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ABSTRACT

In this paper we present a novel two-microphone sound seafa-
ration algorithm, which selects speech from the targetlgreahile
suppressing signals from interfering sources. In this ritlgm,
which is refered to as SMAD-CW, we first estimate the diractid
sound sources for each time-frequency bin using phasediites
in the spectral domain. For each frame we assume that the disgl
tribution is a mixture of two distributions, one from thegat and the
other from the dominant noise source. For each mixture coemmo
we use the von Mises distribution, which is a close approkiona
to the wrapped normal distribution. The expectation-maedtion
(EM) algorithm is employed to obtain parameters of this nonigt
distribution. Using this statistical model, we perform rimxm a

used in binaural processing because this information cagabiy
obtained by spectral analysiad. [5]). In the present approach, we
usestatistical modeling of angle distributions with channel weight-

ing (SMAD-CW) instead of a fixed threshold to determine which
signal components belong to the target signal and which coemts
are part of the background noise.

2. STRUCTURE OF THE SMAD-CW ALGORITHM

The SMAD-CW algorithm crudely emulates selected aspecitsiof
man binaural processing and is summarized by the block atiagf

Fig. 1. While the description below assumes a sampling riai® o
kHz and 4 cm between the two microphones, the algorithm is eas

posteriori (MAP) hypothesis testing in order to obtain appropri- ily modified to accommodate other sampling frequencies aisdom

ate binary masks. We demonstrate that the algorithm destiib
this paper provides speech recognition accuracy that isfigntly
better than that obtained using conventional approaches.

Index Terms— Robust speech recognition, signal separation,

interaural time difference, statistical modeling, bireirearing, von
Mises distribution

1. INTRODUCTION

Speech recognition systems have significantly improvedeaemt

phone separations. In our discussion we assume that thélood
the target source is knowanpriori, and lies along the perpendicular
bisector of the line between the two microphones.

Short-time Fourier transforms (STFTs) are performed orsidre
nals from the left and right microphonesusing Hamming winslof
duration 75 ms, 37.5 ms between successive frames, and aip#T s
of 2048. The choice of a rather long window has been discussed
previously €.g. [5]). For each time-frequency bin, the direction
of the sound source is estimated indirectly by comparingptiese
information from the two microphones. Either the angle db lifi-
formation is used as a statistic to represent the direcfitimecsound

years, and they have been used in many applications. Eveghho ¢ rce as described in Sec. 3.1.

we can obtain high speech recognition accuracy in clean- envi

ronments using state-of-the-art speech recognition systeer-

formance seriously degrades in noisy environments. Thasen
robustness remains a critical issue for speech recogrstystems
that are used for real consumer products in difficult acoakgnvi-

ronments.

Most conventional algorithms using a pair of microphonas-co
pare the signal components in each time-frequency bin toeslth
old angle or ITD to determine whether the signal componeptith
time-frequency bin is likely to originate from the targetamoise
source €g. [1, 5]). The SMAD-CW algorithm, in contrast, mod-
els the angle distribution for each frame as a mixture of two V

Many algorithms have been developed to address these profyises distributions; one from the target and the other froenrtoise

lems, and a number of them have proved to be of significanevalu

in reducing the impact stationary noise. Neverthelessrorgment
in non-stationary noise remains elusive. An alternativyereach is
signal separation based on analysis of differences inshtiiae €.g.
[1, 2]). Itis well known that the human binaural system is aeka
able in its ability to separate speech from interfering sesré.g.
[3]). Motivated by these observations, many models andrilgos
have been developed using interaural time differencesq) Tibter-
aural intensity difference (1IDs), interaural phase difeces (IPDs),

and other cuese(g. [1, 2, 4]). IPD and ITD have been extensively
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and Kshitiz Kumar for many useful discussions.

source. The von Mises distribution, which is a close appnaxi
tion to the wrapped normal distribution, is used rather tirenwell-
known Gaussian distribution because the angle is limited/iden
—7 and 7. Parameters of the distribution are estimated using the
expectation-maximization (EM) algorithm, as describe&ét. 3.2.

