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Abstract—In this paper, we present a noise robustness algo-
rithm called Small Power Boosting (SPB). We observe that in
the spectral domain, time-frequency bins with smaller power are
more affected by additive noise. The conventional way of handling
this problem is estimating the noise from the test utteranceand
doing normalization or subtraction. In our work, in contras t, we
intentionally boost the power of time-frequency bins with small
energy for both the training and testing datasets. Since time-
frequency bins with small power no longer exist after this power
boosting, the spectral distortion between the clean and corrupt
test sets becomes reduced. This type of small power boostingis
also highly related to physiological nonlinearity. We observe that
when small power boosting is done, suitable weighting smoothing
becomes highly important. Our experimental results indicate
that this simple idea is very helpful for very difficult noisy
environments such as corruption by background music.
Index Terms: Robust speech recognition, physiological mod-
eling, rate-level curve, weight smoothing

I. I NTRODUCTION

The performance of speech recognition systems in clean en-
vironments has improved impressively in the decades follow-
ing the introduction of statistical modeling based on Hidden
Markov Models (HMMs) [1] (e.g.[2]). Nevertheless, obtaining
good performance in environments that are different from the
training environment remains a challenging problem. Environ-
mental differences include additive noise, channel distortion,
speaker differences, and so on. Many algorithms have been
proposed to deal with this problem which show significant
improvement in performance for quasi-stationary noise (e.g.
[3], [4], [5], [6], [7]). Unfortunately these same algorithms
frequently do not show significant improvements in more
difficult transitory environments such as background music
(e.g. [8]).

Recent studies show that for non-stationary disturbances
such as background music or background speech, algorithms
based on missing features (e.g. [9], [10]) or auditory pro-
cessing are more promising (e.g [11], [12], [13], [14]). Still,
the improvement in non-stationary noise remains less than the
improvement that is observed in stationary noise. In previous
work [12], we also observed that the “threshold point” of the
auditory nonlinearity plays an important role in in improving

performance in additive noise. Let us imagine a specific
time-frequency bin with small power. Even if a relatively
small distortion is applied to this time-frequency bin, dueto
the nature of the compressive nonlinearity the distortion can
become quite large.

In this paper, we explain the structure of the small boosting
(SPB) algorithm in two different ways. In the first approach,
we apply small power boosting to each time-frequency bin
in the spectral domain, and then resynthesize speech (SPB-
R). The resynthesized speech is fed to the feature extraction
system. This approach is conceptually straightforward butless
computationally efficient (because of the number of FFTs
and IFFTs that must be performed). In the second approach,
we use SPB to obtain feature values directly (SPB-D). This
approach does not require IFFT operations and the system
is consequently more compact. As we will discuss below,
effective implementation of SPB-D requires smoothing in the
spectral domain.

II. T HE PRINCIPLE OFSMALL POWER BOOSTING

Before presenting the structure of the SPB algorithm, we
first review how we obtain spectral power in our system, which
is similar to the system in [15]. Pre-emphasis in the form of
H(z) = 1 − 0.97z−1 is applied to an incoming speech signal
sampled at 16kHz. A short-time Fourier transform (STFT) is
calculated using Hamming windows of duration of 25.6 ms.
Spectral power is obtained by integrating the magnitudes ofthe
STFT coefficients over a series of weighting functions [16].
This procedure is represented by the following equation:

P (i, j) =

N−1
∑

k=0

|X(i; ejωk)Hj(e
jωk)|2 (1)

In the above equationi and j represent the frame and chan-
nel indices respectively,N is the FFT size, andHj(e

jwk )
is the frequency response of thejth Gammatone channel.
X(i; ejωk) is the STFT for theith frame. wk is defined by
ωk = 2πk

N
, 0 ≤ k ≤ N − 1.

In Fig. 1(a), we can observe the distributions oflog(P (i, j))
for clean speech, speech in 0-dB music, and speech in 0-dB
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Fig. 1. Comparison of the Probability Density Functions (PDFs) obtained in
three different environments : clean speech, 0-dB additivebackground music,
and 0-dB additive white noise. Probability density functions (PDFs) were
obtained using the conventional log nonlinearity (upper panel) and using SPB
with a power boosting coefficient of0.02.

