above, this leads to significant im-
provements in binaural speech recognition.

Index Terms—
Binaural speech, auditory processing, robust speech

recognition, speech enhancement, cross-correlation

1. INTRODUCTION

Speech recognition systems have undergone significant im-
provements in recent times especially with the advent and
widespread use of machine learning techniques [1, 2]. Nev-
ertheless, noise robustness remains problematical. Robust-
ness is especially important with the increasing use of voice-
based user interface for cell phones, smart home devices, cars
etc. Improving speech recognition accuracy in the presence
of non-stationary noise sources and other adverse conditions
such as reverberation is still a challenge.

Human beings, on the other hand, are extremely good
at localizing and separating simultaneously-presented speech
sources in a variety of adverse conditions, the well known
“cocktail party problem”. Human hearing, even in adverse
conditions, remains fairly robust. It is useful to attempt to
understand the reason behind the robustness of human per-
ception and to apply techniques based on our understanding
of auditory processing to improve recognition in noisy and

reverberant environments. There have been several success-
ful techniques born out of this approach (e.g. [3, 4, 5, 6, 7],
among others).

Among the models of binaural hearing, one of the earli-
est was the model of Sayers and Cherry [8], which related
the lateralization of binaural signals to their interaural cross-
correlation. In terms of binaural speech processing, a popular
approach towards separating target sounds in adverse environ-
ments is the grouping of sources according to common source
location. This usually entails the use interaural time differ-
ence (ITD) and interaural intensity difference (IID). ITD is
caused by differences in path length between a source and
the two ears, producing corresponding differences in the ar-
rival times of that sound to the two ears. (Normally, binau-
ral recordings must be made using an artificial head in order
for significant IID cues to be present.) Models that describe
how these cues are used to lateralize sound sources are re-
viewed in [9, 10], among other sources. Straightness weight-
ing refers to a hypothesis that greater emphasis is given to
the contributions of ITDs that are consistent over a range of
frequencies [11, 12, 13]. This was motivated by the fact that
real sounds emitted by point sources produced ITDs that were
consistent over a range of frequencies. Hence, the existence
of a “straight” maximum of the interaural cross-correlation
function over a range of frequencies could be used to identify
the correct ITD.

Missing-feature techniques attempt to identify the subset
of spectro-temporal elements in a spectrogram-like display
that are unaffected by sources of distortion such as additive
noise, competing talkers, or the effects of reverberation, and
reconstruct a signal based only on the undistorted components
[14]. These algorithms can provide rather good performance
provided that the undistorted components are correctly identi-
fied. Several researchers have demonstrated that information
based on ITD (or in some cases IID or interaural correlation)
can be very useful in estimating binary (or continuous) masks
that indicate which components of a signal are close to those
of the desired source (e.g. [15, 7, 16]. In [17], the Phase
Difference Channel Weighting (PDCW) algorithm is used to
perform binary mask estimation using interaural phase dif-
ference in the frequency domain, leading to considerable im-
provements in recognition accuracy.

The precedence effect describes the phenomenon where



directional cues attributed to the first-arriving wavefront (cor-
responding to the direct sound) are given greater perceptual
weighting than those cues that arise as a consequence of sub-
sequent reflected sounds [18, 19, 20]. While the precedence
effect is clearly helpful in maintaining constant localization
in reverberant environments, many researchers believe that
it also contributes to improved speech intelligibility in the
presence of reverberation. The precedence effect is typically
modeled as a mechanism that suppresses echoes at either the
monaural level [21] or binaural level [22]. A reasonable way
to overcome the effects of reverberation would be to boost
these onsets or initial wavefronts. This can also be achieved
by suppressing the steady state components of a signal. The
Suppression of Slowly-varying components and the Falling
edge of the power envelope (SSF) algorithm [4, 23] was mo-
tivated by this principle and has been successful in improv-
ing speech recognition accuracy in reverberant environments.
There have been several other techniques developed based on
precedence based processing that have also shown promising
results (e.g. [24, 25]).

