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Abstract—In this paper, we present a noise robustness algo- performance in additive noise. Let us imagine a specific
rithm called Small Power Boosting (SPB). We observe that in time-frequency bin with small power. Even if a relatively
the spectral domain, time-frequency bins with smaller powe are small distortion is applied to this time-frequency bin, doe

more affected by additive noise. The conventional way of hatling th t f th . i itv the distorti
this problem is estimating the noise from the test utteranceand € nature of the compressive noniinearty the distortian ¢

doing normalization or subtraction. In our work, in contrast, we become quite large.
intentionally boost the power of time-frequency bins with snall In this paper, we explain the structure of the small boosting

energy for both the training and testing datasets. Since tire-  (SPB) algorithm in two different ways. In the first approach,
frequency bins with small power no longer exist after this paver we apply small power boosting to each time-frequency bin

boosting, the spectral distortion between the clean and coupt . - .
test sets becomes reduced. This type of small power boostifig in the spectral domain, and then resynthesize speech (SPB-

also highly related to physiological nonlinearity. We obseve that ~R). The resynthesized speech is fed to the feature extractio
when small power boosting is done, suitable weighting smdaing  system. This approach is conceptually straightforwarddss

becomes highly important. Our experimental results indicde computationally efficient (because of the number of FFTs
that this simple idea is very helpful for very difficult noisy oy |FFTS that must be performed). In the second approach
environments such as corruption by background music. . . )
) s . . Jve use SPB to obtain feature values directly (SPB-D). This
Index Terms: Robust speech recognition, physiological mod- . .
) . : approach does not require IFFT operations and the system
eling, rate-level curve, weight smoothing . o
is consequently more compact. As we will discuss below,
effective implementation of SPB-D requires smoothing ia th
spectral domain.
The performance of speech recognition systems in clean en-
vironments has improved impressively in the decades fellow Il. THE PRINCIPLE OF SMALL POWER BOOSTING

ing the introduction of statistical modeling based on I_-|i_u>|de Before presenting the structure of the SPB algorithm, we
Markov Models (HMMs) [1] £.9.[2]). Nevertheless, obtaining first review how we obtain spectral power in our system, which
good performance in environments that are different froen thy similar to the system in [15]. Pre-emphasis in the form of
training environment remains a_c.hallengmg problem. BOWAT f7(2) =1 -0.972~' is applied to an incoming speech signal
mental dn‘f_erences include additive noise, channel distoy sampled at 16 H z. A short-time Fourier transform (STFT) is
speaker differences, and so on. Many algorithms have begflcylated using Hamming windows of duration of 25.6 ms.
proposed to deal with this problem which show significar§yeciral power is obtained by integrating the magnitudeésef
improvement in performance for quasi-stationary noge.( STFT coefficients over a series of weighting functions [16].

[3], [4], [5], [6], [7]). Unfortunately these same algontts This procedure is represented by the following equation:

frequently do not show significant improvements in more

difficult transitory environments such as background music I e i jwrn 12

(eg. [8]). P(i,j) = > |X(i;e/**)H;(e"))| @
Recent studies show that for non-stationary disturbances k=0

such as background music or background speech, algorithimghe above equation and j represent the frame and chan-

based on missing features.d. [9], [10]) or auditory pro- nel indices respectivelyN is the FFT size, andd;(e/**)

cessing are more promising.§ [11], [12], [13], [14]). Still, is the frequency response of th&" Gammatone channel.

the improvement in non-stationary noise remains less than tX (i; e’*) is the STFT for theit" frame.w, is defined by

improvement that is observed in stationary noise. In pueviow, = %, 0<E<N-1.

work [12], we also observed that the “threshold point” of the In Fig. 1(a), we can observe the distributiond@f( P (i, j))

auditory nonlinearity plays an important role in in improgi for clean speech, speech in 0-dB music, and speech in 0-dB

I. INTRODUCTION



nonlinearity:

0.09f Tgluer?:]pted by 0 dB Music Noise 1

o008l == Corrupted by 0 dB White Noise | L. ) 9

) PS(Z,]) = P(Za]) + (appeak) (2)
0.07t 1

006 ~ ~ 1 Using the above equation, iP(i,j) >> «Ppeqk, then

we obtain Ps(i,j) ~ P(i,7). For small power region (if
P(i,7) << aPpeqr), We obtainPs (i, j) =~ aPpeak-

