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One-way, data
ow constraints are commonly used in graphical interface toolkits, programming

environments, and circuit applications. Previous papers on data
ow constraints have focused

on the design and implementation of individual algorithms. In contrast, this paper focuses on

the lessons we have learned from a decade of implementing competing algorithms in the Gar-

net and Amulet graphical interface toolkits. These lessons reveal the design and implementation

trade-o�s for di�erent one-way, constraint satisfaction algorithms. The most important lessons

we have learned are that, (1) mark-sweep algorithms are more eÆcient than topological ordering

algorithms, (2) lazy and eager evaluators deliver roughly comparable performance for most ap-

plications, and (3) constraint satisfaction algorithms have more than adequate speed except that

the storage required by these algorithms can be problematic.
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1. INTRODUCTION

A one-way, data
ow constraint is an equation in which the expression on the right
side of the equation is reevaluated whenever necessary and assigned to the vari-
able on the left side of the equation. For example, the constraint rect2.top =

rect1.bottom + 10 speci�es that rect2 should be positioned 10 pixels below the
bottom of rect1.
One-way, data
ow constraints are widely recognized as a potent programming

methodology. Their initial success in spreadsheets and attribute grammars [Knuth
1968] has inspired researchers to use them as tools in a variety of applications
including graphical interfaces [Barth 1986; Myers 1990a; Myers et al. 1990; 1997;
Hill 1993; Hill et al. 1994; Hudson and King 1988; Hudson 1993; 1994; Henry and
Hudson 1988; Hudson and Smith 1996], programming environments [Demers et al.
1981; Reps et al. 1983; Hoover 1987; 1992], and circuit simulations [Alpern et al.
1990].
Despite the wealth of papers on the design and implementation of these tools'

constraint algorithms, nothing has been published that describes the long-term
experiences that have been gained from using these algorithms or the algorithmic
trade-o�s that have been discovered as a result of these experiences.
This paper describes the insights we have gained from 10 years of experience

with implementing and adapting these algorithms in the Garnet and Amulet toolk-
its [Myers et al. 1990; 1997]. Garnet is a Lisp-based toolkit for developing interactive
graphical applications that was �rst released in 1989 and has been used by over 80
projects. Amulet is a C++-based successor to Garnet that was released in 1994 and
has been downloaded about 50,000 times. Garnet runs on the Unix and Macintosh
platforms, and Amulet runs on the Unix, PC, and Macintosh platforms.
Both toolkits have introduced a number of innovations in data
ow constraints

and have incorporated innovations from other constraint systems as well. The
innovations in Garnet and Amulet include the following:

(1) Arbitrary code: A constraint can contain any code that is legal in the under-
lying toolkit language. In particular, a constraint can contain arbitrary loops,
conditionals, function calls, and recursion [Myers et al. 1990; 1997].

(2) Pointer variables: A constraint can reference variables indirectly via point-
ers [Szekely and Myers 1988; Vander Zanden et al. 1991]. For example, an
object can be made to appear 10 pixels to the right of the previous object in a
list by writing the constraint
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left = self.prev.right + 10

where self is a pointer to the object containing left, and prev is a pointer to
the previous item in the list.1

(3) Automatic Parameter Detection: A constraint's parameters are automatically
deduced as the constraint executes, so the programmer does not have to declare
a constraint's parameters [Vander Zanden et al. 1994].

(4) Support for Cycles: A constraint is evaluated at most once if it is in a cycle.
If the constraint is asked to evaluate itself a second time, it simply returns its
original value.

Innovations that were incorporated from other toolkits include path expressions
that allow constraints to navigate their way through a tree of objects [Borning 1981;
Sussman and Steele 1980], and algorithms for performing eÆcient, incremental
constraint satisfaction [Reps et al. 1983; Hoover 1987; Alpern et al. 1990; Hudson
1991]. Both Garnet and Amulet support all the features listed above.
The rest of this paper focuses on the lessons we learned in adapting and extending

incremental, one-way constraint satisfaction algorithms to work with the innova-
tions developed for the Garnet and Amulet toolkits. Section 2 provides background
about one-way constraints. Section 3 describes various approaches to one-way con-
straint satisfaction. Section 4 provides an overview of the Garnet and Amulet
toolkits. Section 5 describes our experiences with di�erent constraint satisfaction
algorithms, including mark-sweep algorithms and topological-ordering algorithms.
Section 6 describes the speed and storage eÆciency of the constraint systems. Fi-
nally, Section 7 describes directions for future work and sums up the lessons we
learned.

2. TERMINOLOGY

A one-way data
ow constraint can be formally written as an equation of the form

v = F (p0; p1; p2; : : : ; pn)

where each pi is a parameter to the function F . The function F is called a formula.
If the value of any pi is changed during the program's execution, F is automatically
recomputed, and the result is assigned to v. If v is changed by the application or
the user, the constraint is left temporarily unsatis�ed. Hence, the constraint is
one-way.

