
C H I ' 9 5 MOSAIC OF CREATIVITY - May 7 1 1 1995 P a p e r s

Interactive Sketching for the Early Stages of
User Interface Design

James A. Landay and Brad A. Myers
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213, USA
Tel: 1-412-268-3608

E-mail: landay@cs.cmu.edu
WWW Home Page: http://www.cs.cmu.edu:8001AVeb/People/landay/home.html

ABSTRACT
Current interactive user interface construction tools are
often more of a hindrance than a benefit during the early
stages of user interface design. These tools take too much
time to use and force designers to specify more of the
design details than they wish at this early stage. Most
interface designers, especially those who have a background
in graphic design, prefer to sketch early interface ideas on
paper or on a whiteboard. We are developing an interactive
tool called SILK that allows designers to quickly sketch an
interface using an electronic pad and stylus. SILK preserves
the important properties of pencil and paper: a rough
drawing can be produced very quickly and the medium is
very flexible. However, unlike a paper sketch, this
electronic sketch is interactive and can easily be modified.
In addition, our system allows designers to examine,
annotate, and edit a complete history of the design. When
the designer is satisfied with this early prototype, SILK can
transform the sketch into a complete, operational interface
in a specified look-and-feel. This transformation is guided
by the designer. By supporting the early phases of the
interface design life cycle, our tool should both ease the
development of user interface prototypes and reduce the time
needed to create a final interface. This paper describes our
prototype and provides design ideas for a production-level
system.

KEYWORDS: User interfaces, design, sketching, gesture
recognition, interaction techniques, programming-by-
demonstration, pen-based computing. Garnet, SILK

INTRODUCTION
When professional designers first start thinking about a
visual interface, they often sketch rough pictures of the
screen layouts. In fact, everyone who designs user interfaces
seems to do this, whether or not they come from a graphic

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of ACM. To copy othenwise, or to
republish, requires a fee and/or specific permission.

CHI' 95, Denver, Colorado, USA
© 1995 ACM 0-89791-694-8/95/0005...$3.50

design background. Their initial goal is to work on the
overall layout and structure of the components, rather than
to refine the detailed look-and-feel. Designers, who may
also feel more comfortable sketching than using traditional
palette-based interface construction tools, use sketches to
quickly consider various interface ideas.

Additionally, research indicates that designers should not
use current interactive tools in the early stages of
development since this places too much focus on design
details like color and alignment rather than on the major
interface design issues, such as structure and behavior [23].
What designers need are computerized tools that allow them
to sketch rough design ideas quickly [22],

We are developing an interactive tool called SILK, which
stands for Sketching Interfaces Like Krazy, that allows
designers to quickly sketch an interface using an electronic
stylus. SILK then retains the "sketchy" look of the
components. The system facilitates rapid prototyping of
interface ideas through the use of common gestures in
sketch creation and editing. Unlike a paper sketch, the
electronic sketch allows the designer or test subjects to try
out the sketch before it becomes a finished interface. At
each stage of the process the interface can be tested by
manipulating it with the mouse, keyboard, or stylus.
Figure 1 illustrates a simple sketched interface. The
interface has a scrollbar and a window for the scrolling data.
It also has several buttons at the bottom, a palette of tools
at the right, and four pulldown menus at the top.

Traditional user interface construction tools are often
difficult to use and interfere with the designer's creativity.
Our goal is to make SILK's user interface as unintrusive as
pencil and paper. In addition to providing the ability to
rapidly capture user interface ideas, SILK will allow a
designer to edit the sketch using simple gestures.
Furthermore, SILK's history mechanisms will allow
designers to reuse portions of old designs and quickly bring
up different versions of the same interface design for testing
or comparison. Changes and written annotations made to a
design over the course of a project can also be reviewed.
Thus, unlike paper sketches, SILK sketches can evolve
without forcing the designer to continually start over with a
blank slate.

43

mailto:landay@cs.cmu.edu

P a p e r s May 7 1 1 1995 - CHI '95 MOSAIC OF CREATIVITY

n

(̂ v̂iA/ AM/ hj^

7 \

< 9

y

•
7

f v ^

Figure 1: Sketched application interface created with SILK.

Unlike most existing tools, SILK will support the entire
design cycle — from developing the initial creative design
to developing the prototype, testing the prototype, and
implementing the final interface. Our tool will provide the
efficiency of sketching on paper with the ability to turn the
sketches into real user interfaces for actual systems without
re-implementation or programming. To some extent, SILK
will be able to replace prototyping tools {e.g., HyperCard,
Director, and Visual Basic) and user interface builders {e.g.,
the NeXT Interface Builder) for designing, constructing, and
testing user interfaces (see Figure 2). At this time we have
built a prototype of SILK that implements only a subset of
the features described in this paper.

