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Abstract— A key challenge for generalizing programming-by-
demonstration (PBD) scripts is the data description problem – when 
a user demonstrates performing an action, the system needs to de-
termine features for describing this action and the target object in 
a way that can reflect the user’s intention for the action. However, 
prior approaches for creating data descriptions in PBD systems 
have problems with usability, applicability, feasibility, transpar-
ency and/or user control. Our APPINITE system introduces a multi-
modal interface with which users can specify data descriptions 
verbally using natural language instructions. APPINITE guides us-
ers to describe their intentions for the demonstrated actions 
through mixed-initiative conversations. APPINITE constructs data 
descriptions for these actions from the natural language instruc-
tions. Our evaluation showed that APPINITE is easy-to-use and ef-
fective in creating scripts for tasks that would otherwise be diffi-
cult to create with prior PBD systems, due to ambiguous data de-
scriptions in demonstrations on GUIs. 

Keywords—programming by demonstration, end user develop-
ment, verbal instruction, multi-modal interaction, natural language 
programming 

 

I. INTRODUCTION 
Enabling end users to program new tasks for intelligent 

agents has become increasingly important due to the increasing 
ubiquity of such agents residing in “smart” devices such as 
phones, wearables, appliances and speakers. Although these 
agents have a set of built-in functionalities, and most provide 
expandability by allowing users to install third-party “skills”, 
they still fall short in helping users with the “long-tail” of tasks 
and suffer from the lack of customizability. Furthermore, many 
of users’ tasks involve coordinating the use of multiple apps, 
many of which do not even provide open APIs. Thus, it is 
unrealistic to expect every task to have a “skill” professionally 
made by service providers or third-party developers. 

The lack of end-user programmability in intelligent agents 
results in an inferior user experience. When a user gives an out-
of-domain command, the current conversational interface for 
most agents would either respond with a generic error message 
(e.g., “sorry, I don’t understand”) or perform a generic fallback 
action (e.g., a web search using the input as the search string). 
Often, neither response is helpful – a more natural and more 
useful response would be to ask the user to instruct the agent 

This work was supported in part by Oath through the InMind project. 

Fig. 1. Specifying data description in programming by demonstration using APPINITE: (a, b) enables users to naturally express their intentions for 
demonstrated actions verbally; (c) guides users to formulate data descriptions to uniquely identify target GUI objects; (d) shows users real-time 
updated results of current queries on an interaction overlay; and (e) formulates executable queries from natural language instructions.  
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how to perform the new task [1]. Such end-user programma-
bility also enables users to automate their repetitive tasks, 
reducing their redundant efforts.  

Programming by demonstration (PBD) has been moderately 
successful at empowering end user development (EUD) of 
simple task automation scripts. Prior systems such as SUGILITE 
[2], PLOW [3] and CoScripter [4] allowed users to program task 
automation scripts for agents by directly demonstrating tasks 
using GUIs of third-party mobile apps or web pages. This 
approach enables users to program naturally by using the same 
environments in which they already know how to perform the 
actions, unlike in other textual (e.g., [5], [6]) or visual 
programming environments (e.g., [7]–[9]) where users need to 
map the procedures to a different representation of actions. 

The central challenge for PBD is generalization. A PBD 
system should produce more than literal record-and-replay 
macros (e.g., sequences of clicks and keystrokes), but learn the 
task at a higher level of abstraction so it can perform similar 
tasks in new contexts [10], [11]. A key issue in generalization is 
the data description problem [10], [12]: when the user performs 
an action on an item in the GUI, what does it mean? The action 
and the item have many features. The system needs to choose a 
subset of features to describe the action and the item, so that it 
can correctly perform the right action on the right item in a 
different context. For example, in Fig. 1a, the user’s action is 
“Click”, and the target object can be described in many different 
ways, such as Charlie Palmer Steak / the second item from the 
list / the closest restaurant in Midtown East / the cheapest 
steakhouse, etc. The system would need to choose a description 
that reflects the user’s intention, so that the correct action can be 
performed if the script is run with different search results.  

To identify the correct data description, prior PBD systems 
have varied widely in the division of labor, from making no 
inference and requiring the user to manually specify the features, 
to using sophisticated AI algorithms to automatically induce a 
generalized program [13]. Some prior systems such as SmallStar 
[12] and Topaz [14] used the “no inference” approach to give 
users full control in manually choosing features to use. 
However, this approach involves heavy user effort, and has a 
steep learning curve, especially for end users with little 
programming expertise. Others like SUGILITE [2], Peridot [15] 
and CoScipter [4] went a step further and used heuristic rules for 
generalization, which were still limited in applicability. This 
approach can only handle simple scenarios (unlike Fig. 1), and 
has the possibility of making incorrect assumptions.  