2.1 Data
ow Graphs

A one-way constraint solver typically uses a bipartite, data
ow graph to keep track
of dependencies among variables and constraints. Variables and constraints com-
prise the two sets of vertices for the graph. There is a directed edge from a variable
to a constraint if the constraint's formula uses that variable as a parameter. There
is a directed edge from a constraint to a variable if the constraint assigns a value to
that variable. Formally, the data
ow graph can be represented as G = fV, C, Eg,

1In C++ this equation would be written as left = self->prev->right + 10, and in Java it would

be written as left = self.prev.right + 10. We have chosen to use the dot (.) notation in this

paper.
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rect1

rect2

(0,0)

rect1.top

rect1.height C2

C1 rect2.top

rect2.height

C3 rect2.bottom

C2: rect2.height = rect1.height

C1: rect2.top = rect1.top + rect1.height + 10

C3: rect2.bottom = rect2.top + rect2.height

(a) (b)

(c)

Fig. 1. The data
ow graph (c) generated by the three constraints, C1, C2, and C3 (b) which

position the boxes in (a). C1 positions rect2 below rect1. C2 makes rect2 the same height as

rect1, and C3 computes rect2's bottom. The constraints assume that (0,0) is at the top left, as

is in most windowing systems.

where V represents the set of variables, C represents the set of constraints, and E
represents the set of edges. Figure 1 shows the data
ow graph for a sample set of
constraints that positions one rectangle below another rectangle.

2.2 Constraint Satisfaction

Constraint satisfaction refers to the process of bringing constraints up-to-date by
evaluating their formulas. The two schemes used for one-way constraint satisfac-
tion are the mark-sweep strategy [Demers et al. 1981; Reps et al. 1983; Hudson
1991; Vander Zanden et al. 1994] and the topological-ordering strategy [Reps et al.
1983; Hoover 1987; Alpern et al. 1990; Vander Zanden et al. 1994]. A mark-sweep
algorithm has two phases:

(1) A mark phase that starts at a set of changed variables, performs a depth-�rst
search of the data
ow graph, and marks as out-of-date any constraints it visits.

(2) A sweep phase that evaluates out-of-date constraints. The sweep phase can
either evaluate only those constraints whose values are requested, or it can
evaluate all out-of-date constraints. The former strategy corresponds to a lazy
evaluator and the latter strategy to an eager evaluator.

A topological-ordering algorithm also has two phases:

(1) A numbering phase that assigns numbers to constraints that indicate the con-
straints' position in topological order. For example, in Figure 1, C1 might be
assigned 1, C2 2, and C3 3.

(2) A sweep phase that evaluates the constraints. The sweep phase uses a priority
queue to evaluate the constraints in order using their topological numbers.
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Two metrics are often used to evaluate the performance of constraint satisfaction
algorithms [Reps et al. 1983; Alpern et al. 1990]:

(1) AFFECTED|the set of constraints that must be reevaluated because one of
their inputs has actually changed.

(2) INFLUENCED|the set of constraints that potentially must be reevaluated
because one of their inputs has potentially changed.

In the general case, satisfaction algorithms only have to evaluateO(jAFFECTEDj)
constraints but must examine O(jINFLUENCEDj) constraints [Alpern et al. 1990].

3. APPROACHES TO ONE-WAY CONSTRAINT SATISFACTION

The �rst algorithms developed for one-way constraint satisfaction were in the area
of attribute grammars. These algorithms exploited a restriction in attribute gram-
mars and a restriction in the editing model that allowed them to both examine and
evaluate only O(jAFFECTEDj) constraints. The attribute grammar restriction is
that constraint equations can only reference attributes of the grammar symbols on
the left and right side of a production. This restriction gives rise to limited types
of data
ow graphs. The editing model restriction was that an edit could only oc-
cur at one point in an attributed tree. These two restrictions made the data
ow
graphs amenable to static analysis that could be exploited by the constraint sat-
isfaction algorithms. The restrictions on single edits was eventually removed, but
the restriction on the data
ow graphs remained [Reps 1987; Reps et al. 1986].
Later research focused on more general one-way, constraint systems that do not

have the restrictions imposed by attribute grammars and hence required the evo-
lution of new algorithms. Hoover devised an approximate topological-ordering
scheme that used order numbers to keep constraints in approximate topological
order [Hoover 1987]. Since constraints were only in approximate topological order,
a constraint could be evaluated more than once. This algorithm worked well in the
restricted world of attribute grammars but performed poorly in an experimental
implementation in Garnet (the algorithm often evaluated 70{100%more constraints
than necessary|in other words, each constraint was evaluated an average of 1.7{2
times). In collaboration with a number of other researchers, Hoover later devised
a second topological-ordering scheme that kept constraints in precise topological
order and evaluated each constraint at most once [Alpern et al. 1990]. A varia-
tion of this scheme that accommodated pointer variables and arbitrary code in the
constraints was devised for Garnet [Vander Zanden et al. 1994].
Mark-sweep algorithms also received attention from researchers. Hudson devised

a lazy mark-sweep algorithm that evaluates the minimum number of constraints
possible [Hudson 1991]. The bound is better than an eager evaluator can achieve,
since a lazy evaluator can avoid constraint evaluations whose values are never
needed by the application. Since topological-ordering algorithms cannot be used
as lazy evaluators (see Section 5.2.1), mark-sweep algorithms gained widespread
usage in graphical interfaces. Mark-sweep algorithms that accommodated pointer
variables and arbitrary code in the constraints were devised for both Garnet and
Amulet [Vander Zanden et al. 1994; Myers et al. 1997].
Other techniques for performing incremental computation, such as function cach-

