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Abstract

In this paper we present a novel two-microphone sound source
separation algorithm, which selects the signal from the target
direction while suppressing signals from other directions. In
this algorithm, which is referred to as Power Angle Informa-
tion Near Target (PAINT), we first calculate phase difference
for each time-frequency bin. From the phase difference, the an-
gle of a sound source is estimated. For each frame, we represent
the source angle distribution near the expected target location as
a mixture of a Gaussian and a uniform distributions and obtain
binary masks using hypothesis testing. Continuous masks are
calculated from the binary masks using the Channel Weight-
ing (CW) technique, and processed speech is synthesized using
IFFT and the OverLap-Add (OLA) method. We demonstrate
that the algorithm described in this paper shows better speech
recognition accuracy compared to conventional approaches and
our previous approaches.
Index Terms: Robust speech recognition, signal separation, in-
teraural time difference, binaural hearing, phase difference

1. Introduction
In spite of recent successes especially with close-talking appli-
cations like smart phones, speech recognition has been less suc-
cessful for far-field applications such as car navigation systems
and home appliances. The major problem is that under noisy or
reverberant environments, speech recognition accuracy is seri-
ously degraded. Thus, researchers have proposed various kinds
of algorithms to address this problem [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Nevertheless, for highly non-stationary noise or reverberant
speech, improvement has been still limited. For these envi-
ronments, recent work motivated by human auditory processing
seems to be more promising [10, 11, 12, 13, 14, 15]. Some other
approaches are based on multi-microphone processing.

The algorithm we are describing in this paper is referred
to as Power Angle Information Near Target (PAINT), which is
an improvement over our previous Phase Difference Channel
Weighting (PDCW) approach [16]. The PDCW algorithm is
based on Interaural Time Delay (ITD) estimation for each time-
frequency bin to obtain masks. In most ITD-based approaches
[16, 17, 18, 19], we usually assume that we have prior knowl-
edge about the expected target source. In the PAINT algorithm,
we still need to know expected target location, but unlike our
previous PDCW [16], the location does not need to be accurate
as long as it is contained in the angle margin.

The most important difference between the PAINT al-
gorithm and our previous Statistical Modeling of Angle
Distributions-Channel Weighting (SMAD-CW) [19] is that we
model the power-weighted source angle only near the expected
target location. In SMAD-CW approach, we tried to model the

source angle distribution for all directions, but the problem is
that we usually do not have any prior knowledge about noise
sources, thus modeling the noise distribution using a single von
Mises distribution [20] might not be a good approach in some
cases. Von Mises distribution is a simplified model of a wrapped
Gaussian distribution, which results from wrapping of the Gaus-
sian distribution around the unit circle. However, it still requires
solving equations including Bessel functions for parameter es-
timation for each frame. Additionally, for certain frames, there
might be multiple noise sources, and in this case, a single von
Mises distribution is not a good model. On the contrary, in the
PAINT algorithm, we build a statistical model only near the tar-
get, and assume that the power-weighted angle distribution of
the target is represented by a Gaussian distribution. Since there
should be only one target, usually it is a reasonable assumption.
For noise sources, we do not model the distribution for all direc-
tions as done with SMAD-CW. Instead, we just assume that the
noise distribution is uniform near the target. If the noise source
is not very close to the target, this is a valid assumption.

2. Structure of PAINT processing

Fig. 1 shows the structure of the PAINT algorithm which we in-
troduce in this paper. A Short-Time Fourier Transform (STFT)
is performed using Hamming windows of duration 75ms with
10 ms between frames, using a DFT of 2048. The location
of the source angle is estimated from the phase difference of
the left and right spectra. The power and source location esti-
mates are used to build a statistical distribution model for each
frame to create binary masks. Using these binary masks, chan-
nel weighting coefficients are obtained and speech spectrum is
enhanced by channel weighting [16, 11, 21] Finally, enhanced
signal is obtained by IFFT and OverLap-Add (OLA). Since the
window length we are using (75ms) is significantly longer than
the window length for feature extraction (25ms), we resynthe-
size speech and apply a conventional feature extraction process.