Fig. 2. The total nonlinearity consists of small power boosting and the
subsequent logarithmic nonlinearity in the SPB algorithm

white noise. We used a subset of 50 utterances to obtain these
distributions from the training portion of the DARPA Resource
Management 1 (RM1) database. In plotting the distributions,
we scaled each waveform to set the 95 percentile ofP (i, j)
to be 0 dB. We note in Fig. 1(a) that higher values ofP (i, j)
are (unsurprisingly) less affected by the additive noise, but the
values that are small in power are severely distorted by additive
noise. While the conventional approach to this problem is
spectral subtraction (e.g. [17]), this goal can also be achieved
by intentionally boosting power for all utterances, thereby
rendering the small-power regions less affected by the additive
noise. We implement the SPB algorithm with the following

nonlinearity:

Ps(i, j) =

√

P (i, j)
2
+ (αPpeak)2 (2)

Using the above equation, ifP (i, j) >> αPpeak, then
we obtain Ps(i, j) ≈ P (i, j). For small power region (if
P (i, j) << αPpeak), we obtainPs(i, j) ≈ αPpeak.

We will call α the ”small power boosting coefficient” or
”SPB coefficient”.Ppeak is defined to be the 95 percentile
in the distribution ofP (i, j). In our algorithm, further ex-
plained in Section III and III, after obtainingPs(i, j), either
resynthesis or smoothing is done. After that, the logarithmic
nonlinearity is followed. Thus, if we plot the entire nonlinear-
ity defined by (2) and the subsequent logarithmic nonlinearity,
then is represented by Fig. 2. Suppose that the power of clean
speech at a specific time-frequency binP (i, j) is corrupted by
additive noiseν. The log spectral distortion is represented by
the following equation:

d(i, j) = log(P (i, j) + ν) − log(P (i, j))

= log

(

1 +
1

η(i, j)

)

(3)

whereη(i, j) is the Signal-to-Noise Ratio (SNR) for this time-
frequency bin defined by:

η(i, j) =
P (i, j)

ν
(4)

Applying the nonlinearity of (2) and the logarithmic nonlin-
earity, the remaining distortion is represented by:

ds(i, j) = log(Ps(i, j) + ν) − log(Ps(i, j))

= log









1 +
1

√

η(i, j)2 +
(

αPpeak

ν

)2









(5)

The largest difference betweend(i, j) andds(i, j) occurs when
η(i, j)is relatively small. For small power regions even ifν is
not large,η(i, j) will become relatively large, and in (3), the
distortion will diverge to infinity asη(i, j) approaches zero. In
contrast, in (5), even ifη(i, j) approaches zero, the distortion
converges tolog

(

1 + ν
αP

)

.
Consider now the power distribution for SPB-processed

powers. Fig. 1(b) compares the distributions for the same
condition as Fig. 1(a). We can clearly see that the distortion
is greatly reduced. As can be seen, SPB reduces the spectral
distortion and provides robustness to additive noise. However,
as described in our previous paper [15], all nonlinearities
motivated by human auditory processing such as the “S”-
shaped nonlinearity and the power-law nonlinearity curvesalso
use this characteristic, but these approaches are less effective
than the SPB approach described in the paper. The key
difference, though, is that in other approaches, the nonlinearity
is directly applied for each time-frequency bin. As will be
discussed in Section IV, directly applying the non-linearity
results in reduced variance for regions of small power, thus
reducing the ability to discriminate small differences in power



Fig. 3. Small power boosting algorithm which resynthesizesspeech (SPB-R).
Conventional MFCC processing is followed after resynthesizing the speech.

and finally to differentiate speech sounds. We explain this issue
in detail in Section IV.