This paper describes how SILK functions and how it can be
used effectively by user interface designers. The first section
gives an overview of the problems associated with current
tools and techniques. In the second section, we discuss the
advantages of electronic sketching for user interface design.
To ensure that the system would work well for its intended
users, we took an informal survey of professional user
interface designers to determine the techniques they now use
for interface design. The results of the survey and a
discussion of how these results were used in the design of
SILK are presented in the next two sections. In the fifth
section, we describe the sketch recognition algorithm.
Finally, we summarize the related work and the status of
SILK to date.

Development
Stage Brainstorming

e
Tool VI Paper

Prototyping
Programming/

Testing

Figure 2: SILK can be used during all stages of user
interface design, construction, and testing.

DRAWBACKS OF CURRENT DESIGN METHODS
User interface designers have become key members of
software development groups. Designers often use
sketching and other "low-fidelity techniques" [19] to
generate early interface designs. Low-fidelity techniques
involve creating mock-ups using sketches, scissors, glue,
and post-it notes. Designers use mock-ups to quickly try
out design ideas. Later they may use prototyping tools or
user interface builders, or they may hand off the design to a
programmer.

Prototyping tools allow non-programmers to write simple
application mock-ups in a fraction of the time required
using traditional programming techniques. User interface
builders, the most common type of user interface
construction tools, have become invaluable in the creation
of both commercial and in-house computer applications.
They allow the designer to create the look of a user interface
by simply dragging widgets from a palette and positioning
them on the screen. This facilitates the creation of the
widget-based parts of the application user interface with
little low-level programming, which allows the engineering
team to concentrate on the application-specific portions of
the product. Unfortunately, prototyping tools, user interface
builders, and low-fidelity techniques have several drawbacks
when used in the early stages of interface design.

Interface Tools Constrain Design
Traditional user interface tools force designers to bridge the
gap between how they think about a design and the detailed
specification they must create to allow the tool to reflect a
specialization of that design. Much of the design and
problem-solving literature discusses drawing rough sketches
of design ideas and solutions [2], yet most user interface
tools require the designer to specify more of the design than
a rough sketch allows.

For example, the designer may decide that the interface
requires a palette of tools, but she is not yet sure which
tools to specify. Using SILK, a thumbnail sketch can
easily be drawn with some rough illustrations to represent
the tools (see Figure 1). This is in contrast to commercial
interface tools that require the designer to specify
unimportant details such as the size, color, finished icons,
and location of the palette. This over-specification can be
tedious and may also lead to a loss of spontaneity during
the design process. Thus, the designer may be forced to
abandon computerized tools until much later in the design
process or forced to change design techniques in a way that
is not conducive to early creative design.

One of the important lessons from the interface design
literature is the value of iterative design; that is, creating a
design prototype, evaluating the prototype, and then
repeating the process several times [6]. Iterative design
techniques seem to be more valuable as the number of
iterations made during a project becomes larger. It is
important to iterate quickly in the early part of the design
process because that is when radically different ideas can and
should be generated and examined. This is another area in
which current tools fail during the early design process. The

44

C H I ' 9 5 MOSAIC OF CREATIVITY - May 7 1 1 1995 Papers P a p e r s

ability to turn out new designs quickly is hampered by the
requirement for detailed designs. For example, in one test
the interface sketched using SILK in Figure 1 could be
created in just 70 seconds (sketched on paper it took 53
seconds), but to produce it with a traditional user interface
builder (see Figure 3) took 329 seconds, which is nearly
five times longer. In addition, the interface builder time
does not include adding real icons to the tool palette due to
the excessive time required to design or acquire them.

iietlw Bait x r » n o « Op-loni

I

b̂idniip''

l i

bibn̂ :

Figure 3: The sketched application from Figure 1
created with a traditional user interface builder.

HyperCard and Macromedia's Director are two of the most
popular prototyping tools used by designers. Though useful
in the prototyping stages, both tools come up short when
used either in the early design stages or for producing
production-quality interfaces. HyperCard's "programming"
metaphor is based on the sequencing of different cards.
HyperCard shares many of the drawbacks of traditional user
interface builders: it requires designers to specify more
design detail than is desired and often it must be extended
with a programming language (HyperTalk) when the card
metaphor is not powerful enough. In addition, HyperCard
cannot be used for most commercial-quality applications
due to its poor performance, which usually forces the
development team to reimplement the user interface with a
different tool.