ing and partial evaluation, have also been examined [Pugh and Teitelbaum 1989;
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Sundaresh 1991; Sundaresh and Hudak 1991; Liu et al. 1998]. These techniques
can be used in concert with incremental one-way constraint satisfaction. For ex-
ample, function caching may be able to avert the execution of formula functions,
or, if the computation in a function is structured in a certain way, to reduce the
amount of required computation. For example, if a computation involves a large
data structure, like a symbol table or a list, a change to the data structure may
require only an incremental recomputation. If the computation and the data struc-
tures are organized properly, then it may be possible for the function cacher to
use results from the unchanged portions of the data structure and only perform
computations on the changed portions of the data structure [Pugh and Teitelbaum
1989]. These techniques were not used in Garnet or Amulet because constraint
satisfaction performance was acceptable without these techniques.

4. GARNET AND AMULET OVERVIEW

Amulet and Garnet are toolkits that make it easier to create graphical interfaces by
providing prede�ned sets of graphical and behavioral objects that can be extended
and adapted by programmers [Myers et al. 1990; 1997]. The graphical objects
include primitive objects, such as rectangles, text, and lines, and a composite object
that allows more complicated objects to be composed from these primitive objects.
The behavioral objects include objects that map low-level events, such as mouse
clicks, mouse drags, and key presses, into high-level behaviors, such as the selection
and movement of graphical objects [Myers 1990b; Myers et al. 1997].
Both graphical and behavioral objects have property/value pairs that can be set

by the user to control the objects' appearance or behavior (the properties are called
slots in Garnet and Amulet). For example, each behavioral object has properties
that a programmer can set which indicate the set of graphical objects that the
behavior should cover and the set of events that should start and terminate the
behavior.
Constraints provide a way for the programmer to specify relationships among

these properties. For example, a popular use of constraints is to specify graphical
layout, such as centering a text label in a rectangle or attaching the endpoints of
lines to the centers of labeled circles.

5. ALGORITHMIC EXPERIENCE

This section describes lessons we have learned in designing and implementing Gar-
net and Amulet's constraint solvers. The lessons included:

(1) it can be diÆcult to get constraints to execute when the user expects them to
execute,

(2) mark-sweep algorithms work better in graphical interfaces than topological-
ordering algorithms,

(3) it is not important to avoid unnecessary evaluations in graphical interfaces, and

(4) lazy evaluation performs better than eager evaluation, but generally not by
much.
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5.1 Getting Constraints to Execute at the Right Time

One-way constraint solvers are supposed to relieve programmers of the burden of
worrying about when and how constraints are reevaluated. However, Garnet and
Amulet programmers experienced problems with both the premature evaluation
of constraints, and less often, with constraints not getting evaluated when they
expected them to be evaluated.

5.1.1 Premature Evaluation in Amulet. Amulet programmers experienced prob-
lems with premature evaluation. Programmers had to \harden" the code of the
constraint's formula by introducing conditional statements that test whether the
requested slot has been initialized, and if not, to return a default value. The prob-
lem was caused by the fact that Amulet uses an eager evaluator. Eager evaluation
brings constraints up-to-date as soon as possible, both when they are �rst created
and when they are later marked out-of-date. The key problem is that \as soon as
possible" is ambiguous. One solution is to force the programmer to tell the con-
straint solver when to initiate constraint satisfaction. However, when this manual
approach was experimentally tried in Garnet, we found that it was both too easy to
forget to invoke the constraint solver and annoying to have to do so. So Amulet's
constraint solver is invoked automatically by the system, but sometimes it is in-
voked before all the necessary slots have been initialized. This in turn leads to
constraint crashes, debugging, and requires hardening of the constraint's formula
code.
In early versions of Garnet, the premature evaluation problem also occasionally

manifested itself, and it was solved using the following technique:

(1) Programmers were allowed to specify a default value for a constraint. This
value was returned if the constraint could not be successfully executed.

(2) The constraint solver was modi�ed so that it checked whether a constraint's
formula was accessing an uninitialized slot. When an uninitialized slot was ac-
cessed, the constraint solver terminated the constraint's execution and returned
the constraint's default value.

This solution was not implemented in Amulet because it requires a try/catch

construct that can be terminated if a statement protected by the try/catch con-
struct fails. At the time that Amulet was implemented, most C++ compilers either
did not have such a construct, or else had a unique mechanism for handling the
construct. Since Amulet was meant to be portable, it could not use the try/catch
construct and hence had to forego this solution.
Even if this premature evaluation problem is �xed, there is still the problem of

repeated, unnecessary evaluations of a constraint as its formula parameters become,
one at a time, initialized. However, since constraint evaluation is such a small
percentage of the total execution time of an application (see Section 6.1), this
problem is less signi�cant than the premature evaluation problem.