In this paper we introduce a new processing procedure,
Cross-Correlation across Frequency (CCF), which (as the
name implies) correlates signals across the analysis channels.
We show that although computational intensive, CCF can
improve recognition accuracy very substantially in environ-
ments that contain both additive interference and reverbera-
tion. In Sec. 2 we review some basic binaural phenomena
along with some algorithms motivated by aspects of binaural
hearing that have been used to improve speech recognition
accuracy, and we introduce the CCF algorithm in Sec. 3.
We describe our experimental results in Sec. 4 and provide
discussion and conclusions in Secs. 5 and 6.

2. BINAURAL PROCESSING

This paper addresses binaural processing in adverse condi-
tions, which include the presence of reverberation and inter-
fering talkers. The techniques described assume that record-
ings are made with two microphones as shown in Figure 1.
The two microphones are placed in a reverberant room with
the target talker directly in front of them. An interfering talker
is also present located at an angle of φ with respect to the two
microphones.

The techniques discussed in this paper are largely moti-
vated by knowledge of human monaural and binaural auditory
processing. A basic block diagram of the algorithm discussed
in this paper is shown in Figure 2. Explanations of each of the
blocks are provided below.

2.1. Steady-state suppression

In the presence of reverberation, steady-state suppression has
been shown to vastly improve accuracy in automatic speech
recognition (ASR). The use of steady-state suppression was
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Fig. 1. Two-microphone recording with an on-axis target
source and off-axis interfering source used in this study.
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Fig. 2. Block diagram describing the overall algorithm.

originally motivated by the precedence effect and the mod-
ulation frequency characteristics of the human auditory sys-
tem. It aims at boosting the parts of the input signal that are
believed to correspond to the direct sound, which indirectly
suppresses reflected sounds. In this paper, the SSF algorithm
noted above [4, 23] was used to achieve steady-state suppres-
sion.

The SSF algorithm in its initial formulation decomposes
the input signal into 40 gammatone frequency channels. For
each of these channels, the frame-level power is computed
and then lowpass filtered. This lowpass-filtered representa-
tion of the short-time power is subtracted from the original
power contour to obtain the processed power. A weighting co-
efficient is then computed by taking the ratio of the processed
power to the original power. A set of spectral weighting co-
efficients are then derived from these weights. The spectral



weighting coefficients, in turn, are multiplied with the spec-
trum of the original input signal to produce the processed sig-
nal. This suppresses the falling edge of the power contour
and is highly effective in reverberant environments to improve
ASR performance.

In this paper, we include results both with and with-
out SSF processing. Steady-state suppression is performed
separately on each microphone channel. The application of
steady-state suppression monaurally has been seen to be more
effective as seen in [6].

2.2. Binaural Interaction

The optional steady-state suppression stage is followed by
some sort of binaural interaction between the two microphone
channels. The binaural interaction technique used in this pa-
per is the Phase Difference Channel Weighting (PDCW) al-
gorithm that achieves the ITD-based signal separation in the
frequency domain. Results from Delay-and-Sum (DS) pro-
cessing have also been presented in Section 4 as a baseline.

2.2.1. Phase Difference Channel Weighting (PDCW)

The PDCW algorithm separates signals according to ITD, in a
crude approximation to human sound separation. PDCW es-
timates ITD indirectly, computing interaural phase difference
(IPD) information in the frequency domain and then dividing
by frequency to produce ITDs. Again, it is assumed that there
is no delay in the arrival of the target signal between the right
and left channel.

The PDCW algorithm applies a Short-Time Fourier
Transform (STFT) on the input signals from the two micro-
phones. The phase difference between signals from the two
microphones is calculated from the STFT. Components of the
STFT are retained if they are within zero ITD in magnitude
by a threshold amount. A binary mask µ(k,m) is derived for
the kth time frame and the mth frequency channel using the
ITD d(k,m) such that, µ(k,m) = 1 for components with
ITD less than the threshold magnitude and 0 otherwise.

While the binary mask provides a degree of signal sep-
aration by itself, we have found that recognition accuracy
improves when it is smoothed over time and frequency This
smoothing along frequency, called “channel weighting” in the
original algorithm, is performed using a gammatone weight-
ing function. PDCW provides substantial improvements in
ASR accuracy in the presence of interfering talkers, although
its performance degrades sharply in the presence of reverber-
ation [6]. The presence of reverberation produces reflections
that are added to the direct response in a fashion that leads
to unpredictable phase changes, which essentially makes the
ITD-estimation processing much less accurate. Since PDCW
relies on oracle knowledge of the target location, this might
lead to the suppression of what would have been the more vi-
able signal acoustically. Further details about the algorithm
are provided in [17].
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Fig. 3. Block diagram describing the Cross-Correlation
across Frequency (CCF) algorithm.