We will call o the "small power boosting coefficient” or
"SPB coefficient”. P, is defined to be the 95 percentile
in the distribution of P(¢, 7). In our algorithm, further ex-
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Pégvgapaifﬁim °o plained in Section Il and Ill, after obtaining (i, j), either
resynthesis or smoothing is done. After that, the logarithm
01— nonlinearity is followed. Thus, if we plot the entire nordar-
0.09f| - Corrupted by 0 dB Music Noise 1 ity defined by (2) and the subsequent logarithmic nonlirgari
'='= Corrupted by 0 dB White Noise R .
008 ] then is represented by Fig. 2. Suppose that the power of clean
EZZ; ' I ] speech at a specific time-frequency B, 5) is corrupted by
é;o:os— ‘ | | additive noisev. The log spectral distortion is represented by
2 oodl . the following equation:
o0k O .. .. ..
| d(i,j) = log(P(i,j) +v) —log(P(i, ]))
I l 1
0.01 ) = log (1 + ——= ) (3)
S e e o s S n(i, j)
SPB Processed Power Ps(" j) (dB) i . . i . i
(b) wheren (i, j) is the Signal-to-Noise Ratio (SNR) for this time-
frequency bin defined by:
Fig. 1. Comparison of the Probability Density Functions ERDobtained in P(i.i
three different environments : clean speech, 0-dB addiiaekground music, 77(i ]) _ (z, ]) (4)
and _O-dB qdditive white n_oise. Probability Qensity funmaio(PDF_s) were ’ v
Sv?t‘ﬁ“ge;’ov“gP%;*;‘;ffg”v;,”e‘f'f?gi'n'fgi’ggf‘"”e""“ty (upparehpand using SPB Applying the no_nllinear.ity of (2). and the logarithmic nonlin
a earity, the remaining distortion is represented by:
D ds(i,j) = log(Ps(i,j) +v) —log(Ps(i, j))
1
= log |1+ (5)

o+ (2 )’

Nonlinearity Output

:“% The largest difference betwe€fy, j) andd, (i, j) occurs when
= <P Norinaarty olowad by n(i, 7)is relatively small. For small power regions evervifs
- Logartomie Norieatty not large,n(i, j) will become relatively large, and in (3), the
Input Power (inLogaritmic Seale) — log(Fyeq) distortion will diverge to infinity ag(i, j) approaches zero. In

sl P60 contrast, in (5), even ifi(i, ) approaches zero, the distortion

' o _ _ converges tdog (1 + %5).
Fig. 2. The total nonlinearity consists of small power bowstand the  Consider now the power distribution for SPB-processed
subsequent logarithmic nonlinearity in the SPB algorithm powers. Fig. 1(b) compares the distributions for the same
condition as Fig. 1(a). We can clearly see that the distortio
white noise. We used a subset of 50 utterances to obtain thissgreatly reduced. As can be seen, SPB reduces the spectral
distributions from the training portion of the DARPA Resoer distortion and provides robustness to additive noise. hewe
Management 1 (RM1) database. In plotting the distributionas described in our previous paper [15], all nonlinearities
we scaled each waveform to set the 95 percentild@f j) motivated by human auditory processing such as the “S™-
to be 0 dB. We note in Fig. 1(a) that higher valuesitf, j) shaped nonlinearity and the power-law nonlinearity cualss
are (unsurprisingly) less affected by the additive noisg the use this characteristic, but these approaches are lestivadfe
values that are small in power are severely distorted bytimddi than the SPB approach described in the paper. The key
noise. While the conventional approach to this problem dfference, though, is that in other approaches, the neatity
spectral subtractiore(@. [17]), this goal can also be achieveds directly applied for each time-frequency bin. As will be
by intentionally boosting power for all utterances, thgrebdiscussed in Section IV, directly applying the non-lingari
rendering the small-power regions less affected by thetiaddi results in reduced variance for regions of small power, thus
noise. We implement the SPB algorithm with the followingeducing the ability to discriminate small differences ower
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where is the total number of channels, akdis a dummy
index for discrete frequency. The reconstructed spectraim i