Director was designed primarily as a media integration tool.
Its strength is the ability to combine video, animation,
audio, pictures, and text. This ability, along with its
powerful scripting language. Lingo, has made it the choice
of multimedia designers. These strengths, however, lead to
its weaknesses when used as a general interface design tool.
It is very hard to master the many intricate effects that
Director allows. In addition, it lacks support for creating
standard user interface widgets (i.e., scrollbars, menus, and
buttons) and specifying their behavior in a straightforward
manner. Finally, its full-powered programming language is
inappropriate for non-programmers. This is also the major
drawback to using Visual Basic, which is becoming
increasingly popular for interface prototyping due to its
complete widget set and third-party support.

Drawbacks of Sketching on Paper
Brainstorming is a process that moves quickly between
radically different design ideas. Sketches allow a designer to
quickly preserve thoughts and design details before they are
forgotten. The disadvantage of making these sketches on
paper is that they are hard to modify as the design evolves.
The designer must frequently redraw the common features
that the design retains. One way to avoid this repetition is
to use translucent layers [24, 7]. Another solution is to use
an erasable whiteboard. Both of these approaches are clumsy
at best. In order to be effective, translucent layers require
forethought on the part of the designer in terms of
commonality and layout of components. Whiteboards make
it hard to scale and move compound objects, and they do
not allow the designer to delete elements from a list easily.
None of these solutions help with the next step when a
manual translation to a computerized format is required,
either with a user interface builder or by having
programmers create an interface from a low-level toolkit.
This translation may need to be repeated several times if the
design changes.

Another problem with relying too heavily on paper
sketches for user interface design is the lack of support for
"design memory" [9]. The sketches may be annotated, but a
designer cannot easily search these annotations in the future
to find out why a particular design decision was made.
Practicing designers have found that the annotations of
design sketches serve as a diary of the design process, which
are often more valuable to the client than the sketches
themselves [2]. Sketches made on paper are also difficult to
store, organize, search, and reuse.

One of the biggest drawbacks to using paper sketches is the
lack of interaction possible between the paper-based design
and a user, which may be one of the designers at this stage.
In order to actually see what the interaction might be like, a
designer needs to "play computer" and manipulate several
sketches in response to a user's verbal or gestural actions.
This technique is often used in low-fidelity prototyping
[19].

Designers need tools that give them the freedom to sketch
rough design ideas quickly, the ability to test the designs by
interacting with them, and the flexibility to fill in the
design details as choices are made.

ADVANTAGES OF ELECTRONIC SKETCHING
Electronic sketches have most of the advantages described
above for paper sketches: they allow designers to quickly
record design ideas in a tangible form. In addition, they do
not require the designer to specify details that may not yet
be known or important. Electronic sketches also have the
advantages normally associated with computer-based tools:
they are easy to edit, store, duplicate, modify, and search.
Thus a computer-based tool can make the "design memory"
embedded in the annotations even more valuable.

The other advantages of electronic sketching pertain to the
background of user interface designers and the types of
comments sketches tend to garner during design

45

P a p e r s May 7 11 1995 • CHI ' 9 5 MOSAIC OF CREATIVITY

evaluations. A large number of user interface designers, and
particularly the intended users of SILK, have a background
in graphic design or art. These users have a strong
sketching background and our survey (see the next section)
shows they often prefer to sketch out user interface ideas.
An electronic stylus is similar enough to pencil and paper
that most designers should be able to effectively use our
tool with little training.

Anecdotal evidence shows that a sketchy interface is much
more useful in early design reviews than a more finished-
looking interface. Wong [23] found that rough electronic
sketches kept her team from talking about unimportant
low-level details, while finished-looking interfaces caused
them to talk more about the "look" rather than interaction
issues. The belief that colleagues give more useful feedback
when evaluating interfaces with a sketchy look is
commonly held in the design community. Designers
working with other low-fidelity prototyping techniques
offer similar recommendations [19^ In the field of graphic
design, Black's user study found that "the finished
appearance of screen-produced drafts shifts attention from
fundamental structural issues" [1].

SURVEY OF PROFESSIONAL DESIGNERS
In order to focus on how best to support user interface
design, we surveyed sixteen professional designers to find
out what tools and techniques they used in all stages of user
interface design. We also asked them what they liked and
disliked about paper sketching, and what they liked and
disliked about electronic tools. We also asked the designers
to send us sketches that they had made early in the design
cycle of a user interface. Using this information, we
designed SILK to support the types of elements designers
currently sketch when designing interfaces.