At the other end of the spectrum, prior systems such as [16]–
[20] used more sophisticated AI-based programming synthesis 
techniques to automatically infer the generalization, usually 
from multiple example demonstrations of a task. However, this 
approach has issues as well. It requires a large number of 
examples, but users are unlikely to be willing to provide more 
than a few examples, which limits the feasibility of this approach 
[21]. Even if end users provide a sufficient number of examples, 
prior studies [13], [22] have shown that untrained users are not 
good at providing useful examples that are meaningfully 
different from each other to help with inferring data descriptions. 

                                                
1 APPINITE is a type of rock, and stands for Automation Programming on 
Phone Interfaces using Natural-language Instructions with Task Examples. 

Furthermore, users have little control of the resulting programs 
in these systems. The results are often represented in such a way 
that is difficult for users to understand. Thus, users cannot verify 
the correctness of the program, or make changes to the system 
[21], resulting in a lack of trust, transparency and user control. 

In this paper, we present a new multi-modal interface named 
APPINITE1, based on our prior PBD system SUGILITE [2], to en-
able end users to naturally express their intentions for data de-
scriptions when programming task automation scripts by using 
a combination of demonstrations and natural language instruc-
tions on the GUIs of arbitrary third-party mobile apps. APPINITE 
helps users address the data description problem by guiding 
them to verbally reveal their intentions for demonstrated actions 
through multi-turn conversations. APPINITE constructs data de-
scriptions of the demonstrated action from natural language ex-
planations. This interface is enabled by our novel method of 
constructing a semantic relational knowledge graph (i.e., an 
ontology) from a hierarchical GUI structure (e.g., a DOM tree). 
We use an interaction proxy overlay in APPINITE to highlight 
ambiguous references on the screen, and to support meta actions 
for programming with interactive UI widgets in third-party apps.  

APPINITE provides users with greater expressive power to 
create flexible programming logic using the data descriptions, 
while retaining a low learning barrier and high understandability 
for users. Our evaluation showed that APPINITE is easy-to-use 
and effective in tasks with ambiguous actions that are otherwise 
difficult or impossible to express in prior PBD systems. 

II. BACKGROUND AND RELATED WORK 
A. Multi-Modal Interfaces 

Multi-modal interfaces process two or more user input 
modes in a coordinated manner to provide users with greater 
expressive power, naturalness, flexibility and portability [23]. 
APPINITE combines speech and touch to enable a “speak and 
point” interaction style, which has been studied since the early 
multi-modal systems like Put-that-there [24]. In programming, 
similar interaction styles have also been used for controlling 
robots (e.g., [25], [26]). A key pattern in APPINITE‘s multi-modal 
interaction model is mutual disambiguation [27]. When the user 
demonstrates an action on the GUI with a simultaneous verbal 
instruction, our system can reliably detect what the user did and 
on which UI object the user performed the action. The 
demonstration alone, however, does not explain why the user 
performed the action, and any inferences on the user’s intent 
would be fundamentally unreliable. Similarly, from verbal 
instructions alone, the system may learn about the user’s intent, 
but grounding it onto a specific action may be difficult due to 
the inherent ambiguity in natural language. Our system utilizes 
these complementary inputs to infer robust and generalizable 
scripts that can accurately represent user intentions in PBD.  

A unique challenge for APPINITE is to support multi-modal 
PBD on arbitrary third-party GUIs. Some of such GUIs can be 
highly complicated with hundreds of objects, each with many 
different properties, semantic meanings and relationships with 
other objects. Moreover, third-party apps only expose low-level 
hierarchical representations of their GUIs at the presentation 
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layer, without information about internal program logic or se-
mantics. Prior systems such as CommandSpace [28], Speechify 
[29] and PixelTone [30] investigated multi-modal interfaces that 
can map coordinated natural language instructions and GUI 
gestures to system commands and actions. But the use of these 
systems are limited to specific first-party apps and task domains, 
in contrast to APPINITE which aims to be general-purpose.  

B. Generalization and Data Description Problems in PBD 
Having accurate data descriptions to correctly reflect user 

intentions in different contexts is crucial for ensuring the 
generalizability in PBD. Prior PBD systems range from making 
no inference at all to using sophisticated AI algorithms to infer 
data descriptions for demonstrated actions [13].   