l“’[“’” lu'(l.,/} w(l —1 /wl
4{ Spectral Reshaping ‘

[xe P obtained from the original spectrunX (i;e’<*) by using
\ ’Fl” | 1y (i, k) in (7) as follows:
xg[n:j] . .
‘ Overlap-Addition ‘ Xs (’L7 €ka) = Mg (Z, k)X (’L, €jwk) (8)
@] . . . : .
| Cmm_m,}mpmm | Speech is resynthesized using; (z’;eﬂ‘“k) by performing
I IFFT and using OLA with hamming windows of 25 ms
Feature duration and 6.25 ms intervals between adjacent frameshwhi

satisfy the OLA constraint for undistorted reconstruction
Fig. 3. Small power boosting algorithm which resynthesiesech (SPB-R). Fig. 4 plots the WER against the SPB coefficientExperi-
Conventional MFCC processing is followed after resynttiagi the speech. mental configuration is as described in Section VI. As can be
and finally to differentiate speech sounds. We explain #sge seen in that figure, increasing the boosting coefficientltesu
in detail in Section IV. in much better performance for highly non-stationary noise
. SMALL POWER BOOSTING WITH even at 0 dB SNR, meanwhile losing a small performance f(_)r
clean. Based on that trade-off between the clean and noisy

) RI_E_SYNTHE,SIZEDSPEECH(SPB_R) ] performance, we may select the SPB coefficianin 0.01-
In this section, we discuss the SPB system which resynthego

sizes speech as an intermediate stage in feature extrathien
entire block-diagram for this approach is shown in Fig. 3e Th IV. SMALL POWERBOOSTING WITH
blocks leading up taOverlap-Addition (OLA) are for small DIRECT FEATURE GENERATION (SPB-D)

power boosting and resynthesizing speech, which is finallyin the previous section we discussed the SPB-R system
fed to conventional feature extraction. The only differ@nawyhich resynthesizes speech as an intermediate step. Recaus
between the conventional MFCC features and our featuresdsynthesizing the speech is quite computationally costty
the use of the gammatone-shaped frequency integration wdi8cuss in this section an alternate approach that geserate
the equivalent rectangular bandwidth (ERB) scale [18jgadt SPB-processed features without the resynthesis step.e&tdir
of the triangular integration with with the MEL scale [19h& approach towards that end would be to simply apply the
advantages of gammatone-integration are described in [1B]screte Cosine Transform (DCT) to the SPB-processed power
where gammatone-based integration was found to be mgrgi, ;) terms in (2). Since this direct approach is basically a
helpful in additive noise environments. In our system we Usgature extraction system itself, it will of course requfrat the
an ERB scale with 40 channels spaced between 130 Hz affidow length and frame period used for segmentation into
6800 Hz. From (2), the weighting coefficieat(i, j) for each frames for SPB processing be the same values as are used
time-frequency is bin is given by: in conventional feature extraction. Hence we use a window
o 2 length of25.6 ms with 10 ms between successive frames. We
w(i,j) = PS(Z’J_) |1+ (O‘P?E‘l_’“) (6) refer to this direct system as Small Power Boosting with &ire
P(i, j) Feature Generation (SPB-D), and it is illustrated in Fig. 5.
Using w(i, j), we apply the spectral reshaping expressed in Comparing the WER corresponding 3d = 0 and N = 0
[20]: in Fig. 6 to the performance of SPB-R in Fig. 4, it is
J-1 . . o jwn easily observed that SPB-D in the original form described
_ oo wlig) | Hj (7)) (7) above performs far worse than the SPB-R algorithm. These
Zj;ol |H; (edwr)] differences in performance are reflected in the corresmandi
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Feature Fig. 7. Spectrograms obtained from a clean speech utterssiog different

processing: (a) conventional MFCC processing, (b) SPB-étessing, (c)

. . . - . SPB-D processing without any weight smoothing, and (d) $P@-ocessing

El)g. 5. Small power boosting algorithm with direct featuengration (SPB- with weight smoothingMl — 4, N — 1 in (9). A value 0f0.02 was used for
the SPB coefficient. (2)

of gammatone-like frequency responses, as well as an over-
lap between successive frames. Thus, the gain in one time-
frequency bin is correlated with that in an adjacent time-
frequency bin. In the SPB-R approach, similar smoothing was
achieved implicitly by the spectral reshaping from (7) a8y (
and in the OLA process. With the SPB-D approach the spectral
values must be smoothed explicitly.