The designers we surveyed have an average of over six years
experience designing user interfaces. They work for
companies from around the world that focus on areas such
as desktop applications, multimedia software, telephony,
and computer hardware manufacturing. In addition, like our
intended users, they all have an art or graphic design
background.

Almost all of the designers surveyed (94%) use sketches and
storyboards during the early stages of user interface design.
Some reported that they illustrate sequences of system
responses and annotate the sketches as they are drawn. The
designers said that user interface tools, such as HyperCard,
would waste their time during this phase. They said that a
drawing and an explanation could be presented to
management and tested with users before building a
prototype. One designer stated that in the early stages of
design "iteration is critical and must happen as rapidly as
possible — as much as two or three times a day." The
designer said that user interface builders always slowed the
design process, "especially when labels and menu item
specifics are not critical." Most of the designers also cited
their familiarity with paper as a graphic designer. The
pencil and paper "interface" was described as intuitive and
natural.

Almost all of the designers surveyed (88%) use either
HyperCard, Director, or Visual Basic during the prototyping
stage of interface design. Some also use high-powered user
interface builders. The designers reported that Director was
only useful for "movie-like" prototyping, i.e., as a tool to
illustrate the functionality of the user interface without the
interaction. In addition, the designers disliked Director
because it lacked a widget set, the designs could not be used
again in the final product, and every control and system
response had to be created from scratch. HyperCard was also
cited for its lack of some necessary user interface
components.

In contrast, the designers complimented the user interface
builders on their complete widget sets and the fact that the
designs could be used in the final product. The difficulty of
learning to use these tools, especially those with scripting
languages, was considered a drawback. Also, the designers
wanted the ability to draw arbitrary graphics and some tools
did not allow this. In fact, most of the designers expressed
an interest in being able to design controls with custom
looks. Twelve of the sixteen (75%) reported that 20% or
more of their time was spent designing this type of widget.

The designers reacted favorably to a short description we
gave them about SILK. Some were concerned that it was
not really paper and that they might need to get accustomed
to it. The designers felt our system would allow quick
implementation of design ideas and it would also help bring
the sketched and electronic versions of a design closer
together. In addition, the designers were happy with the
ability to quickly iterate on a design and to eventually use
that design in the final product. All but two expressed a
willingness to try such a system.

DESIGNING INTERFACES WITH SILK
SILK blends the advantages of both sketching and
traditional user interface builders, yet it avoids many of the
limitations of these approaches. SILK enables the designer
to move quickly through several iterations of a design by
using gestures to edit and redraw portions of the sketch. Our
system tries to recognize user interface widgets and other
interface elements as they are drawn by the designer.
Although the recognition takes place as the sketch is made,
it is unintrusive and users will only be made aware of the
recognition results if they choose to exercise the widgets.
As soon as a widget has been recognized, it can be
exercised. For example, the "elevator" of the sketched
scrollbar in Figure 1 can be dragged up and down.

Next, the designer must specify the behavior among the
interface elements in the sketch. For example, SILK knows
how a button operates, but it cannot know what interface
action should occur when a user presses the button. Some
of this can be inferred either by the type of the element or
with by-demonstration techniques [4, 16], but much of it
may need to be specified using a visual language we are
designing or even a scripting language for very complex
custom behaviors. Our prototype does not yet support the
specification of behaviors.

46

C H I ' 9 5 MOSAIC OF CREATIVITY - May 7 1 1 1995 P a p e r s

When the designer is happy with the interface, SILK will
replace the sketches with real widgets and graphical objects;
these can take on a specified look-and-feel of a standard
graphical user interface, such as Motif, Windows, or
Macintosh. The transformation process is mostly
automated, but it requires some guidance by the designer to
finalize the details of the interface (e.g., textual labels,
colors, etc.) At this point, programmers can add callbacks
and constraints that include the application-specific code to
complete the application. Figure 3 illustrates what the
finished version of the interface illustrated in Figure 1
might look like had it been transformed by SILK (although
SILK would have retained the sketched palette icons from
Figure 1.)

Feedback
Widgets recognized by the system appear on the screen in a
different color to give the designer feedback about the
inference process. In addition, the type of the widget last
inferred is displayed in a status area. Although both of these
mechanisms are unobtrusive, the feedback can be disabled to
allow the designer to sketch ideas quickly without any
distractions.