3. CROSS-CORRELATION ACROSS FREQUENCY

Cross-Correlation across Frequency (CCF) is a new technique
that we introduce in this study to emphasize portions of the in-
put that are consistent across frequency. CCF is motivated by
the concept of “straightness” weighting as discussed in [11].
In essence, this technique aims at boosting regions of coher-
ence across frequency, and it also provides smoothing over a
limited range of frequencies.

A block diagram describing CCF processing is shown in
Figure 3. This technique roughly follows the manner in which
speech is processed in the human auditory system. The pe-
ripheral auditory system is modeled by a bank of bandpass
filters. We use a modified implementation of the gamma-
tone filters in Slaney’s Auditory Toolbox [26]. Zero-phase
filtering is obtained by computing the autocorrelation func-
tion of the original gammatone filters, which are adjusted to
roughly compensate for the reduction in bandwidth produced
by squaring the magnitude of the frequency response when
performing the autocorrelation operation. The center frequen-
cies of the filters were linearly spaced according to the ERB
scale [27]. For each of these filters, a secondary set of satel-



lite filters is designed. The total span of these satellite filters
determine the range of frequencies over which CCF will be
performed.

In other words, a total of N groups of bandpass filters are
created, each with one “center” band and m/2 satellite bands
on either side of the center band in frequency. Here, m rep-
resents the total number of satellite bands. Since the satellite
bands are symmetric about the center band, m is always even.
TheseN filter groups are denoted by “Filter Group 1”, “Filter
Group 2” ....“Filter Group N” in Figure 3. Each of these fil-
ter groups consists of one center band and the corresponding
satellite bands. The center frequency of the lth pair of satel-
lite filters on each side of the filter group center band is given
by,

CB ± s× α
m
2 +1−l, 1 ≤ l ≤ m/2 (1)

where CB is the center band frequency for a given filter
group, s is a parameter that determines the span of the fre-
quencies on either side of the center band frequency and α
is a parameter that controls the spacing between the satellite
filters. In this study, α was set to 0.7 which produces more
closely spaced satellite filters closer to the center band and
wider spacing away from the center band. N was set to 20
and m was set to 6. The span parameter s was set to 2500 Hz.

Given the input signal x[n], the filter outputs for a given
filter group are given by

xkp[n] = x[n] ∗ hkp[n] (2)

where xkp[n] is the filter output of the kth band of the pth

filter group, with x[n] as input. Here k ranges from 1 tom+1
(comprising of m satellite bands and 1 center band) and p
ranges from 1 to N .

Bandpass filtering is followed by a rough model of audi-
tory nerve processing, which includes half-wave rectification
of the filter outputs. Following our earlier work in “polyaural”
processing with multiple microphones [28], the filter outputs
are also negated and similarly half-wave rectified. While this
component of the processing is non-physiological, it enables
the entire signal to be reconstructed, including positive and
negative portions. Cross-correlation across frequency is then
computed within each individual filter group as shown below,

Xfcorr+p[n] =

m+1∏
k=1

x+kp[n]

Xfcorr−p[n] =

m+1∏
k=1

x−kp[n]

(3)

where x+kp[n] and x−kp[n] are the positive and nega-
tive half-wave-rectified portions of the signals xkp[n] de-
fined above, and Xfcorr+p[n] and Xfcorr−p[n] denote the
cross-correlation across frequency of x+kp[n] and x−kp[n]
for the pth filter group. Xfcorr+p[n] is combined with

WER for RT60 = 0 0 dB 10 dB 20 dB Clean

Delay and Sum 80.78% 32.01% 12.72% 6.54%
PDCW 23.01% 11.48% 8.15% 6.51%
PDCW+CCF 18.19% 11.48% 8.49% 7.48%
PD+CCF 17.86% 10.61% 8.32% 7.48%
SSF 80.34% 31.31% 12.99% 6.82%
SSF+PDCW+CCF 20.98% 12.21% 9.37% 8.51%