5.1.2 Lack of Constraint Evaluation in Garnet. Garnet programmers experi-
enced problems with constraints not getting evaluated. This problem was caused
by two di�erent shortcomings of the constraint solver:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(1) Dependencies Not Getting Properly Established. In both Garnet and Amulet,
programmers can explicitly set slots whose values are also computed using a con-
straint. One reason for doing this is to propagate values through a constraint cycle
(sometimes users intentionally create cycles), and another is to set a slot with a
temporary value. If the slot is set before the slot's constraint is evaluated, the
slot is marked up-to-date, and then the constraint is never evaluated. Because the
constraint is never evaluated, the constraint solver cannot determine on which pa-
rameters the constraint depends. Therefore, it cannot establish dependencies from
these parameter slots to the constraint. As a result, the constraint is never noti�ed
of changes to these parameter slots, and the constraint is not reevaluated when
the user expects it to be. In Amulet this problem was solved by placing all new
constraints on a queue and evaluating them, regardless of whether or not the slots
to which they are attached are up-to-date. If the slot is up-to-date, the constraint
is computed, but its value is temporarily discarded. This evaluation allows the
dependencies to be established so that it is correctly reevaluated in the future.

(2) Not Being Able to Tell the Constraint Solver to Always Keep a Slot Up-to-

Date. Unlike Amulet, Garnet uses lazy evaluation. This means that a constraint
will not be automatically evaluated unless the constraint's value is explicitly de-
manded. Programmers would therefore occasionally be surprised or bewildered
when a constraint they expected to be reevaluated was not reevaluated. A partial
solution to this problem would have been to allow a programmer to specify that
a slot should always be kept up-to-date. Then the constraint associated with that
slot would always be reevaluated when one of its parameters changed. This solu-
tion would still require the programmer to know that a slot must be declared as
an \always up-to-date" slot, which is why the solution is only a partial one. The
lack of a satisfactory solution to this problem is one reason we switched to eager
constraint solving in Amulet.

Lessons Learned. The problem with premature evaluation in Amulet and lack of
evaluation in Garnet reveals that both eager and lazy evaluation still have problems
that need to be resolved. In our implementations, the premature evaluation associ-
ated with eager evaluation was far more problematic for users than the occasional
lack of evaluation caused by lazy evaluation.

5.2 Mark-Sweep Algorithms Work Best

During the course of the Garnet and Amulet projects, we experimented with various
types of mark-sweep and topological-ordering algorithms for performing constraint
satisfaction. We found that mark-sweep algorithms were the most versatile, the
easiest to implement, and the most eÆcient. These �ndings surprised us because
the programming languages community has assumed that topological-ordering algo-
rithms are faster and hence has focused its investigations on these algorithms [Reps
et al. 1983; Alpern et al. 1990].

5.2.1 Versatility. The mark-sweep strategy supports both lazy and eager eval-
uation whereas the topological-ordering strategy supports only eager evaluation.
Lazy evaluation requires that an algorithm be able to start at an arbitrary node in
the data
ow graph. The mark-sweep algorithms have this ability, since they can
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start at an arbitrary internal node in the data
ow graph. The topological-ordering
algorithms do not have this ability, since they must start at the leaf nodes in the
data
ow graph, and they cannot determine in advance which set of leaves will need
to be evaluated in order to determine the value of an arbitrary node.

5.2.2 Implementation. Mark-sweep algorithms proved to be simple to imple-
ment even when features like cycles and pointer variables were added to the con-
straint system. In contrast, the topological-ordering algorithms proved to be very
brittle when cycles and pointer variables were added to the constraint system, and
hence their implementation proved to be very complex.

5.2.2.1 Basic Implementation. The simplest case for both a mark-sweep algo-
rithm and a topological-ordering algorithm is the case where the data
ow graph
has no cycles and does not change as constraints are evaluated. In this case both
algorithms are conceptually simple to implement. However, in practice keeping
the topological order numbers properly updated in the topological-ordering algo-
rithm requires either the use of sophisticated algorithms [Vander Zanden et al. 1994;
Alpern et al. 1990] or simpler algorithms that keep the topological numbers only
partially up-to-date [Hoover 1987]. In the latter case, constraints may be evaluated
more than once because the topological numbers are not completely up-to-date.

5.2.2.2 Cycles. The mark-sweep algorithm handles cycles trivially. As long as a
constraint is marked up-to-date before its evaluation starts, any cycle will halt when
it reaches this constraint again. The second time the constraint's value is requested,
it will simply return its original value because it has been marked up-to-date.
In contrast, a topological-ordering algorithm requires an elaborate algorithm to

handle cycles. Basically it must treat all the constraints in the cycle as one big node
in the data
ow graph, each of which has the same order number. In order to do
this, we found that the constraint solver must use a strong connectivity algorithm
in order to locate cycles [Vander Zanden et al. 1994]. Every time the data
ow graph
changes, this strong connectivity algorithm must be invoked. In addition, we found
that the easiest way to guarantee that each constraint in a cycle is evaluated at
most once is to use a mark-sweep algorithm. Hence one ends up implementing the
mark-sweep algorithm in addition to the topological-ordering algorithm.