2.1. Obtaining the sound source location from two micro-
phone signals

In this section, we review the procedure for estimating the angle
of the sound source the source using two microphone signals
[16, 17, 19]. Let us define the phase differenceφ[m,ωk] at the
time-frequency bin[m,ωk] by the following equation [16]:

∆φ[m,ωk] ,Arg
(

X1[m, ejωk ]
)

− Arg
(

X0[m, ejωk ]
)

mod [−π, π), 0 ≤ k ≤ K

2
. (1)
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Figure 2:Two microphones and a sound source.

whereX0[m, ejωk ] andX1[m, ejωk ] are STFT of the signals
x[0] andx[1] received from each microphone as shown in Fig.
2. In (1)m is the frame index andωk is the discrete frequency
index defined byωk = 2πk

K
, 0 ≤ k ≤ K/2 whereK is the

DFT size. From geometric consideration,θ[m,ωk] is estimated
from∆φ[m,ωk] using the following equation [19]:

θ[m,ωk] = arcsin

(

cair∆φ[m,ωk]

fsωkd

)

(2a)

wherefs is the sampling rate of the signal, andcair is the speed
of sound in air,d is the distance between two microphones.

2.2. Estimation of the angle distribution near target

In this section, we discuss how to model the distribution of an-
gleθ near the expected target location for each frame. For nota-
tional simplicity, we will drop the frame indexm in symbols in
this section. In PAINT processing, we construct the statistical
model near the location of the expected target as shown below:

Θt = {θ| − θt ≤ θ ≤ θt} . (3)

For θt value, we find 20
180

π (corresponding to 20 degrees) is
appropriate. ThisΘt region is depicted in Fig. 2. From the
angle valuesθ[ωk], we define the set of DFT frequency indices
Kt which is associated withΘt:

Kt = {k|θ[ωk] ∈ Θt, 0 ≤ k ≤ K/2} . (4)

For θ[ωk], k ∈ Kt, we assume that the angleθ distribution of
noise and the target is given by the following equations:

f0 (θ) =
1

2θt
: noise (5a)

f1 (θ) =
1√
2πσ1

exp

(

− (θ − µ1)
2

2σ2
1

)

: target (5b)

In (5b), we use a fixed standard deviation ofσ1 = 2 degrees
based on our observation of real target distributions. Thus, the
Gaussian distribution in (5b) has only one parameter to be esti-
mated, which isµ1. For them-th frame, the probability density
functionf(θ) may be represented as a mixture of two probabil-
ity density functionsf0(θ) andf1(θ) as follows:

f(θ) = c0f0(θ) + c1f1(θ) (6)

wherec0 and c1 are mixture coefficients withc0 + c1 = 1.
We use the symbolM to represent the parameters for (6) at the
frame indexm as shown below:

M = {c1, µ1} . (7)

In the mixture probability density function represented by (5)
and (6), we define a random variablez[k] which defines whether
the current sampleθ[ωk] is from the noise mixture component
in (5a) or from the target mixture component (5b). By defini-
tion, z[k] = 0, if θ[ωk] is originated from the noise mixture
component (the0-th component) andz[k] = 1, if θ[ωk] is orig-
inated from the target speech component (the1-st component).

We estimate the parameters in (7) using the Expectation-
Maximization (EM) algorithm due to this hidden variablez[k]
[22]. We represent the estimated model parameters aftert it-
erations by the superscript(t). We define the following sets of
angles, the corresponding power, and the corresponding mix-
ture indices which satisfy the “near target criterion” defined in
(3):

Θt = {θ[ωk]|k ∈ Kt} , (8a)

Pt = {p[ωk]|k ∈ Kt} , (8b)

Zt = {z[k]|k ∈ Kt} . (8c)

Powerp[ωk] in (8b) is calculated by squaring the average of the
left and the right spectra.

Initial parameter estimation: The initial parameter esti-
mation does not need to be accurate. However, we observe
that reasonably good estimation ofc

(0)
1 is important for good

performance. We divide the near target angle defined by (3)
into two portions and assume that the outer portion is primar-
ily dominated by the noise source, which follows the uniform
distribution. The set of frequency indices associated with the
inner portionKt,i and the outer portionKt,o are defined by the
following equations:

Ki,o = {k||θ[ωk]| ≤ θt/2, 0 ≤ k ≤ K/2} . (9a)

Kt,o = {k|θt/2 ≤ |θ[ωk]| ≤ θt, 0 ≤ k ≤ K/2} . (9b)

For the initial parameterM(0) estimation, we assume that the
outer target regionΘt,o is dominated by the noise distribution
which follows the uniform distribution in (3). Under this as-
sumption,c(0)0 is obtained by the following equation:

c
(0)
0 = min

(

2

∑

k∈Kt,o
p[ωk]

∑

k∈Kt
p[ωk])

, 1

)

. (10)



c
(0)
1 is obtained by1− c

(0)
0 . µ(0)

1 is obtained from the weighted
average ofθ[ωk] belonging to the inner target portion:

µ
(0)
1 =

∑

k∈Ki,o
p[ωk]θ[ωk]

∑

k∈Ki,o
p[ωk]

(11)

Assuming that the target speaker does not move rapidly with
respect to the microphone, we apply the following smoothing
in each parameter update step to the estimate mean to improve
performance:

µ̂
(0)
1 = λµ1,prev + (1− λ)µ

(0)
1 (12)

whereµ1,prev is the estimatedµ1 value in the previous frame,λ
is a forgetting factor equal to 0.95. In the next parameter update
step, we usêµ(0)

1 instead of the originalµ(0)
1 .