The designer can help the system make the proper inference
when either the system has made the wrong choice, no
choice, or the widget that was drawn is unknown to the
system. In the first case the designer might use the "cycle"
gesture (see Figure 4) to ask the system to try its next best
choice. Alternatively, the designer can choose from a list of
possible widget types. If SILK made no inference on the
widget in question, the designer might use the grouping
gesture to force the system to reconsider its inference and
focus on the components that have been grouped together.
Finally, if the designer draws a widget or graphical object
that SILK does not recognize, the designer can group the
relevant components and then specify a name for the
widget. This will allow the system to recognize the widget
in the future.

Editing Sketches
One of the advantages of interactive sketches over paper
sketches is the ability to quickly edit them. When the user
holds down the button on the side of the stylus, SILK
interprets strokes as editing gestures instead of gestures for
creating new objects. These gestures are sent to a different
classifier than the one used for recognizing widget
components. The power of gestures comes from the ability
to specify, with a single mark, a set of objects, an
operation, and other parameters [3]. For example, deleting
or moving a section of the drawing is as simple as making
a single stroke with the stylus.

SILK supports gestures for cycling among inferences,
deleting, moving, copying, and grouping basic components
or widgets. The grouping gesture acts as a "hint" in the
search for sequence and nearness relationships. Examples of
these gestures are illustrated in Figure 4. As we test our
system with more interface designers we expect to add
gestures for other common operations.

Figure 4: Gestures for cycling, deleting, moving,
copying, and grouping.

Design History Support
One of the important features of SILK is its strong support
for design history. A designer will be able to save designs
or portions of designs for later use or review. Multiple
designs can be displayed at the same time in order to
perform a side-by-side comparison of their features or to
copy portions of one design into a new design. SILK can
also display several designs in a miniaturized format so that
the designer can quickly search through previously saved
designs visually rather than purely by name.

Another important history mechanism is SILK's support
for annotations. The system will allow the designer to
annotate a design by either typing or sketching on an
annotation layer. This layer can be displayed or hidden with
the click of a button in the SILK control panel. In addition,
the annotations that were made using the keyboard can be
searched later using a simple search dialog box. SILK will
also support multiple layers, allowing different members of
the design team to create personal annotations.

Specifying Behavior
In addition to editing and creating new objects in sketch
mode, SILK also supports run mode and behavior mode.
Run mode, which can be turned on from the SILK control
panel, allows the designer to test the sketched interface. For
example, as soon as SILK recognizes the scrollbar shown
in Figure 1, the designer can switch to run mode and
operate the scrollbar by dragging the "elevator" up and
down. The buttons in Figure 1 can be selected with the
stylus or mouse and they will highlight while the button is
held down.

Easing the specification of the interface layout and structure
solves much of the design problem, but a design is not
complete until the behavior has also been specified.
Unfortunately, the behavior of individual widgets is
insufficient to test a working interface. Behavior mode will
be used to specify the dynamic behavior between widgets
and the basic behavior of new widgets or application-
specific objects drawn in sketch mode.

We have identified two basic levels of behavior that the
system must be able to handle. Sequencing between
screens, usually in conjunction with hand drawn
storyboards, is a behavior that has been shown to be a
powerful tool for designers making concept sketches for
early visualization [2]. The success of HyperCard has
demonstrated that a significant amount of behavior can be
constructed from sequencing screens upon button presses.
For example, the designer may wish to specify that a dialog

47

P a p e r s May 7 1 1 1995 • CHI '95 MOSAIC OF CREATIVITY

box appears when a button is pressed. Our survey also
showed that designers often want to draw new widgets
whose behavior is analogous to that of a known widget.
For example, designers frequently need to draw a new icon
and specify that it should act like a button. Finally,
designers occasionally need to sketch a widget that has an
entirely new behavior. Our experience is that this is not
very common and thus we do not plan on supporting the
definition of entirely new behaviors.

We are investigating several alternative ways to specify
these behaviors. Programming-by-demonstration (PBD) is a
technique in which one specifies a program by directly
operating the user interface. In sketch mode we specify the
layout and structure of the interface as described above,
while in behavior mode we could demonstrate possible end-
user actions and then specify how the layout and structure
should change in response. A similar technique is used to
describe new interface behaviors in the Marquise system
[17].

A critical problem with PBD techniques is the lack of a
static representation that can be later edited. Marquise and
Smallstar [8] use a textual language (a formal programming
language in the latter case) to give the user feedback about
the system's inferences. In addition, scripts in these
languages can then be edited by the user to change the
"program". This solution is not acceptable considering that
the intended users of SILK are user interface designers who
generally do not have programming experience.