The “no inference” approach (e.g., [12], [14]) shows dialogs 
to ask users to make selections on feature(s) to use for data 
descriptions when ambiguities arise, which gives users full 
control but suffers in usability because end users may have 
trouble understanding and choosing from the options, especially 
when the tasks are complicated, or when their intentions are non-
trivial. The AI-based program synthesis approach (e.g., [16]–
[20]) requires a large number of examples to cover the space of 
different contexts to synthesize from, which is not feasible in 
many cases when end users are unwilling to provide sufficient 
number of examples [21], or unable to provide high-quality 
examples with good coverage [13], [22]. Users also have limited 
control and understanding of the inference and synthesis 
process, as AI-based algorithms used in these systems often 
suffer in explainability and transparency [21]. 

APPINITE addresses these issues by providing a multi-modal 
interface to specify data descriptions verbally through a multi-
initiative conversation. It provides users with control and 
transparency of the process, retains usability by allowing users 
to describe the data descriptions in natural language, provides 
increased expressive power in parsing natural language 
instructions, and eliminates redundancy by only requiring one 
example of demonstration and instruction.  

C. Learning Tasks from Natural Language Instructions 
Natural language instruction is a common medium for 

humans to teach each other new tasks. For an agent to learn from 
such instructions, a major challenge is grounding – the agent 
needs to extract semantic meanings from instructions, and 
associate them with actions, perceptions and logic [31]. This 
process is also related to the concept of natural language 
programming [32]. Some prior work has tried translating natural 
language directly to code (e.g., [33]–[35]), but these systems 
required users to instruct using inflexible structures and 
keywords that resemble those of the programming languages, 
which made such systems unsuccessful for end user developers. 

In specific task domains such as navigation [36], email [31], 
robot control [37] or basic phone operations [38], the number of 
relevant actions and concepts are small, which makes it feasible 
to parse natural language into formal semantic representations 
in a smaller space of pre-defined actions and concepts.  

An effective way to constrain user natural language 
instructions, but still support a wide variety of tasks, is to 
leverage GUIs of existing apps or webpages. PLOW [3] is a web 
automation agent that uses GUIs to ground natural language 
instruction. It asks users to provide “play-by-play” natural 

language instructions with task demonstrations, which is similar 
to APPINITE. PLOW grounds the instructions by resolving noun 
phrases to items on the screen through a heuristic search on the 
DOM tree of the webpage. SUGILITE [2], on the other hand, uses 
a single utterance describing the task from the user for each 
script to perform parameterization by grounding phrases in the 
initial utterance (e.g., order a cup of cappuccino) to a demon-
strated action (e.g., select cappuccino from a list menu).  

Compared with prior systems, APPINITE specifically focuses 
on helping users specify accurate data descriptions that reflect 
their intentions using a combination of natural language 
instructions and demonstrations. Our novel semantic relational 
graph representation of the GUI allows users to use a wider 
range of semantic (e.g. “cheapest restaurant”) and relational 
(e.g., “score for Pittsburgh Steelers”) expressions without being 
tied to the underlying GUI implementation. Users can also use 
more flexible logic in their instructions thanks to our versatile 
semantic parser. To ensure usability while giving the user full 
control, our mixed-initiative system can engage in multi-turn 
conversations with users to help them clarify and extend data 
descriptions when ambiguities arise.  

III. FORMATIVE STUDY 
We conducted a formative study to understand how end 

users may verbally instruct the system simultaneously while 
demonstrating using the GUIs of mobile apps, and whether these 
instructions would be useful for addressing the data description 
problem. We asked workers from Amazon Mechanical Turk 
(mostly non-programmers [39]) to perform a sample set of tasks 
using a simulated phone interface in the browser, and to describe 
the intentions for their actions in natural language. We recruited 
45 participants, and had them each perform 4 different tasks. We 
randomly divided the participants into two groups. One group of 
participants were simply told to narrate their demonstrations in 
a way that would be helpful even if the exact data in the app 
changed in the future. Another group were additionally given 
detailed instructions and examples of how to write good 
explanations to facilitate generalization from demonstrations.  

After removing responses that were completely irrelevant, or 
apparently due to laziness (32% of the total), the majority (88%) 
of descriptions from the group that were not given detailed 
instructions and all of descriptions (100%) from the group that 
received detailed instructions explained intentions for the 
demonstrations in ways that would facilitate generalization, e.g., 
by saying “Scroll through to find and select the highest rated 
action film, which is Dunkirk” rather than just “select Dunkirk” 
without explaining the characteristic feature behind their choice. 