After obtaining parameters of the angle distribution, wefqren
maximuma posteriori (MAP) testing on each time-frequency bin.
From these results binary masks are constructed based dhexhe
a specific time-frequency bin is likely to be occupied by taeét
distribution or the noise distribution. Hence, SMAD-CW doys a
soft decision approach based on statistical hypothedisges

To obtain better speech recognition accuracy in noisy envir
ments, we apply the gammatone channel weighting approaici in
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Fig. 1. The block diagram of a sound source separation system based on the Satistical Modeling of Angles and likelihood Ratio Testing

(SVAD) algorithm.

duced in [5] rather than directly applying the binary maskgam-
matone channel weighting, the ratio of power after applyhegbi-
nary mask to the original power is obtained for each chanmgich
is subsequently used to modify the original input spectramde-
scribed in Sec. 3.4. Finally, the time domain signal is oi#eiby

3.2. Statistical modeling of the angle distribution

For each frame, the distribution of estimated angles, k] is mod-
eled as a mixture of the target and the noise distributions:

fr(0|M[ml)

co[m] fo(8]po[m], Ko[m])

the overlap-add (OLA) method. The SWAD algorithm with chan-

nel weighting is referred to as SMAD-CW. Each component ef th

SWAD-CW algorithm is described in further detail in Sec. 3.

3. COMPONENTS OF SMAD-CW PROCESSING

3.1. Estimation of the angle for each frequency index

In each frame, the phase differences between the left ahtspgc-
tra are used to estimate the intermicrophone time differ¢htD),
and subsequently the angle of the sound source, as despridgd
ously in [5] and elsewhere. L&t [m, e7“*) and X g[m, e/“*) rep-
resent the STFT of the signals from the left and right micoops,
respectively, wherev, = 2rk/N and N is the FFT size. We refer
to 7[m, k| as the ITD at frame index: and frequency indek. We
obtain the relationship:

B[m, k] & LXgrm, ") — LX1[m, ") = wyr[m, k] + 27l

)
wherel is an integer chosen such that
o[m, k], it [¢[m, k]| <7
wirlm, k] = { ¢lm, k] — 27, if ¢[m, k] > 7 @
olm, k] +2m, if pm, k] < —7

(In these discussions we consider only values of the fregyuiedex
k that correspond to positive frequency componeits, k < 7/2.)
We use Eqg. (1) and (2) to obtaitjm, k] from the measured values
/Xg[m, ) andZ/ X [m, el“x).

If a sound source is located along a line of angfe:, k| with
respect to the perpendicular bisector to the line betweemrticro-
phones, geometric considerations determine the4Tb, k] to be

T[m, k] = dsin(0[m, k) fs /cair (3)

wherec,;, is the speed of sound in air (assumed to be 340 m/s in our

work) andfs is the sampling rate.
While in principle |7[m, k]| cannot be larger thamma. =
fsd/cair from Eq. (3), in real environments [m, k]| may be larger

+e[m] f1(0]pa [m], ka[m]) ®)

wherec; [m] andco [m] are the mixture coefficients, aod[m] is the

set of parameters of the mixture distribution. In this smttve use
the subscrip0 to represent the noise and the subsctifii represent
the target. Specifically,

(6)

f1(0]p1[m], k1[m]) and fo(0|wmo[m], ko[m]) are given as follows:

M([m] = {e1[m], po[m], p [m], ko[m], k1[m]}

exp(ko[m] cos(26 — po[m]))
7TI()(I€0 [m])

fo(@lpo[ml], rolm]) = (72)

exp(r1[m] cos(20 — pai[m]))

fr(Olpalm], kalm]) = (7b)

mlo(k1[m])
The coefficiento[m] follows directly from the constrainty [m] +
c1[m] = 1. Since the parametess![m] cannot be directly estimated
in closed form, we obtain them using the EM algorithm. We isgo
the following constraints in parameter estimation:

0 < [ua[m]] < 6o (8)
b0 < |pofm]| < 3 (8b)
0o < |pa[m] — prolm]| (80)

whered, is a fixed angle that equal$= /180 in the present work.
This constraint is applied both in the initial stage and théate stage
explained below. Without this constraia$ ] andx [m] may con-
verge to the target mixture @n [m] andx1[m] may converge to the
interference mixture, which would be problematical.