We may be able to solve this problem by combining PBD
techniques with visual languages as in the Pursuit [13] and
Chimera [11] systems. We are especially interested in using
a visual notation that is made directly on the interface
whose behavior is being described. Marks or symbols
layered on top of the interface are used for feedback
indicating graphical constraints in Briar [5] and Rockit [10].
In Rockit, the marks kept the user informed of the current
inference of the system.

Using a notation of marks that are made directly on the
sketch is beneficial for several reasons. One of the most
important reasons is we can now use the same visual
language for both the specification of the behavior and the
editable representation indicating which behavior has been
inferred or specified by the designer. In addition, these
sketchy marks might be similar to the types of notations
that one might make on a whiteboard or paper when
designing an interface. For example, sequencing might be
expressed by drawing arrows from buttons to windows or
dialog boxes that appear when the button is pressed. Like
the annotation layer described earlier, the layer that contains
these behavioral marks can be turned on and off.

Another technique used to specify a behavior is to select it
from a list of known behaviors and attach it to a drawn
element. This seems well-suited for specifying analogous
behaviors. This technique can be very limiting if the default
behaviors do not include what a designer wishes to specify.
We intend to survey many commercial applications and

designers to see if there is a reasonably small number of
required behaviors so that they can be presented in list form.
The success of the Garnet Interactor model indicates that a
small list may be sufficient [14].

The visual language and PBD approaches provide
specification methods that are similar to the way the
interface is used. The list approach, however, is easy to use
and may be quite successful for common behaviors. We
expect to combine these techniques and then conduct user
testing to refine the interface.

RECOGNIZING WIDGETS
Allowing designers to sketch on the computer, rather than
on paper, has many advantages as we have already described.
Several of these advantages cannot be realized without
software support for recognizing the interface widgets in the
sketch. Having a system that recognizes the drawn widgets
gives the designer a tool that can be used for designing,
testing, and eventually producing a final application
interface. SILK's recognition engine identifies individual
user interface components as they are drawn, rather than
after an entire sketch has been completed. This way the
designer can test the interface at any point without waiting
for the entire sketch to be recognized. Working within the
limited domain of common 2-d interface widgets (e.g.,
scrollbars, buttons, pulldown menus, etc.) facilitates the
recognition process. This is in contrast to the much harder
problems faced by systems that try to perform generalized
sketch recognition or beautification [18]. Our sketch
recognition algorithm uses a rule system that contains basic
knowledge of the structure and make-up of user interfaces to
infer which widgets are included in the sketch.

Recognizing Widget Components
The recognition engine uses Rubine's gesture recognition
algorithm [20] to identify the basic components that make
up an interface widget. These basic components are then
combined to make more complex widgets. For example, the
scrollbar in Figure 1 was created by sketching a tall, thin
rectangle and then a small rectangle (though the order in
which they were sketched does not matter). Each of the
basic components of a widget are trained by example using
the Agate gesture training tool [12].

The algorithm currently limits our system to single-stroke
gestures for the basic components. This means that the
designer drawing the scrollbar in Figure 1 must use a single
stroke of the pen for each of the rectangles that comprise
the scrollbar. We intend to develop a better algorithm so
that the designer can use multiple-strokes to draw the basic
components.

Rubine's algorithm uses statistical pattern recognition
techniques to train classifiers and recognize gestures. These
techniques are used to create a classifier based on the
features extracted from several examples. In order to classify
a given input gesture, the algorithm computes the
distinguishing features for the gesture and returns the best
match with the learned gesture classes.

48

C H I ' 9 5 MOSAIC OF CREATIVITY - May 7 1 1 1995 P a p e r s

Composing Components
In order to recognize interface widgets, our algorithm must
combine the results from the classification of the single-
stroke gestures that make up the basic components. As each
component is sketched and classified it is passed to an
algorithm that looks for the following relationships:

1) Does the new component contain or is it contained by
another component?

2) Is the new component near another component?
3) Is the new component in a sequence of components of

the same type?
The first relationship is the most important for classifying
widgets. We have noticed that many of the common user
interface widgets can be expressed by containment
relationships between more basic components. For
example, the scrollbar in Figure 1 is a tall, skinny rectangle
that contains a smaller rectangle. The second relationship
allows the algorithm to recognize widgets such as check
boxes, which usually consist of a box with text next to it.
The final relationship allows for groupings of related
components that make up a set of widgets {e.g., a set of
radio buttons.)