We also found that many of such instructions contain spatial 
relations that are either explicit (e.g., “then you click the back 
button on the bottom left”) or implicit (e.g., “the reserve button 
for the hotel”, which can translate to “the button with the text 
label `reserve` that is next to the item representing the hotel”). 
Furthermore, approximately 18% of all 1631 natural language 
statements we collected from this formative study used some 
generalizations (e.g., the highest rated film) in the data descrip-
tion instead of using constant values of string labels for referring 
to the target GUI objects. These findings illustrate the need for 
constructing an intermediate level representation of GUIs that 
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abstracts the semantics and relationships from the platform-spe-
cific implementation of GUIs and maps more naturally to the 
semantics of likely natural language explanations. 

IV. THE APPINITE INTERFACE 
Informed by the results from the formative study, we have 

designed and implemented APPINITE to enable users to provide 
natural language instructions for specifying data descriptions in 
PBD. It uses our open-source SUGILITE [2] framework for 
detecting and replaying user demonstrations. APPINITE aims to 
improve the process for specifying data descriptions in PBD 
through its novel multi-modal interface, which provides end 
users with greater expressive power to create flexible program-
ming logic while retaining a low learning barrier and high 
understandability. In this section, we discuss the user experience 
of APPINITE with an example walkthrough of specifying the data 
description for programming a script for making a restaurant 
reservation using the OpenTable app. Readers can also refer to 
the supplemental video figure for a similar example task. 

A. APPINITE User Experience 
After the user starts a new demonstration recording, she 

demonstrates clicking on the OpenTable icon on the home 
screen, and chooses the “Near Me Now” option on the main 
screen of OpenTable, which are exactly the same steps that she 
would do normally to make a restaurant reservation. Neither of 
these steps is ambiguous, because their data descriptions 
(clicking on the icon / FrameLayout object with text labels 
“OpenTable” / “Near Me Now”) can be inferred using heuristic 
rules. Thus, the APPINITE disambiguation feature will not be 
invoked. Instead, the user directly confirms the recording either 
by speech or by tapping on a popup (Fig. 1e). 

As the next action, the user chooses a restaurant from the 
result list (Fig. 1a). This action is ambiguous because its target 
UI object has multiple reasonable properties for data description, 
for which the heuristic-based approach cannot determine which 

one would reflect the user’s intention. Therefore, APPINITE’s 
interaction proxy overlay (details in Section V) prevents this tap 
from invoking the OpenTable app action, and asks the user, both 
vocally and visually through a popup dialog, to describe her 
intention for the action. The user can then either speak or type in 
natural language. Leveraging the UI snapshot graph extraction 
and natural language instruction parsing architecture (details in 
Section V), APPINITE can understand flexible data descriptions 
expressed in diverse natural language instructions. These de-
scriptions would otherwise be impractical for end users to 
manually program. Below we list some example instructions 
that APPINITE can support for the GUI shown in Fig. 1a. 

- I want to choose the second search result 

- Find the steakhouse with the earliest time available 

- Here I’m selecting the closest promoted restaurant 

- I will book a steakhouse in Midtown East 

End users might not be able to provide complete data 
descriptions to uniquely identify target UI objects on their first 
attempt. To address this issue, APPINITE uses a mixed-initiative 
multi-turn dialog interface to initiate follow-up conversations to 
help users refine data descriptions. For instance, as shown in Fig. 
1c, the description parsed from the user’s instruction matches 
two items in the list. APPINITE asks the user what additional 
criteria can be used to choose between the GUI objects when the 
initial query matches multiple ones. The user can preview the 
result of executing the current query on a screen captured from 
the underlying app’s GUI (Fig. 1d). In this preview interface, the 
actually clicked object is marked in red, while the other matched 
ones (false positives) are highlighted in white. The user can 
iteratively refine the data description, add new requirements and 
preview the real-time result of the current data description until 
she has one that can both uniquely identify the action she has 
demonstrated and accurately reflects her intention.  

Lastly, APPINITE formulates an executable data description 
query for the demonstrated action and adds it to the current 
automation script (Fig. 1e). This data description is used by the 
intelligent agent to choose the correct action to perform in future 
executions of the script in different contexts. The interaction 
proxy overlay then sends the previously held tap to the 
underlying app GUI, so that the app can proceed to the next step 
so the user can continue demonstrating the task.  