5.2.2.3 Pointer Variables. Both pointer variables and conditionals may cause
the data
ow graph to change dynamically during constraint satisfaction (see Fig-
ure 2). Since constraints may contain arbitrary code and since arbitrary code often
cannot be statically analyzed, we cannot assume that the constraint solver can de-
termine a priori that the data
ow graph will change during constraint evaluation.
This dynamicism is easily accommodated by the mark-sweep algorithm. For

example, in Figure 2, when A.left's constraint requests the value of A.obj over, it
will �nd that it now needs to request the value of C.left rather than B.left. Since
the mark-sweep algorithm can begin its evaluation at an arbitrary node, choosing
to evaluate C.left next rather than B.left does not cause any problem. It is also
not problematic for the mark-sweep algorithm to dynamically add or remove edges
from the data
ow graph.
In contrast, as shown in Figure 2, the topological algorithm is adversely a�ected

in three ways by dynamic changes to the data
ow graph:
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(d)

C3: A.left = A.obj_over.left

C1: A.obj_over = if (mouse.x < window.left) then B else C
C2: C.left = D.left + mouse.x + 100

(c)

(b)

(a)

Fig. 2. (a) Three constraints that illustrate how a data
ow graph can change during the course of

constraint evaluation. The initial data
ow graph is shown in (b). The numbers to the upper right

of each variable in (b) denote the variable's position in topological order. The ... denotes elided

parts of the data
ow graph with edges coming into D.left. As the mouse moves, A.obj over

might switch from pointing to B to pointing to C. If this happens, the evaluation of A.left will

dynamically change the data
ow graph from the one in (b) to the one in (c). The bold arrow

denotes the added edge. The added edge results in C.left and A.left being out of order, so these

two variables must be renumbered (d). In addition, the evaluation of C3 must be terminated so

that C.left can be brought up-to-date.

(1) It must suspend the evaluation phase and enter the numbering phase in order
to renumber the data
ow graph.

(2) The renumbering can cause constraints that have already been placed on the
priority queue to become out of order, so the priority queue may have to be
reordered.

(3) The evaluation of the current constraint may have to be aborted because the
current constraint may no longer have the lowest topological number.

Each of these tasks requires that additional and often tricky code be added to the
constraint satisfaction algorithm. Indeed, the dynamacism of pointer variables is
suÆciently problematic that no algorithm for multiway, data
ow constraints has
yet been devised that handles the unrestricted use of pointer variables.
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5.2.3 EÆciency. In Garnet we experimentally implemented a topological-order-
ing scheme to see if we would get a performance improvement out of the constraint
solver. However, we found that the topological-ordering scheme was 2{2.5 times
slower than the mark-sweep Garnet algorithm [Vander Zanden et al. 1994].
We were surprised to �nd that the mark-sweep algorithm was faster because

proponents of topological-ordering algorithms have made the following persuasive
arguments in their favor [Reps et al. 1983; Alpern et al. 1990]:

(1) The numbering phase of the topological-ordering algorithm should visit fewer
nodes of the data
ow graph than the mark phase of the mark-sweep algorithm.
The reason is that the numbering phase may only have to renumber a subset
of the nodes reachable from a changed node whereas the mark phase may have
to visit all the nodes reachable from a changed node.

(2) Although both algorithms evaluate only OjAFFECTEDj constraints, the eval-
uation phase of mark-sweep algorithm examines more constraints because it
looks at all out-of-date constraints whereas the evaluation phase of a topologi-
cal algorithm only looks at constraints whose parameters have actually changed.
It should be noted that a mark-sweep algorithm does not have to evaluate a
constraint if none of its parameters has changed, but it does need to check to
see whether any parameters have changed.

However, our Garnet implementation revealed that this theoretical analysis ignores
important practical considerations:

(1) The depth-�rst search of the mark phase is so much simpler than the number-
ing algorithms used by the topological-ordering algorithm's numbering phase that
in practice the mark phase is much faster than the numbering phase. All the mark
phase must do is set a 
ag in each a�ected node indicating that it is out-of-date.
In contrast the numbering phase must �nd the set of nodes that have inconsistent
order numbers and then compute a set of new, consistent order numbers for these
nodes. The problem is that �nding this set and then creating or adapting order
numbers to regain consistency is an expensive computational process.
If the set of nodes examined by the numbering process was considerably smaller

than the set examined by the mark process, the large computational expense of
renumbering the nodes might be justi�ed by the considerably smaller set size.
However, an empirical study of Amulet applications revealed that 60{80% of vari-
ables have fewer than 10 constraints that depend on them, either directly or in-
directly [Vander Zanden and Venckus 1996]. Further, almost no variable was de-
pended on by more than 100 constraints. These �ndings indicate that very few
constraints will be marked out-of-date or reevaluated for most variable changes. As
a result, the theoretically better topological-ordering scheme does not get a chance
to be better because its constants are so much larger than the mark-sweep scheme.

(2) The priority-queue handling code in the topological-ordering scheme is sev-
eral times slower than the simpler evaluation code in the mark-sweep scheme.
Hence, even though the evaluation phase of the mark-sweep scheme might have
to examine more constraints than the topological-ordering scheme, in practice, the
evaluation phase of the mark-sweep scheme is much faster than the evaluation phase
of the topological-ordering scheme.
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Table I. The Benchmark Amulet Applications that Were Used to Obtain the Empirical Results

Application Description

Checkers Game of checkers

Tree Debugger

Program for visualizing an algorithm that inserts nodes into a binary tree.