Initial parameter estimation: To obtain the initial parameters
of M[m], we consider the following two partitions of the frequency
indexk

Kolm] = {Ic“@[m,k” > 00,0 < k < N/2} (9a)

Ki[m] = {k“e[m,ku < 00,0 < k< N/2} (9b)

than7,..» because of approximations in the assumptions that were

made if the ITD is estimated directly from Eqg. (1) and (2). Hus
reason we limitr[m, k| to lie between betweeR 7,4 and Tmax
and we refer to this limited ITD estimate @&fn, k|. The estimated
anglef[m, k] is obtained from[m, k] using

CairT[m, K|

7.d “

Olm, k] = asin(

In this initial step, we assume that if the frequency inddxelongs
to K1 [m], then this time-frequency bin is dominated by the target;
therwise, we assume that it is dominated by the noise. Thialin
step is similar to approaches using a fixed threshold. Censid
variablez[m, k] which is defined as follows:
720[m, k]

(10)

z[m, k] =e



Let us define the weighted averag' [m], j = 0, 1:

N/2

5Oy = Lo I KIL(OFm, ] € K) 2fm K]
! ZW%W%MMmHeK)

(1D

wherel is the indicator function. The following equations 0, 1)
are used in analogy to Eq. (17).

Zk K p[m k]
= SR (122)
S :
) fm] = Arg (210 [m) (12b)
L(Om) )
I(PWD—W[MI (12¢)

wherely(x;) andI1(x;) are modified Bessel functions of the zeroth

and first order. For the first framey = 0), we initialize the variables
for the target by (" [0] = 0 andx{”’[0] = 200, which are typical
values from the actual target utterances. This is done Becauthe
first several frames, there might not be any target speedh at a
Parameter update: The E-step is given as follows:
Q(M(m], M [m])

N/2

=S plm, k]E[log fr (0[m, k], s[m, k] |0]m, k], M®
k=0

)]

(13)

where p[m, k] is a weighting coefficient defined by[m, k] =
| Xa[m

noise sourceX 4[m, e/“*) is defined by:

Xa[m, &%) = [XL[m7 e’r) + Xgrlm, ej‘”"’)] /2 (14)
Given the current estimated mod#l)[m], we define the condi-
tional probabilityZ’\" [m, k], j = 0,1 as follows:

TOm k] = P(slm,k] = j16[m, k], M© m)),

_ C<t)fj( Olm, kl|p;, k5) 15)

Z; 0 Et)fj(9[m K|k, 5)

Let us define the weighted meanzﬁ) [m],7 =0, 1 as follows:

Lo plm, KT [m, K]zm, k]
LS plm, KT [m, k]

Using Egs. (15) and (16), it can be shown that the followindaip
equations { = 0, 1) maximize Eq. (13):

2 m] = (16)

®)
C;H-l)[ | = Zk Op[m k]T] [m, k] (17a)
Zk o plm, k]
0 [m) = Arg (2 [m) (17b)
L Vm)
W = |z;"[m]| (17¢c)

,e9r) |2 ands[m, k] is the latent variable denoting whether
the k' frequency element originates from the target source or the

Assuming that the target speaker does not move rapidly estpect
to the microphone, we apply the following smoothing to im o
performance:

(18)
19)

im] = Apam = 1] + (1 = N [m]

kilm — 1] 4+ (1 — Xk

=

A
A

X

1[m] = [m]
with the forgetting factor\ equal t00.95. The parameterg, [m]
and%1[m] are used instead ¢f:[m]| and x1[m] in subsequent it-
erations. This smoothing is not applied to the represemtaif the
noise source.