In the above example, the user has interacted with the 
APPINITE interface in the “demonstration-first” mode where she 
first demonstrates the action, and only needs to provide natural 
language instructions to clarify her intention for the action if 
disambiguation is required. Alternatively, APPINITE’s multi-
modal interface also supports a “verbal-first” mode where she 
can first describe the action in natural language, after which she 
would only be asked to tap the correct UI object for grounding 
the data description if her description is ambiguous and matches 
multiple objects. All APPINITE interfaces used for recording are 
also speech-enabled, where users can freely choose the most nat-
ural interaction modality for the context – either direct manipu-
lation, natural language instruction or a mix of both. 

APPINITE also provides end-user-friendly error messages 
when the user’s instruction does not match the demonstration 

Fig. 2. APPINITE’s error handling interfaces for handling situations 
where the instruction and the demonstration do not match. 
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(Fig. 2), or when the parser fails to parse the user’s natural lan-
guage instructions into valid data description queries. If a user 
has encountered the same error more than once, APPINITE 
switches to more detailed spoken prompts that ask the user to 
refer to contents and properties shown on the screen about the 
target UI object of the demonstrated action when describing the 
intention in natural language. Our user study showed that this 
helped users give successful descriptions (see Section VI).  

At the end of the demonstration, the resulting script will be 
stored, and can later be invoked either using a GUI, from an 
external web service, by an IoT device or through an intelligent 
agent using the script execution mechanisms provided by the 
SUGILITE framework [2], [40]. The script can also be generalized 
(e.g., using a script demonstrated for making a reservation at a 
steakhouse to also make a reservation at a sushi restaurant) using 
script generalization mechanisms provided in SUGILITE [2].  

V. DESIGN AND IMPLEMENTATION 
In this section, we discuss the design and implementation of 

three core components of APPINITE: the UI snapshot graph 
extractor, the natural language instruction parser, and the 
interaction proxy overlay. 

A. UI Snapshot Knowledge Graph Extraction 
We found in the formative study that end users often refer to 

spatial and semantic-based generalizations when describing 
their intentions for demonstrated actions on GUIs. Our goal is to 
translate these natural language instructions into formal 
executable queries of data descriptions that can be used to 
perform these actions when the script is later executed. Such 
queries should be able to generalize across different contexts and 
small variations in the GUI to still correctly reflect the user’s 
intentions. To achieve this goal, a prerequisite is a representation 
of the GUI objects with their properties and relationships, so that 
queries can be formulated based on this representation. 

APPINITE extracts GUI elements using the Android Accessi-
bility Service, which provides the content of each window in the 
current GUI through a static hierarchical tree representation [41] 

similar to the DOM tree used in HTML. Each node in the tree is 
a view, representing a UI object that is visible (e.g., buttons, text 
views, images) or invisible (often created for layout purposes). 
Each view also contains properties such as its Java class name, 
app package name, coordinates for its on-screen bounding box, 
accessibility label (if any), and raw text string (if any). Unlike a 
DOM, our extracted hierarchical tree does not contain 
specifications for the GUI layout other than absolute coordinates 
at the time of extraction. It does not contain any programming 
logic or meta-data for the text values in views, but only raw 
strings from the presentation layer. This hierarchical model is 
not adequate for our data description, as it is organized by 
parent-child structures tied to the implementation details of the 
GUI, which are invisible to end users of the PBD system. The 
hierarchical model also does not capture geometric (e.g., next to, 
above), shared property value (e.g., two views with the same 
text), or semantic (e.g., the cheapest option) relations among 
views, which are often used in users’ data descriptions.   

To represent and to execute queries used in data descriptions, 
APPINITE constructs relational knowledge graphs (i.e., ontol-
ogies) from hierarchical GUI structures as the medium-level 
representations for GUIs. These UI snapshot graphs abstract the 
semantics (values and relations) of GUIs from their platform-
specific implementations, while being sufficiently aligned with 
the semantics of users’ natural language instructions. Fig. 3 
illustrates a simplified example of a UI snapshot graph. 

Formally, we define a UI snapshot graph as a collection of 
subject-predicate-object triples denoted as (𝑠, 𝑝, 𝑜), where the 
subject 𝑠 and the object 𝑜 are two entities, and the predicate 𝑝 is 
a directed edge representing a relation between the subject and 
the object. In our graph, an entity can either represent a view in 
the GUI, or a typed (e.g., string, integer, Boolean) constant value. 
This denotation is highly flexible – it can support a wide range 
of nested, aggregated, or composite queries. Furthermore, a 
similar representation is used in general-purpose knowledge 
bases such as DBpedia [42], Freebase [43], Wikidata [44] and 
WikiBrain [45], which can enable us to easily plug our UI 
snapshot graph into these knowledge bases to support better 
semantic understanding of app GUIs in the future. 