WER for RT60 = 0.5s 0 dB 10 dB 20 dB Clean

Delay and Sum 95.95% 85.96% 66.44% 56.92%
PDCW 95.36% 86.64% 73.31% 66.63%
PDCW+CCF 94.56% 82.14% 68.53% 63.75%
SSF 97.14% 63.93% 35.03% 25.97%
SSF+PDCW+CCF 84.65% 48.77% 32.53% 26.15%

WER for RT60 = 1s 0 dB 10 dB 20 dB Clean

Delay and Sum 96.04% 92.5% 86.12% 82.52%
PDCW 96.08% 93.32% 89.08% 85.54%
PDCW+CCF 96.79% 93.84% 87.27% 84.18%
SSF 96.51% 78.96% 59.1% 52.17%
SSF+PDCW+CCF 92.59% 68.2% 53.27% 46.78%

Table 1. Comparison of algorithms with respect to Word Er-
ror Rate as a function of Signal-to-Interferer Ratio for rever-
beration times of 0, 0.5 and 1 s for the RM1 database (Lowest
WER for each condition highlighted)

−Xfcorr−p[n] to produce the complete cross-correlation
across frequency for the pth filter group, Xfcorrp [n]:

Xfcorrp [n] = Xfcorr+p[n] + (−Xfcorr−p[n]) (4)

In order to limit any distortion that may have taken place,
the signal is bandpass filtered again to achieve smoothing.
The smoothed signal is denoted by X̃fcorrp [n]. To resynthe-
size speech, all the filter groups are then combined to produce

y[n] =

N∑
p=1

X̃fcorrp [n] (5)

The results from ASR experiments using CCF in combi-
nation with PDCW and SSF processing are discussed in Sec-
tions 4 and 5.

4. EXPERIMENTAL RESULTS

ASR experiments were conducted using the CMU SPHINX-
III speech recognition system and the DARPA Resource
Management (RM1) and Wall Street Journal (WSJ) databases
[29]. The training set for RM1 consisted of 1600 utterances
and the test set consisted of 600 utterances. For WSJ, these



numbers were 7138 and 330 respectively. Features used were
13th order mel-frequency cepstral coefficients. Acoustic
models were trained using clean speech that had undergone
the same type of processing as the algorithm being tested.

We used the RIR simulation package [30] which imple-
ments the well-known image method [31] to simulate speech
corrupted by reverberation. For the RIR simulations, we used
a room of dimensions 5m× 4m× 3m. The distance between
the two microphones is 4 cm. The target speaker is located
2 m away from the microphones along the perpendicular bi-
sector of the line connecting the two microphones. An in-
terfering speaker is located at an angle of 45 degrees to one
side and 2 m away from the microphones. The microphones
and speakers are 1.1 m above the floor. To prevent any ar-
tifacts from standing wave phenomena that create peaks and
nulls in response at particular locations, the whole configu-
ration described above was moved around in the room to 25
randomly-selected locations such that neither the speakers nor
the microphones were placed less than 0.5 m from any of the
walls. The target and interfering speaker signals were mixed
at different levels after simulating reverberation.

All results from the ASR experiments using the RM1
database are tabulated in Table 1. The lowest Word Error
Rate (WER) obtained for each condition is highlighted. We
plot a selection of important results from Table 1 in Fig-
ure 4. Results using the WSJ database are similarly shown in
Figure 5.

Considering first the performance of the older compen-
sation algorithms PDCW and SSF as described in Table 1
and Figs. 4 and 5, we note that PDCW provides excellent
compensation for noise in the absence of reverberation, but
PDCW becomes less effective as the RT60 is increased from
0 to 1 seconds. SSF, in contrast, provides a good improve-
ment in recognition accuracy in the presence of reverberation
but its effectiveness is limited by the presence of interfering
noise sources. Adding CCF to PDCW and SSF provides an
even further drop in WER, especially at low and moderate
Signal-to-Interferer Ratios (SIR).