Short Version: User quits before binary tree completely constructed

Long Version: Binary tree is completely constructed.
Testwidgets Application for testing all of Amulet's widgets

Landscape Visual editor for creating landscapes of a yard

Circuit Visual editor for creating electrical circuits

Gilt Interface builder

Message Sender Editor for visualizing message sending among a number of processors

Card Catalog Program for browsing book titles

An added disadvantage for the topological-ordering scheme is that in graphical
applications, almost all the constraints that depend on a changed variable compute
a new value and hence must be reevaluated (this issue is discussed further in the
next section). Hence the size of the AFFECTED and INFLUENCED sets are
nearly identical, meaning that the mark phase wastes very little time examining
unnecessary variables.

Once the algorithms are modi�ed to handle cycles and pointer variables, the em-
pirical performance advantage of mark-sweep algorithms over topological-ordering
algorithms becomes even more pronounced, because of the greatly increased com-
plexity of the topological-ordering algorithms.

5.3 Avoiding Unnecessary Evaluations

One of the characteristics that distinguishes some mark-sweep algorithms from oth-
ers is whether or not they avoid unnecessary evaluations. An unnecessary evaluation
occurs when a constraint is reevaluated because one of its inputs is marked as po-
tentially changed, but the input's value has actually not changed.2 For example,
suppose the input is computed by the constraint if (mouse.x < window.width)

then mouse.x else window.width. When the mouse is moved, the input's value
potentially changes. However, unless the mouse moves outside the window, the
input's value does not actually change.
A mark-sweek algorithm, regardless of whether it is a lazy or an eager evalua-

tor, must perform special bookkeeping if it is to avoid these types of unnecessary
evaluations. In particular, a 
ag needs to be added to each variable that indicates
whether or not it actually changed, and a list of potentially changed inputs must be
maintained for each variable. When a constraint's value is requested, the evaluator
must �rst bring all out-of-date inputs up-to-date and then consult their changed

ags before evaluating the constraint. Because the additional storage overhead can
be somewhat signi�cant (possibly eight bytes per variable for a 
ag and a pointer to
a list), some mark-sweep algorithms simply reevaluate a constraint if it is marked
out-of-date.

2Some advocates of lazy evaluation describe an unnecessary evaluation as an evaluation whose

result is never used (i.e., the constraint is reevaluated a second time before the result of the �rst

evaluation is ever used by the application), but throughout this paper we de�ne an unnecessary

evaluation as one in which the constraint's inputs have not changed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Lessons Learned about One-Way, Data
ow Constraints � 13

Checkers Short Tree 
Visualizer

Testwidgets Landscape Circuit Gilt Message 
Visualizer

Long Tree 
Visualizer

Card 
Catalog

0

10

20

P
er

ce
nt

ag
e 

of
 u

nn
ee

de
d

co
ns

tr
ai

nt
ev

al
ua

ti
on

s

0

10

20

P
er

ce
nt

ag
e 

of
 u

nn
ee

de
d

co
ns

tr
ai

nt
ev

al
ua

ti
on

s

unneeded evaluations
time saved by not performing these evaluations

(a) lazy evaluation

Checkers Short Tree 
Visualizer

Testwidgets Landscape Circuit Gilt Message 
Visualizer

Long Tree 
Visualizer

Card 
Catalog

0

10

20

P
er

ce
nt

ag
e 

of
 u

nn
ee

de
d

co
ns

tr
ai

nt
ev

al
ua

ti
on

s

0

10

20

P
er

ce
nt

ag
e 

of
 u

nn
ee

de
d

co
ns

tr
ai

nt
ev

al
ua

ti
on

s

unneeded evaluations
time saved by not performing these evaluations

84%

36%

(b) eager evaluation

Fig. 3. The �rst bar shows the percentage of constraints unnecessarily evaluated by a lazy and an

eager mark-sweep algorithm that evaluates out-of-date constraints whose inputs have not changed.

The second bar shows the amount of constraint evaluation time that could be saved if these

unnecessary evaluations were avoided.

Unnecessary evaluations are only an issue with mark-sweep algorithms. Topo-
logical-ordering algorithms only evaluate constraints whose inputs have changed
because a constraint is not added to the reevaluation queue unless one of its inputs
has changed.
To assess the potential impact of unnecessary evaluations on graphical applica-

tions, we measured the number of required and unnecessary constraint evaluations
in a number of Amulet applications.3 The applications are summarized in Table I.
The results for both lazy and eager evaluation are shown in Figure 3. The released
version of Amulet actually performs these unnecessary evaluations. To perform

3The benchmarks that are presented in the following two sections are always Amulet benchmarks.

We did not systematically record our measurements for Garnet applications the way we did for

Amulet applications. However, the measurements we made during the Garnet development process

agree with the measurements presented for the Amulet benchmarks
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Fig. 4. The percentage reduction in the number of constraint evaluations and the percentage

reduction in constraint evaluation time that was achieved by using lazy evaluation rather than

eager evaluation in the benchmark applications.

the measurements, we modi�ed Amulet in a manner suggested by Hudson [1991]
so that it detected and avoided unnecessary constraint evaluations. The results
show that in general most evaluations are required. The reason is that when the
graphical appearance of one object changes, the graphical appearance of related
objects will change in a related way. For example, if a gate moves in the circuit
application, then all the attached wires also move. Similarly, when the age of the
trees is adjusted in the landscape application, all of the trees change graphical ap-
pearance. Hence, almost all the constraints that depend on a changed value will
actually change value themselves.
We also measured the constraint evaluation time saved by not having to perform

unnecessary evaluations. Interestingly, the savings in time is often less than the
savings in number of constraints evaluated. Although not large, these savings still
seem to be fairly good. However, the savings in time are savings in constraint evalu-
ation time, not overall application time. Section 6 shows that constraint evaluation
time typically represents less than 10% of an application's overall time. Conse-
quently the savings in overall application time are insigni�cant. Indeed the savings
were so insigni�cant that we checked to see whether the overhead of avoiding un-
necessary computations was worth the savings. It was, since the overhead almost
always amounted to less than 1% of the total constraint evaluation time.