Parameter update: Given the model parameter at thet-th

iterationM(t) =
{

c
(t)
1 , µ(t)

}

and the observed data setsΘt in

(8), the E-step of the EM algorithm is given as follows:

Q(M,M(t)) = EZt|Θt,M(t) [ln (f(Θt, Zt|M)] (13)

whereΘt andZt are the set of estimated angles and the set
of mixture indices defined in (8), andZt is the set of mixture
indices. The equation (13) is expressed in terms ofθ[ωk] and
p[ωk] as follows:

Q(M,M(t))

= EZt|Θt,M(t)

[

∑

k∈Kt

p[ωk] ln (f (θ[ωk], zi|M))

]

. (14)

We define the conditional probability ofz[k] by γj,k, j = 0, 1
as follows:

γ
(t)
j,k = P

(

z[k] = j|θ[ωk],M(t)
)

, (15)

which may be expressed as follows, using the Bayes theorem:

γ
(t)
j,k =

c
(t)
j f

(t)
j (θ[ωk])

c
(t)
0 f

(t)
j (θ[ωk]) + c

(t)
1 fj((t)θ[ωk])

, j = 0, 1. (16)

Using (15), (13) may be written as:

Q(M,M(t)) =
∑

k∈Kt

[

γ
(t)
0,kp[ωk] ln

(

(1− c
(t)
1 )

1

2θt

)

+ γ
(t)
1,kp[ωk]

(

ln(c
(t)
1 )− 1

2
ln
(

σ2
1

)

−

(

θ[ωk]− µ
(t)
1

)2

2σ2
1

− 1

2
ln(2π)

)

]

(17)

Differentiating (13) with respect toc(t)1 , andµ(t)
1 and using the

conditional probability in (15), it can be shown that the follow-
ing update equations maximize (13):

c1
(t+1) =

∑

k∈Kt
γ
(t)
1,kp[ωk]

∑

k∈Kt
p[ωk]

, (18)

µ
(t+1)
1 =

∑

kinKt
γ
(t)
1,kp[ωk]θ[ωk]

∑

k∈Kt
γ
(t)
1,kp[ωk]

(19)

As in the case of the initial parameter update, we apply a
smoothing toµ(t+1)

1 in the form of (12) after each parameter
update stage.

2.3. Binary mask creation

We set up two hypotheses for each time-frequency bin[m, k]:
{

H0[m, k] : The signal is from a noise source or silence.
H1[m, k] : The signal is from a target source.

(20)

The hypothesis testing is performed for each time-frequency
pointP[m, k] using the probability density functions obtained
in Sec. 2.2. The testing is based on Maximum A Posteriori
(MAP) criterion as shown below:

c0[m]f0(θ)
H0
>
<
H1

c1[m]f1(θ) (21)

Note thatf0(θ) andf1(θ) in (21) are probability density func-
tions in (5) and (6). The binary maskµ[m, k] is obtained by the
following equation:

µ[m, k] =

{

0 : if H0[m, k] is chosen.
1 : if H1[m, k] is chosen.

(22)

2.4. Channel weighting coefficients from binary masks

Channel Weighting (CW) is a technique of applying a continu-
ous masking (or weighting) coefficient rather than directly ap-
plying a binary mask, which has shown to be helpful for better
speech recognition accuracy [16, 19]. For thel-th filterbank
channel, the original power is given by:

Pi[m, l] =

K/2
∑

k=0

∣

∣

∣
Xa[m, ejωk ]Hl[e

ωk ]
∣

∣

∣

2

(23)

whereXa[m, ejωk ] is the average of the spectra from the left
and the right microphones, andHl[e

ωk ] is the frequency re-
sponse of thel-th channel. In our implementation, we use zero-
phase rectangular shaped frequency responses, whose center
frequencies are uniformly spaced along the Equivalent Rectan-
gular Bandwidth (ERB) scale. Using the binary maskµ[m, k]
in (22), the power for the same time-frequency bin after mask
application is given by:

Po[m, l] =

K/2
∑

k=0

µ[m, k]
∣

∣

∣
Xa[m, ejωk ]Hl[e

jωk ]
∣

∣

∣

2

. (24)

From (23) and (24), the power ratio is given by the following
equation:

w[m, l] =

∑K/2
k=0 µ[m, k]