After identifying the basic relationships between the new
component and the other components in the sketch, the
algorithm passes the new component and the identified
relationships to a rule system that uses basic knowledge of
the structure and make-up of user interfaces to infer which
widget was intended. Each of the rules that matches the new
component and relationships assigns a confidence value that
indicates how close the match is. The algorithm then takes
the match with the highest confidence value and assigns the
component to a new aggregate object that represents a
widget. If none of the rules match, the system assumes that
there is not yet enough detail to recognize the widget.

Adding new components to the sketch can cause the system
to revise previously made widget identifications. This will
only occur if the new component causes the rule system to
identify a different widget as more likely than its previous
inference. Similarly, deleting components of a widget can
cause a new classification of the rest of the sketch.

Each of the widgets that SILK recognizes has corresponding
Garnet objects that use the Garnet Interactor mechanism
[14] to support interaction and feedback. When SILK
identifies a widget, it attaches the sketched components that
compose it to an instance of an interactor object that
implements the required interaction.

STATUS
We currently have a prototype of SILK running under
Common Lisp on both UNIX workstations and an Apple
Macintosh with a Wacom tablet attached. The prototype is
implemented using Garnet [15]. The prototype supports
recognition and operation of several standard widgets. In
addition, the system can transform SILK's representation of
the interface to an interface with a Motif look-and-feel. The
system currently only recognizes a few ways of drawing
each widget. Using the sketches sent to us by designers, we

plan to extend the rule system to recognize more
alternatives. SILK does not yet allow the specification of
behavior between the widgets {i.e., the sketchy scrollbar can
be scrolled but it cannot yet be attached to the window
containing data to scroll.) In addition, annotations are the
only implemented history mechanism.

We are currently adding support to recognize more widgets
and application-specific graphics. In addition, we are
looking at ways to support multiple stroke recognizers. We
plan to have design students use SILK in a user interface
design course to see how it performs in practice. We have
also begun designing a formal study to compare the types
of problems found when performing an evaluation on both
sketchy and finished-looking interfaces.

RELATED WORK
Wong's work on scanning in hand-drawn interfaces was the
major impetus for starting our work in this area [23]. Our
work differs in that we give designers a tool that allows
them to create both the look and behavior of these interfaces
directly with the computer. In addition, we will try to show
that Wong's anecdotal evidence is supported in practice by
comparing the types of comments made and the problems
found when performing an interface evaluation on both
sketchy and finished-looking interfaces.

Much of the work related to our system is found in the field
of design tools for architects. For example, Strothotte
reports that architects often sketch over printouts produced
by CAD tools before showing works in progress to clients
[21]. This seems to lend further evidence to the assertion
that a different level of feedback is obtained from a sketchy
drawing. In fact, Strothotte has produced a system that can
render precise architectural drawings in a sketchy look.

Another important architectural tool allows architects to
sketch their designs on an electronic pad similar to the one
we are using [7]. Like SILK, this tool attempts to
recognize the common graphic elements in the application
domain — architectural drawings. Our tool differs in that it
allows the specification and testing of the behavior of the
drawing, whereas the architectural drawing is fairly static.

CONCLUSIONS
We envision a future in which most of the user interface
code will be generated by user interface designers using
tools like SILK rather than by programmers writing the
code. We have designed our tool only after surveying the
intended users of the system. These designers have reported
that current user interface construction tools are a hindrance
during the early stages of interface design; we have seen this
both in our survey and in the literature. Our interactive tool
will overcome these problems by allowing designers to
quickly sketch an interface using an electronic stylus.
Unlike a paper sketch, an electronic sketch will allow the
designer or test subjects to interact with the sketch before it
becomes a finalized interface. We believe that an interactive
sketching tool that supports the entire interface design cycle
will enable designers to produce better quality interfaces in a
shorter amount of time than with current tools.

49

P a p e r s May 7 11 1995 • CHI ' 9 5 MOSAIC OF CREATIVITY

ACKNOWLEDGMENTS
The authors would like to thank Dan Boyarski, David
Kosbie, and Francesmary Modugno for their helpful
comments on this work. We would also like to thank the
designers who responded to our survey. Finally, we would
like to thank Stacey Ashlund, Elizabeth Dietz, and Dale
James for help with technical writing.

This research was sponsored by NCCOSC under Contract
No. N66001-94-C-6037, ARPA Order No. B326. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of
NCCOSC or the U.S. Government.

REFERENCES
1. Black, A. Visible planning on paper and on screen: The

impact of working medium on decision-making by
novice graphic designers. Behaviour & Information
Technology 9, 4 (1990), 283-296.