3.3. Hypothesis Testing

Using the obtained mode¥1[m| and Eq. (7), we obtain the follow-
ing MAP decision criterion:

glm. )= nlm) (20)
whereg[m, k| andn[m] are defined as follows:
glm. k] = kafm] cos (26[m, k] — jur [m])
—ko[m] cos (20[m, k] — po[m]) (21)
Dot mDcofm]
il = (FE o) @

Using Eq. (20) we construct a binary mask[m, k| for each fre-
quency index as follows:

meH_{lﬁﬂmm>nm] 23)
0 if g[m, k] < nlm]

Processed spectra are obtained by applying the mgBk, k], and
speech is resynthesized using the IFFT and OLA. This approac
(without the channel weighting described in Sec. 3.4) iemef

to as SMAD reconstruction.

3.4. Applying channel weighting

To reduce the impact of discontinuities associated withatyin
masks, we obtain a weighting coefficient for each channelchEa
of these channels is associated wifh (e/“* ), the frequency re-

sponse of one of a set of gammatone filters, as specified ir_{4].
w[m, [] be the square root of the ratio of the output power to the
input power for frame index» and channel indek

2
.5 o 1 ()
P) )

N_1
Do | Xa
N_g W w
St [Xalm, ey ()

wlm, ] = max (24)

where ¢ is a flooring coefficient that is set @01 in the present
implementation. Note that the channel weighting coefficiepn, (]

is somewhat different from the coefficient in our previoupgrd5].
Usingw[m, ], speech is resynthesized in the same fashion as in [5].

4. EXPERIMENTAL RESULTS

In this section we present experimental results using thABNW
algorithm described in this paper. To evaluate the effentdgs of
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Fig. 3. Speech recognition accuracy using different algorithmibé
presence of natural real-world noise.

the statistical modeling of angle distributions and chanveght-
ing, we compare performance of the SMAD-CW, SMAD, with the
state-of-the art PDCW algorithm, as well as the baselineqs®s
ing provided by the ZCAE algorithm [2] using binary maskirkpr
ZCAE processing, we use zero-phase gammatone filter ceeffci
as described in [7].

20 inf

Speech recognition experiments were performed using the rg2]

constructed signals obtained as in Sec. 3 in conjunctiom wit
conventional MFCC features implemented assphinx _fe in
sphinxbase 0.4.1 For acoustic model training we used
SphinxTrain 1.0 , and decoding was performed suing (D&IU
Sphinx 3.8 .We used subsets of 1600 utterances and 600 utte
ances, respectively, from the DARPA Resource Managemevit.jR
database for training and testing. A bigram language mods w
used in all experiments. In all experiments, we used feateiceors

of length of 39 including delta and delta-delta features.a&&umed
that the distance between two microphones is 4 cm.

[
The first set of experiments was conducted using simulated re

verberant environments in which the target speaker is ndablge

a single interfering speaker. We assumed that the target#&dd
along the perpendicular bisector of the line between tworanic
phones, s@r = 0°. We assume that the interfering source is
located a®¥; = 30°. Reverberation simulations were accomplished
using theRoom Impulse Response open source software package [8]
based on the image method [9]. In the experiments in thisosgct
we assumed room dimensionsfok 4 x 3 m, with microphones that
are located at the center of the room. Both the target andféniieg

sources are 1.5 m away from the microphone. For the fixed-ITD-

threshold systems PDCW and ZCAE, we used the threshold ang
Orr = 15°. As shown in Fig. 2(a), in the absence of reverberation
at 0-dB signal-to-interference ratio (SIR), the fixed-ITieshold

i3l

real environments with real two-microphone hardware iratmns
such as a public market, a food court, a city street and a logs st
These real noises were digitally added to the clean testfdieo
DARPA RM database. Fig. 3 shows the speech recognition acgur
obtained for these data. Again we observe that SMAD-CW shows
the best performance by a significant margin, and the SMAGZRD
and ZCAE provide similar but worse) performance.

The MATLAB code for the SMAD-CW algorithm can be
found at http://www.cs.cmu.edu/ ~robust/archive/
algorithms/SMAD_ICASSP2012/ . We note that a US patent
application has been applied for part of this work by the dsoft
Corporation.
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