∣

∣Xa

[

m, ejωk
]

Hl

[

ejωk
]

]
∣

∣

2

∑K/2
k=0 |Xa [m, ejωk ]Hl [ejωk ]|2

. (25)

We refer this power ratiow[m, l] in (25) to channel weight-
ing coefficient [16]. Using the channel weighting coefficients
w[m, l] in (25), we obtain the enhanced spectrumY [m, l] using
the channel weighting technique [9, 11]:

Y [m, ejωk ] =

L−1
∑

l=0

(

√

w[m, l]X[m, ejωk ]Hl[e
jωk ]

)

, (26)

whereL is the number of filter channels. After obtaining the
enhanced spectrumY [m, l], the output speech is synthesized
using the IFFT and the OverLap-Add (OLA).
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Figure 3: Comparison of speech recognition accuracy using
PAINT, PDCW, and the baseline for anechoic environment (Fig.
3a) and for reverberant environment (Fig. 3b) with T60 =
200ms.

3. Experimental Results

In this section we describe experimental results in two dif-
ferent configurations. In the first set of experiments, we use
anonymized Icelandic speech database. consisting of 92,851
training utterances for training and 9,792 evaluation utterances.
For features, forty filter bank coefficients from twenty previous
frames, the current frame, and five future frames are concate-
nated to create a feature vector. For acoustic model training and
evaluation, we use a Hidden Markov Model(HMM) /Deep Neu-
ral Network(DNN) hybrid system. Reverberation simulations
with this Icelandic database were accomplished using aRoom
Simulator , which is based on the image method [23]. The
room size is assumed to be 5.0 x 4.0 x 3.0 meters, and the mi-
crophone array consisting of two microphones is placed at the
center of the room. The distance between two microphones is 4
centimeters.

We compare our PAINT algorithm with our previous al-
gorithm , Phase Difference Channel Weighting (PDCW) and
the baseline single-microphone system. For PDCW process-
ing, instead of using the original system in [16], we use this
PAINT system with a fixed angle threshold of 20 degrees with-
out performing hypothesis testing. The experimental results are
shown in Fig. 4. For anechoic environment with one interfer-
ing speaker, as shown in Fig. 3a, the PDCW algorithm shows a
remarkable result followed by this PAINT algorithm. However,
we would like to emphasize that one interfering noise source at
a fixed position without reverberation is a very unrealistic en-
vironment. In presence of reverberation withT60 of 200ms,
as can be seen in Fig. 3b, the PAINT algorithm shows a sig-
nificantly better result than PDCW for all the SNR ranges. In
the second set of experiments, we used subsets of 1600 utter-
ances and 600 utterances, respectively, from the DARPA Re-
source Management (RM1) database for training and evalua-
tion. In this experiment, we compare our PAINT algorithm with
the SMAD algorithm in [19], the PDCW algorithm [16], and the
baseline single microphone system. Fig. 4a shows experimental
results when there are three interfering speakers inside a room.
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Figure 4: Comparison of speech recognition accuracy using
PAINT, SMAD-CW, PDCW, and the baseline in the presence of
three interfering speakers randomly located inside a room (Fig.
4a) and in the presence of natural real-world noise. (Fig. 4b)

The geomertic configuration of the room and the microphone
array is the same as the configuration of the first experiment.
The location of three interfering speakers is random inside this
room. Thus, it is possible that some interfering speakers might
located in a similar direction to the target speaker. As shown in
Fig. 4a, the PAINT algorithm shows the best results followed by
the SMAD and the PDCW algorithms. In the last experiment in
Fig. 4b, we added noise recorded in real environments with real
two-microphone hardware in locations such as a public mar-
ket, a food court, a city street and a bus stop with background
speech. In this experiment using natural noise, again the PAINT
algorithm provides better performance than SMAD and PDCW.

4. Conclusion
In this paper, we presented a source separation algorithm,
PAINT, based on source location angles calculated from phase
difference. This algorithm is improvement over our pre-
vious PDCW algorithm. The sound source angle distribu-
tion near the expected target location is obtained for each
frame assuming a mixture of a Gaussian and a uniform
distribution. Statistical hypothesis testing is performed to
make binary masks for each time-frequency bin, and ra-
tio masks are obtained using the Channel Weighting tech-
nique. As shown in experimental results, as noise condi-
tions become more realistic, the PAINT algorithm provides
better performance over other algorithms such as PDCW and
SMAD. The Matlab version of PAINT with sample audios
is available at http://www.cs.cmu.edu/ ˜ robust/
archive/algorithms/PAINT_INTERSPEECH2015 .
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