Smoothing of the weights can be done horizontally (along
time) as well as vertically (along frequency). These smedth
weights are obtained by:

Accuracy (100 % - WER)

S 5y log (w(i', §))
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Fig. 6. The effects of weight smoothing on performance of 8fB- w(z,]) = exp M +1)2N + 1) (9)
D algorithm for clean speech for speech corrupted by additimckground

music at 0 dB. The filled triangles at the y-axis representotimeline MFCC h M dN tively indicat thi | th
performance for clean (upper triangle) and O dB additivekemund music where, an respectively inaicate smoothing along the

(lower triangle) respectively. The SPB coefficientwas 0.02. time and frequency axes. The averaging in (9) is performed
in the logarithmic domain (equivalent to geometric avemgyi
spectrograms, as can be seen by comparing Fig. 7(c) to #iece the dynamic range af(i, j) is very large. (If we had
SPB-R-derived spectrogram in Fig. 7(b)). In Fig. 7(c), thgerformed a normal arithmetic averaging instead of gedmetr
variance in small power regions is very small (concentratedaveraging in (9), the resulting averages would be dominated
aPyear in Fig. 2 and (2)), thus losing the power to discriminatéappropriately by the values af(i, j) of greatest magnitude.)
sounds which have small power. Small variance is harmful in Results of speech recognition experiments using different
this context because PDFs in the training data will be matlelgalues of A/ and NV are reported in Fig. 6. The experimental
by Gaussians with very narrow peaks. As a consequence smalfiguration is the same as was used for the data shown in
perturbation in the feature values from their means lead [y. 4. We note that the smoothing operation is quite helpful
large changes in log-likelihood scores. Hence we shoultlavand that with suitable smoothing the SBP-D algorithm works
variances that are too small in magnitude. as well as the SPB-R. In our subsequent experiments, we
We also note that there exist large overlaps in the shapsed values ofV = 1 and M = 4 in the SPB-D algorithm



with 40 gammatone channels. The corresponding spectrogram
obtained with this smoothing is shown in Fig. 7(d), which is
similar to that obtained using SPB-R in Fig. 7(b).
V. LOG SPECTRAL MEAN SUBTRACTION
In this section, we discuss log spectral mean subtraction
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(LSMS) as an optional pre-processing step in the SPB ap- 30L[2 Ciean (Freq-by~Freq Subtracton)
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proach and we compare the performance between LSMS 20L| L Music Noise 10 d8 (Freq-by-Freq Subraction)
. - Music Noise 10 dB (Channel-by-Channel Subtraction)
computed for each frequency index and LSMS computed for 10}{ &) Music Noise 5 dB (Freq-by-Freq Subiraction)
. . . ‘3% Music Noise 5 dB Channel-by-Channel Subtraction)
each gammatone channel. LSMS is a standard technique which o . B : : o

4
Moving Average Window Length (s)

has been commonly applied for robustness to environmental @)

mismatch €.g. [21]), and this technique is mathematically
equivalent to the well known cepstral mean normalization

(CMN) procedure. Log spectral mean subtraction is commonly
performed folog (P(4, j)) for each channel as shown below. 3
B
. P(i,j 5
Plij) = ————led) (10) -l B I — -
exp(5pog iz log (P(¥',7))) 5 %J_*-;‘«;;-txfgfﬁ - S
. . . . 3 A Clean (Freq-by-Freq Subtraction)
Hence, this normalization is performed between the squared g° ~‘SVE;&cfgn?é—gg—(%hgn‘n;eafgsgvascn&n> o
. . . . . ' ite Noise req-by-Freq Subtraction,
gammatone integration in each band and the nonlinearity. It j‘; mi32222833332??:"”f"??;cgiﬁ?é'cﬁiﬁi’“‘°"’
1 . [ =% White Noise (10dB)(Ch:nneylfbyf%hannel Subtraction)
is also reasonable to apply LSMS fasg (X (i;e for . ‘ ‘ ) ‘
each frequency index before performing the gammatone ° " Moving Avarage Window Lengih (5) "
frequency integration. This can be expressed as: (®)
. Fig. 8. The effect of Log Spectral Subtraction for (a) ba music
‘X( . jwk)‘ g g Sp
X(z ejwk) _ e (11) and (b) white noise as a function of the moving window lengthe filled
! 1 i+L e Wk triangles at the y-axis represent baseline MFCC performanc
exp(2L+1 i/ =1i—L 1Og(|){(Z € )|))