5.3.1 Lessons Learned. Saving unnecessary evaluations does not result in no-
ticeable speedup in most applications. However, the code that must be written to
avoid unnecessary computations is so simple and the run-time cost of doing the
checking is so minimal that the optimization is worthwhile.

5.4 Lazy Versus Eager Evaluation

We have previously discussed the tradeo�s of lazy versus eager evaluation from an
ease-of-use standpoint (Section 5.1). However, they can also be compared with
respect to eÆciency. Proponents of lazy evaluation claim that lazy evaluation can
potentially avoid a signi�cant number of unnecessary evaluations and thus increase
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an application's response time. To determine what types of time savings are pos-
sible, we compared our benchmark set of applications using both eager and lazy
evaluation. The released version of Amulet uses eager evaluation, but a one-line
change in the Amulet code changes Amulet into a lazy evaluator. Figure 4 shows the
percentage of constraint evaluations and the percentage of time that lazy evaluation
saved over eager evaluation for the various benchmark applications.
The results generally show that the expected savings for graphical applications

are less than 20%, both in terms of number of constraints evaluated and constraint
satisfaction time. Lazy evaluation does not secure greater gains, because the display
manager causes most constraints to be evaluated when it tries to determine whether
or not an object should be drawn on the display. Objects whose positions place
them outside the current viewing area do not have to be drawn, but the only way
a display manager can ascertain this fact is to demand the values of their position
and size slots. Hence, regardless of whether lazy or eager evaluation is used, the
constraints on these slots must be reevaluated.
The relatively small percentage reduction in evaluated constraints achieved by

lazy evaluation might be more impressive if the constraint evaluations that are
being avoided are expensive evaluations. However, the results suggest that lazy
evaluation actually avoids the evaluation of inexpensive constraints. For example,
lazy evaluation reduced the number of constraint evaluations in the message-passing
application by 46%, but this reduction only decreased constraint evaluation time
by 11%.
The one exception to this result was the tree visualization application. In this ap-

plication, many nodes of the tree can be created before they are actually displayed.
In this case, lazy evaluation leads to enormous savings in constraint evaluation
time because the eager evaluator reevaluates the layout constraints every time a
new node is created, even though the tree is not yet visible. In contrast, the lazy
evaluator does not reevaluate these constraints, because the display manager has
not yet been asked to display the tree. Despite the signi�cant savings in constraint
evaluation time, Figure 5 shows that less than 20% of the tree visualizer's time is
spent performing constraint evaluation. Hence, even in this case, lazy evaluation
does not achieve a signi�cant reduction in overall application execution time.

5.4.1 Lessons Learned. Given that constraint satisfaction already accounts for a
rather small percentage of an application's time, lazy evaluation typically provides
almost no speedup in most applications because (1) it does not actually avoid
very many unnecessary evaluations and (2) those that it does avoid tend to be
inexpensive evaluations.

6. PERFORMANCE EXPERIENCE

In this section we examine the time and storage eÆciency of the Amulet and Garnet
constraint systems.

6.1 Time EÆciency

Both the Garnet and Amulet constraint systems were able to solve constraints
quickly enough to support interactive behavior. For example, feedback objects
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Fig. 5. (a) The percentage of time spent updating the display, executing formula functions, and

performing constraint bookkeeping in the benchmark applications. The remaining time went to

assorted other tasks such as input handling and executing various callback routines. (b) The

number of constraints and the number of dependencies created in the benchmark applications.

The �gures are aligned to make it clear how the percentage of time spent on the various tasks

changes as the number of constraints in an application increases.

can track the mouse in real time, and applications can perform smooth, real-time
animations, even in large, constraint-based applications.
Pro�les of both Garnet and Amulet applications verify that the constraint solver

is eÆcient. For example, Figure 5(a) shows the percentage of several Amulet ap-
plications' time spent updating the display, executing formula functions, and per-
forming the overhead required to maintain the constraint and data
ow graph data
structures. The percentages were obtained by running the applications on a Sparc
20 machine with 64 megabytes of RAM. The applications were compiled under
g++ version 2.7.2.1 using the -O2 option and were run under X Windows version
6 (several applications crashed under the -O3 option).
The percentages indicate that the constraint overhead is a small fraction of the
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Table II. Size of Formula Objects and Dependency Objects in Garnet and Amulet

System Bytes Per Formula Bytes Per Dependency

Garnet 44 16

Amulet 48 24

time spent executing formula functions, which are in turn a small fraction of the
time spent updating the display. These percentages are consistent with the numbers
recorded for Garnet applications [Vander Zanden et al. 1994].
The numbers indicate a few interesting facts:

(1) Display time absolutely dominates any other activity that the application per-
forms. All the constraints are satis�ed before the display manager is called,
so the time shown for the display manager is purely devoted to updating the
display. The card catalog application is the only exception to the display time
dominance, and the times shown are skewed by the fact that 52% of the applica-
tion's time was spent in shutting down the application after the exit button had
been pressed. If one counts only the time the user spent interacting with the
application, then the display time climbs to around 50%, and the bookkeeping
overhead for constraints falls to under 6% as well. The high bookkeeping over-
head is almost exclusively accounted for by the destruction of the constraint
data
ow graph in the clean-up procedure.