Figure 4 (a) depicts the performance of some of the algo-
rithms that provided the lowest WER in the absence of rever-
beration for RM1. Let us consider for the moment the perfor-
mance of the algorithms PDCW, PD (which is PDCW without
the smoothing along the frequency axis provided by convolv-
ing with a kernel in the shape of a gammatone response) and
the CCF algorithm, which also provides smoothing over fre-
quency. As was mentioned in Sec. 2.2.1, the use of the bi-
nary mask alone in the PDCW and PD algorithms provides
signal separation. The PD+CCF method shown in Figure 4
(a) replaces the smoothing in PDCW provided by channel
weighting (CW) with the smoothing provided by CCF. The
use of PD+CCF leads to a 22% relative drop in WER at 0
dB and an 8% relative drop at 10 dB compared to the use of
PDCW alone. At higher SIRs, the opportunity for improve-
ment reduces drastically and the WER for PD+CCF provide

(a)

(b)

(c)

Fig. 4. Word Error Rate for the RM1 database as a function
of Signal-to-Interferer Ratio for an interfering signal located
45 degrees off axis at various reverberation times: (a) 0 s (b)
0.5 s (c) 1 s.

slightly worse accuracy than using PDCW alone. For the WSJ
database, as seen in Figure 5 (a), the improvement provided
by CCF is clear at low SIRs in the absence of reverberation,



(a)

(b)

Fig. 5. Word Error Rate for the WSJ database as a function of
Signal-to-Interferer Ratio for an interfering signal located 45
degrees off axis at various reverberation times: (a) 0 s (b) 0.5
s

but PDCW alone performs better than the other algorithms for
higher SIRs.

Some form of steady state suppression such as the SSF
algorithm is required to achieve improvements in ASR in re-
verberant environments, as seen Table 1 and Figures 4 and
5. As seen in Figure 4 (b) and (c) and Figure 5 (b), com-
bining CCF with SSF and PDCW gives significant gains over
using SSF alone. In the presence of reverberation, the contri-
bution of PDCW to ASR improvement is limited. However,
in combination with SSF and CCF, the improvements are sig-
nificant. This is especially the case at moderate SIRs. The use
of SSF+PDCW+CCF gives a relative improvement of nearly
24% at 10 dB compared to using SSF alone for the 0.5 s re-
verberation time case for RM1 as seen in Figure 4 (b). For
WSJ, these improvements are slightly lower (close to 12% at
10 dB). These trends, however are quite consistent and hold
even at reverberation time of 1 s as seen in Figure 4 (c).

5. DISCUSSION

Reviewing the results described above, we observe that
PDCW works best in the absence of reverberation and gives
considerable improvements at low SIRs. The CCF algorithm
can be thought of as a method to enhance this binaural in-
teraction by both reinforcing coherence and providing local
smoothing across frequencies. This is why combining the
CCF algorithm with any form of binaural interaction usually
leads to significant improvements compared to using binaural
interaction alone.

In the presence of reverberation, it becomes necessary to
employ some form of steady-state suppression (SSF, in this
case) to obtain better recognition accuracy. With the help
of SSF in dealing with reverberation, PDCW+CCF could
then be used to isolate the target speaker from the inter-
fering talkers. This is consistent with the results wherein
SSF+PDCW+CCF outperformed SSF for both reverberation
time of 0.5 s and 1 s. Needless to say, all of these algorithms
outperformed the Delay and Sum baselines by a huge margin.

It is interesting to note that the combination with CCF pro-
vides the most significant gains at low SIRs in the absence of
reverberation and at moderate SIRs in the presence of rever-
beration. We believe that this has to do with the interaction
of SSF and PDCW. In the absence of reverberation, PDCW
is most helpful at low SIR, with and without the combina-
tion with CCF. SSF, on the other hand, helps the most at high
SIRs in the presence of reverberation while PDCW performs
worse at high SIRs in reverberation. For these reasons, we
believe that the combination of SSF+PDCW+CCF gives the
most significant gains in WER at moderate SIRs in the pres-
ence of reverberation. As seen in Section 4, the best overall
gains in reverberation were at 10 dB.

6. SUMMARY AND CONCLUSIONS

In this paper, we discuss a new technique for improved recog-
nition of binaural speech. This technique exploits coherence
in frequency for monaural and binaural signals. Combined
with steady-state suppression, this technique significantly im-
proves recognition in the presence of reverberation and mask-
ing noise.
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