III. SMALL POWER BOOSTING WITH

RE-SYNTHESIZEDSPEECH(SPB-R)

In this section, we discuss the SPB system which resynthe-
sizes speech as an intermediate stage in feature extraction. The
entire block-diagram for this approach is shown in Fig. 3. The
blocks leading up toOverlap-Addition (OLA) are for small
power boosting and resynthesizing speech, which is finally
fed to conventional feature extraction. The only difference
between the conventional MFCC features and our features is
the use of the gammatone-shaped frequency integration with
the equivalent rectangular bandwidth (ERB) scale [18] instead
of the triangular integration with with the MEL scale [19]. The
advantages of gammatone-integration are described in [15],
where gammatone-based integration was found to be more
helpful in additive noise environments. In our system we use
an ERB scale with 40 channels spaced between 130 Hz and
6800 Hz. From (2), the weighting coefficientw(i, j) for each
time-frequency is bin is given by:

w(i, j) =
Ps(i, j)

P (i, j)
=

√

1 +

(

αPpeak

P (i, j)

)2

(6)

Using w(i, j), we apply the spectral reshaping expressed in
[20]:

µg(i, k) =

∑J−1

j=0
w(i, j)

∣

∣Hj

(

ejωk
)∣

∣

∑J−1

j=0
|Hj (ejωk)|

(7)
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Fig. 4. Word error rates obtained using the SPB-R algorithm as a function of
the value of the SPB Coefficient. The filled triangles at the y-axis represent
the baseline MFCC performance for clean speech (upper triangle) and for
additive background music noise at 0 dB SNR (lower triangle), respectively.

whereI is the total number of channels, andk is a dummy
index for discrete frequency. The reconstructed spectrum is
obtained from the original spectrumX

(

i; ejωk
)

by using
µg(i, k) in (7) as follows:

Xs

(

i; ejωk
)

= µg(i, k)X
(

i, ejωk
)

(8)

Speech is resynthesized usingXs

(

i; ejωk
)

by performing
IFFT and using OLA with hamming windows of 25 ms
duration and 6.25 ms intervals between adjacent frames, which
satisfy the OLA constraint for undistorted reconstruction.
Fig. 4 plots the WER against the SPB coefficientα. Experi-
mental configuration is as described in Section VI. As can be
seen in that figure, increasing the boosting coefficient results
in much better performance for highly non-stationary noise
even at 0 dB SNR, meanwhile losing a small performance for
clean. Based on that trade-off between the clean and noisy
performance, we may select the SPB coefficientα in 0.01-
0.02.

IV. SMALL POWER BOOSTING WITH

DIRECT FEATURE GENERATION (SPB-D)

In the previous section we discussed the SPB-R system
which resynthesizes speech as an intermediate step. Because
resynthesizing the speech is quite computationally costly, we
discuss in this section an alternate approach that generates
SPB-processed features without the resynthesis step. A direct
approach towards that end would be to simply apply the
Discrete Cosine Transform (DCT) to the SPB-processed power
Ps(i, j) terms in (2). Since this direct approach is basically a
feature extraction system itself, it will of course requirethat the
window length and frame period used for segmentation into
frames for SPB processing be the same values as are used
in conventional feature extraction. Hence we use a window
length of25.6 ms with 10 ms between successive frames. We
refer to this direct system as Small Power Boosting with Direct
Feature Generation (SPB-D), and it is illustrated in Fig. 5.

Comparing the WER corresponding toM = 0 andN = 0
in Fig. 6 to the performance of SPB-R in Fig. 4, it is
easily observed that SPB-D in the original form described
above performs far worse than the SPB-R algorithm. These
differences in performance are reflected in the corresponding



Fig. 5. Small power boosting algorithm with direct feature generation (SPB-
D)
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Fig. 6. The effects of weight smoothing on performance of theSPB-
D algorithm for clean speech for speech corrupted by additive background
music at 0 dB. The filled triangles at the y-axis represent thebaseline MFCC
performance for clean (upper triangle) and 0 dB additive background music
(lower triangle) respectively. The SPB coefficientα was 0.02.

spectrograms, as can be seen by comparing Fig. 7(c) to the
SPB-R-derived spectrogram in Fig. 7(b)). In Fig. 7(c), the
variance in small power regions is very small (concentratedat
αPpeak in Fig. 2 and (2)), thus losing the power to discriminate
sounds which have small power. Small variance is harmful in
this context because PDFs in the training data will be modeled
by Gaussians with very narrow peaks. As a consequence small
perturbation in the feature values from their means lead to
large changes in log-likelihood scores. Hence we should avoid
variances that are too small in magnitude.