2. Boyarski, D. and Buchanan, R. Computers and
communication design: Exploring the rhetoric of HCI.
Interactions I, 2 (April 1994), 24-35.

3. Buxton, W. There's more to interaction than meets the
eye: Some issues in manual input. In User Centered
Systems Design: New Perspectives on Human-
Computer Interaction, Norman, D.A. and Draper,
S.W., Lawrence Erlbaum Associates, Hillsdale, N.J.,
1986, pp. 319-337.

4. Cypher, A. Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA (1993).

5. Gleicher, M. and Witkin, A. Drawing with constraints.
The Visual Computer 11, 1 (1995), To appear.

6. Gould, J.D. and Lewis, C. Designing for usability:
Key pr inciples and what designers think.
Communcations of the ACM 28, 3 (March 1985),
300-311.

7. Gross, M.D. Recognizing and interpreting diagrams in
design. In Proceedings of the ACM Conference on
Advanced Visuallnterfaces '94, Bari, Italy, June 1994.

8. Halbert, D.C. Programming by Example, Ph.D.
dissertation. Computer Science Division, EECS
Department, University of California, Berkeley, CA,
1984.

9. Herbsleb, J.D. and Kuwana, E. Preserving knowledge
in design projects: What designers need to know. In
Proceedings of INTERCHI '93: Human Factors in
Computing Systems, Amsterdam, The Netherlands,
April 1993, pp. 7-14.

10. Karsenty, S., Landay, J.A., and Weikart, C. Inferring
graphical constraints with Rockit. In HCI '92
Conference on People and Computers VII,
British Computer Society, September 1992, pp. 137-
153.

11. Kurlander, D. Graphical Editing by Example, Ph.D.
dissertation. Department of Computer Science,
Columbia University, July 1993.

12. Landay, J.A. and Myers, B.A. Extending an existing
user interface toolkit to support gesture recognition. In
Adjunct Proceedings of INTERCHI '93: Human
Factors in Computing Systems, Amsterdam, The
Netherlands, April 1993, pp. 91-92.

13. Modugno, F. and Myers, B.A. Graphical representation
and feedback in a PBD system. In Watch What I Do:
Programming by Demonstration. MIT Press, Cypher,
A., Ch. 20, pp. 415^22 , Cambridge, MA, 1993.

14. Myers, B.A. A new model for handling input. ACM
Transactions on Information Systems 8, 3 (July
1990), 289-320.

15. Myers, B.A., Giuse, D., Dannenberg, R.B., Vander
Zanden, B., Kosbie, D., Pervin, E., Mickish, A., and
Marchal, P. Garnet: Comprehensive support for
graphical, highly-interactive user interfaces. IEEE
Computer 23, 11 (November 1990), 71-85.

16. Myers, B.A. Demonstrational Interfaces: A step beyond
direct manipulation. IEEE Computer 25, 8 (August
1992), 61-73.

17. Myers, B.A., McDaniel, R.G., and Kosbie, D.S.
Marquise: Creating complete user interfaces by
demonstration. In Proceedings of INTERCHI '93:
Human Factors in Computing Systems, Amsterdam,
The Netherlands, April 1993, pp. 293-300.

18. Pavlidis, T. and Van Wyk, C.J. An automatic
beautifier for drawings and illustrations. Computer
Graphics 19, 3 (July 1985), 225-234, ACM
SIGGRAPH '85 Conference Proceedings.

19. Rett ig, M. Proto typing for tiny f ingers .
Communications of the ACM 37, 4 (April 1994), 21-
27.

20. Rubine, D. Specifying gestures by example. Computer
Graphics 25, 3 (July 1991), 329-337, ACM
SIGGRAPH '91 Conference Proceedings.

21. Strothotte, T., Preim, B., Raab, A., Schumann, J., and
Forsey, D.R. How to render frames and influence
people. In Proceedings of Eurographics '94, Oslo,
Norway, September 1994, pp. 455-466.

22. Wagner, A. Prototyping: A day in the life of an
interface designer. In The Art of Human-Computer
Interface Design. Addison-Wesley, Laurel, B., pp. 79-
84, Reading, MA, 1990.

23. Wong, Y.Y. Rough and ready prototypes: Lessons
from graphic design. In Short Talks Proceedings of
CHI '92: Human Factors in Computing Systems,
Monterey, CA, May 1992, pp. 83-84.

24. Wong, Y.Y. Layer Tool: Support for progressive
design. In Adjunct Proceedings of INTERCHI '93:
Human Factors in Computing Systems, Amsterdam,
The Netherlands, April 1993, pp. 127-128.

50