Fig. 8 depicts the results of speech recognition experineffi€ robustness of the feature extraction approaches weltigi
using the two different approaches to LSMS (without inchgrli @dded white Gaussian noise and background music noise. The
SPB). In that figure, the moving average window lengthackground music was obtained from musical segments of the
indicates the length correspondingé + 1 in (10) and (11). DARPA HUB 4 database.
We note that the approach in (10) provides slightly better In Fig. 9, SPB-D is the basic SPB system described in
performance for white noise, but that the performance diffeSection IV. While we noted in a previous paper [20] that
ence diminishes as the window length increases. Howewer, filRmmatone frequency integration is provides better perfor
LSMS based on (11) shows consistently better performancem@nce than conventional triangular frequency integratin
the presence of background music, which is consistent scré§ect is minor in these results. Thus, the performance thoos
all window lengths. This may be explained due to the rich di§f SPB-D over the baseline MFCC is largely due to the SPB
crete harmonic components in music, which makes frequen&@nlinearity in (2) and subsequent gain smoothing. SPB-D-
index-based LSMS more effective. In the next section weSMS refers to the combination of the SPB-D and LSMS
examine the performance obtained when LSMS as descriggghniques. For both the SPB-D and SPB-D-LSMS systems we
by (11) is used in combination with SPB. used a window length df5.6 ms with 10ms between adjacent
frames. Even though not explicitly plotted in this figure BSP
R shows nearly the same performance as SPB-D as mentioned
In this section we present experimental results using tirelV and shown in Fig. 4.
SPB-R algorithm described in Section 1ll and the SPB-D We prefer to characterize improvement in recognition ac-
algorithm described in Section IV. We also examine the perfacuracy by the amount of lateral threshold shift provided by
mance of SPB is combination with LSMS as described in Settre processing. For white noise, SPB-D and SPB-D-LSMS
tion V. We conducted speech recognition experiments usipgovides an improvement of about 7 dB to 8 dB compared to
the CMU Sphi nx 3. 8 system withSphi nxbase 0.4.1. MFCC, as shown in Fig. 9. SPB-R-LSMS results in slightly
For training the acoustic model, we us&phi nxTrai n smaller threshold shift. For comparison, we also conduct
1. 0. For the baseline MFCC feature, we ussphi nx_fe experiments using the Vector Taylor Series (VTS) algorithm
included in Sphi nxbase 0. 4. 1. All experiments in this [4], as shown in Fig. 9. For white noise, the performance of
and previous sections were conducted under identical eon8PB family is slightly worse than that obtained using VTS.
tion, with delta and delta-delta components appended to the&Compensation for the effects of music noise, on the other
original features. For training and testing we used subsétand, is considered to be much more difficuitg( [8]).
of 1600 utterances and 600 utterances respectively from filee SPB family of algorithms provides a very impressive
DARPA Resource Management (RM1) database. To evaluatg@rovement in performance with background music. An

VI. EXPERIMENTAL RESULTS
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El
implementation of SPB-R-LSMS with window durations of 56t
ms provides the greatest threshold shift (amounting to abou
10 dB), and SPB-D provides a threshold shift of around 7 dB]
VTS provides a performance improvement of about 1 dB for
the same data. [12]

Open Source MATLAB code for SPB-R and SPB-D can be
found at http://www.cs.cmu.edufobust/archive/algorithms/ [13)
SPB ASRU2009. The code in this directory was used for
obtaining the results in this paper. [14]
[15]
VII. CONCLUSION

In this paper, we presented a robust speech recognit%ﬂ
algorithm named Small Power Boosting (SPB), which is very
helpful for difficult noise environment such as music noise.
Our contribution is summarized in the following. First, wa17
examine the PDFs obtained from clean and noisy environ-
ments, and observe that small power region is most vulneral I8]
to noise. Based on the observation, we intentionally boost
the small power region. We also noted that we should nidf]
boost power in each time-frequency bin independently as
adjacent time-frequency bins are highly correlated. This c[20]
be achieved implicitly in SPB-R and by applying weighting
smoothing in SPB-D. We also observed that directly applyiqgl]
nonlinearity results in too small variance for small power
regions, which is harmful for robustness and speech sound
discrimination. Finally, we also observe that for musicsgoi
LSMS for each frequency index is more helpful than doing
this for each channel index.
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