We also note that there exist large overlaps in the shape
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Fig. 7. Spectrograms obtained from a clean speech utteranceusing different
processing: (a) conventional MFCC processing, (b) SPB-R processing, (c)
SPB-D processing without any weight smoothing, and (d) SPB-D processing
with weight smoothingM = 4, N = 1 in (9). A value of0.02 was used for
the SPB coefficientα. (2).

of gammatone-like frequency responses, as well as an over-
lap between successive frames. Thus, the gain in one time-
frequency bin is correlated with that in an adjacent time-
frequency bin. In the SPB-R approach, similar smoothing was
achieved implicitly by the spectral reshaping from (7) and (8),
and in the OLA process. With the SPB-D approach the spectral
values must be smoothed explicitly.

Smoothing of the weights can be done horizontally (along
time) as well as vertically (along frequency). These smoothed
weights are obtained by:

w̃(i, j) = exp

(

∑i+M

i′=i−M

∑j+N

j′=j−N log (w(i′, j′))

(2M + 1)(2N + 1)

)

(9)

where,M and N respectively indicate smoothing along the
time and frequency axes. The averaging in (9) is performed
in the logarithmic domain (equivalent to geometric averaging)
since the dynamic range ofw(i, j) is very large. (If we had
performed a normal arithmetic averaging instead of geometric
averaging in (9), the resulting averages would be dominated
inappropriately by the values ofw(i, j) of greatest magnitude.)

Results of speech recognition experiments using different
values ofM andN are reported in Fig. 6. The experimental
configuration is the same as was used for the data shown in
Fig. 4. We note that the smoothing operation is quite helpful,
and that with suitable smoothing the SBP-D algorithm works
as well as the SPB-R. In our subsequent experiments, we
used values ofN = 1 and M = 4 in the SPB-D algorithm



with 40 gammatone channels. The corresponding spectrogram
obtained with this smoothing is shown in Fig. 7(d), which is
similar to that obtained using SPB-R in Fig. 7(b).

V. LOG SPECTRAL MEAN SUBTRACTION

In this section, we discuss log spectral mean subtraction
(LSMS) as an optional pre-processing step in the SPB ap-
proach and we compare the performance between LSMS
computed for each frequency index and LSMS computed for
each gammatone channel. LSMS is a standard technique which
has been commonly applied for robustness to environmental
mismatch (e.g. [21]), and this technique is mathematically
equivalent to the well known cepstral mean normalization
(CMN) procedure. Log spectral mean subtraction is commonly
performed forlog (P (i, j)) for each channelj as shown below.

P̃ (i, j) =
P (i, j)

exp( 1

2L+1

∑i+L

i′=i−L log (P (i′, j)))
(10)

Hence, this normalization is performed between the squared
gammatone integration in each band and the nonlinearity. It
is also reasonable to apply LSMS forlog

(

X(i; ejωk)
)

for
each frequency indexk before performing the gammatone
frequency integration. This can be expressed as:

X̃(i; ejωk) =

∣

∣X(i; ejωk)
∣

∣

exp( 1

2L+1

∑i+L

i′=i−L log (|X(i′; ejωk)|))
(11)

Fig. 8 depicts the results of speech recognition experiments
using the two different approaches to LSMS (without including
SPB). In that figure, the moving average window length
indicates the length corresponding to2L+1 in (10) and (11).
We note that the approach in (10) provides slightly better
performance for white noise, but that the performance differ-
ence diminishes as the window length increases. However, the
LSMS based on (11) shows consistently better performance in
the presence of background music, which is consistent across
all window lengths. This may be explained due to the rich dis-
crete harmonic components in music, which makes frequency-
index-based LSMS more effective. In the next section we
examine the performance obtained when LSMS as described
by (11) is used in combination with SPB.