(2) The constraint solver adds almost no time to the execution of the application.
The formula functions would have to be executed whether or not there was
a constraint solver, so the only real time added by the constraint solver is in
its bookkeeping overhead (an eager evaluator may also unnecessarily evaluate
some formulas, but as shown in the previous section, this additional evaluation
is not typically signi�cant). As shown by Figure 5(a), bookkeeping overhead is
typically under 2% for an application, and is often under 1%. Clearly if one is
looking for a place to optimize an application, the constraint solver is not the
�rst place to look.

(3) The percentage of time spent in constraint satisfaction, both in overhead and
executing formula functions, does not signi�cantly increase as the number of
constraints in the application increases. This result might seem somewhat
anomalous, since one might expect that large applications should have large
chains of constraints which would consume a considerable amount of constraint
satisfaction time. However, an earlier study that we conducted of Amulet
applications revealed that constraint networks tend to be modular, that is,
divided into a number of small, independent sets of constraints rather than one
monolithic set of constraints [Vander Zanden and Venckus 1996]. Since any
given interactive transaction, such as moving an object on the screen, typically
only changes a small number of variables, and since constraint networks tend
to be small and modular, only a few constraints will have to be reevaluated on
any given interactive transaction, no matter how big the application.

6.2 Storage EÆciency

Both the Garnet and Amulet constraint systems consume a signi�cant amount of
storage. Table II summarizes the constraint overhead imposed by both systems. In

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



18 � Bradley Vander Zanden et al.

general, Garnet and Amulet applications were not large enough for the constraint
system size to pose a problem. For example, Figure 5(b) shows the number of con-
straint instances and dependencies created by each of the benchmark applications.
None of them have enough constraints or dependencies to pose a serious memory
problem. The largest application in terms of constraint storage is the card catalog
application, and its constraints plus dependencies only require 5.5 megabytes of
memory.
However, the current set of Garnet and Amulet applications is somewhat mis-

leading. Both Garnet and Amulet use extremely heavyweight objects that limit
the number of objects that can be held in RAM memory to less than roughly 5000.
Beyond this amount the application is forced into virtual memory, and performance
signi�cantly degrades. Hence, the size of Garnet and Amulet applications is e�ec-
tively limited to a few thousand objects. Indeed, a couple of users have reported
that too much memory usage by constraints has been problematic for their appli-
cations.
For various types of information visualization applications, it is quite conceivable

that the number of objects an application would need to create would be in the
hundreds of thousands, or even millions, in which case constraint storage would
become problematic.

6.3 Lessons Learned

There is a time-versus-storage tradeo� in performing constraint satisfaction. The
designers of the early interface toolkits, such as Garnet, ThingLab [Borning 1981],
Penguims [Hudson 1994], and Rendezvous [Hill 1993], were concerned that con-
straint solving could seriously degrade the performance of an interactive application.
Therefore, a considerable amount of e�ort went into devising constraint algorithms
that minimized constraint satisfaction time. These algorithms use costly bookkeep-
ing data structures, such as �ne-grained data
ow graphs, to speed up performance.
Figure 5 shows that constraint solving time is no longer an issue. However, stor-

age may become an issue as the size of interactive applications continues to increase.
Consequently, researchers need to look into ways to trade speed for storage. Mi-
croconstraints [Hudson and Smith 1996] and model dependency graphs [Halterman
and Vander Zanden 1998] represent two initial e�orts to attack this problem.

7. CONCLUSIONS AND FUTURE WORK

Researchers in the user interface community have expended a considerable amount
of e�ort on constraints over the past decade. The Garnet and Amulet projects
represent two of these e�orts. Our experiences developing constraint satisfaction
algorithms for these two toolkits yielded a number of important lessons:

(1) mark-sweep algorithms are preferable to topological-ordering algorithms,

(2) the overhead of constraint satisfaction is insigni�cant compared with the redis-
play times of applications, and

(3) lazy and eager evaluation typically deliver roughly comparable performance,
meaning that the choice of an algorithm should often depend on considerations
other than performance.
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We also discovered a number of areas that need further work by researchers,
including:

(1) the development of more storage-eÆcient constraint satisfaction algorithms,
even if it means trading speed for storage, and

(2) the development of constraint satisfaction algorithms and perhaps programmer
annotations that ensure that constraints are evaluated when users expect them
to be evaluated.

The results in this paper should help guide future developers of constraint-based
systems to select appropriate algorithms for constraint satisfaction. They should
also help guide researchers to some of the remaining outstanding problems in the
area of constraint satisfaction.
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