VI. EXPERIMENTAL RESULTS

In this section we present experimental results using the
SPB-R algorithm described in Section III and the SPB-D
algorithm described in Section IV. We also examine the perfor-
mance of SPB is combination with LSMS as described in Sec-
tion V. We conducted speech recognition experiments using
the CMUSphinx 3.8 system withSphinxbase 0.4.1.
For training the acoustic model, we usedSphinxTrain
1.0. For the baseline MFCC feature, we usedsphinx_fe
included in Sphinxbase 0.4.1. All experiments in this
and previous sections were conducted under identical condi-
tion, with delta and delta-delta components appended to the
original features. For training and testing we used subsets
of 1600 utterances and 600 utterances respectively from the
DARPA Resource Management (RM1) database. To evaluate
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Fig. 8. The effect of Log Spectral Subtraction for (a) background music
and (b) white noise as a function of the moving window length.The filled
triangles at the y-axis represent baseline MFCC performance.

the robustness of the feature extraction approaches we digitally
added white Gaussian noise and background music noise. The
background music was obtained from musical segments of the
DARPA HUB 4 database.

In Fig. 9, SPB-D is the basic SPB system described in
Section IV. While we noted in a previous paper [20] that
gammatone frequency integration is provides better perfor-
mance than conventional triangular frequency integrationthe
effect is minor in these results. Thus, the performance boost
of SPB-D over the baseline MFCC is largely due to the SPB
nonlinearity in (2) and subsequent gain smoothing. SPB-D-
LSMS refers to the combination of the SPB-D and LSMS
techniques. For both the SPB-D and SPB-D-LSMS systems we
used a window length of25.6 ms with10ms between adjacent
frames. Even though not explicitly plotted in this figure, SPB-
R shows nearly the same performance as SPB-D as mentioned
in IV and shown in Fig. 4.

We prefer to characterize improvement in recognition ac-
curacy by the amount of lateral threshold shift provided by
the processing. For white noise, SPB-D and SPB-D-LSMS
provides an improvement of about 7 dB to 8 dB compared to
MFCC, as shown in Fig. 9. SPB-R-LSMS results in slightly
smaller threshold shift. For comparison, we also conduct
experiments using the Vector Taylor Series (VTS) algorithm
[4], as shown in Fig. 9. For white noise, the performance of
SPB family is slightly worse than that obtained using VTS.

Compensation for the effects of music noise, on the other
hand, is considered to be much more difficult (e.g. [8]).
The SPB family of algorithms provides a very impressive
improvement in performance with background music. An
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Fig. 9. Comparison of recognition accuracy between VTS, SPB-CW and
MFCC processing: (a) additive white noise, (b) background music.

implementation of SPB-R-LSMS with window durations of 50
ms provides the greatest threshold shift (amounting to about
10 dB), and SPB-D provides a threshold shift of around 7 dB.
VTS provides a performance improvement of about 1 dB for
the same data.

Open Source MATLAB code for SPB-R and SPB-D can be
found at http://www.cs.cmu.edu/∼robust/archive/algorithms/
SPB ASRU2009. The code in this directory was used for
obtaining the results in this paper.

VII. C ONCLUSION

In this paper, we presented a robust speech recognition
algorithm named Small Power Boosting (SPB), which is very
helpful for difficult noise environment such as music noise.
Our contribution is summarized in the following. First, we
examine the PDFs obtained from clean and noisy environ-
ments, and observe that small power region is most vulnerable
to noise. Based on the observation, we intentionally boost
the small power region. We also noted that we should not
boost power in each time-frequency bin independently as
adjacent time-frequency bins are highly correlated. This can
be achieved implicitly in SPB-R and by applying weighting
smoothing in SPB-D. We also observed that directly applying
nonlinearity results in too small variance for small power
regions, which is harmful for robustness and speech sound
discrimination. Finally, we also observe that for music noise
LSMS for each frequency index is more helpful than doing
this for each channel index.
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