The first step in constructing a UI snapshot graph from the 
hierarchical tree extracted from the Android Accessibility Ser-
vice is to flatten all views in the tree into a collection of view 

Fig. 4. A snippet of an example GUI where the alignment suggests 
a semantic relationship – “This is the score for Minnesota” translates 
into “‘Score’ is the TextView object with a numeric string that is to 
the right of another TextView object ‘Minnesota.’” 

Fig. 3. APPINITE's instruction parsing process illustrated on an ex-
ample UI snapshot graph constructed from a simplified GUI snippet. 
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entities. The hierarchical relations are still preserved in the graph, 
but converted into hasChild and hasParent relationships 
between the corresponding view entities. Properties (e.g., coor-
dinates, text labels, class names) are also converted into relations, 
where the values of the properties are represented as entities. 
Two or more constants with the same value (e.g., two views with 
the same class name) are consolidated as a single constant entity 
connected to multiple view entities, allowing easy querying for 
views with shared properties values.  

In GUI designs, horizontal or vertical alignments between 
objects often suggest a semantic relationship [5]. Generally, 
smaller geometric distance between two objects also correlates 
with higher semantic relatedness between them [46]. Therefore, 
it is important to support spatial relations in data descriptions. 
APPINITE adds spatial relationships between view entities to UI 
snapshot graphs based on the absolute coordinates of their 
bounding boxes, including above, below, rightTo, 
leftTo, nextTo, and near relations. These relations capture 
not only explicit spatial references in natural language (e.g., the 
button next to something), but also implicit ones (see Fig. 4 for 
an example). In APPINITE, thresholds in the heuristics for deter-
mining these spatial relations are relative to the dimension of the 
screen, which supports generalization across phones with differ-
ent resolutions and screen sizes.  

APPINITE also recognizes some semantic information from 
the raw strings found in the GUI to support grounding the user’s 
high-level linguistic inputs (e.g., “item with the lowest price”). 
To achieve this, APPINITE applies a pipeline of data extractors 
on each string entity in the graph to extract structured data (e.g., 
phone number, email address) and numerical measurements 
(e.g., price, distance, time, duration), and saves them as new en-
tities in the graph. These new entities are connected to the orig-
inal string entities by “contains” relations (e.g., contain-
sPrice). Values in each category of measurements are normal-
ized to the same units so they can be directly compared, allowing 
flexible computation, filtering and aggregation.  

B. Instruction Parsing 
After APPINITE constructs a UI snapshot graph, the next step 

is to parse the user’s natural language description into a formal 
executable query to describe this action and its target UI object. 
In APPINITE, we represent queries in a simple but flexible LISP-
like query language (S-expressions) that can represent joins, 
conjunctions, superlatives and their compositions. Fig. 1e, Fig. 
3 and Fig. 4 show some example queries. 

Representing UI elements as a knowledge graph offers a 
convenient data abstraction model for formulating a query using 
language that is closely aligned with the semantics of users’ 
instructions during a demonstration. For example, the utterance 
“next to the button” expresses a natural join over a binary 
relation near and a unary relation isButton (a unary relation 
is a mapping from all UI object entities to truth values, and thus 
represents a subset of UI object entities.) An utterance “a 
textbox next to the button” expresses a natural conjunction of 
two unary relations, i.e., an intersection of a set of UI object 
entities. An utterance such as “the cheapest flight” is naturally 
expressed as a superlative (a function that operates on a set of 
UI object entities and returns a single entity, e.g., ARG_MIN or 
ARG_MAX). Formally, we define a data description query in our 

language as an S-expression that is composed of expressions that 
can be of three types: joins, conjunctions and superlatives, 
constructed by the following 7 grammar rules: 

𝐸 → 𝑒; 	𝐸 → 𝑆; 		𝑆 → 𝑗𝑜𝑖𝑛	𝑟	𝐸 ; 	𝑆 → 𝑎𝑛𝑑	𝑆	𝑆 	
𝑇 → 𝐴𝑅𝐺_𝑀𝐴𝑋	𝑟	𝑆 ; 𝑇 → 𝐴𝑅𝐺_𝑀𝐼𝑁	𝑟	𝑆 ; 	𝑄 → 𝑆	|	𝑇 

where Q is the root non-terminal of the query expression, e is a 
terminal that represents a UI object entity, r is a terminal that 
represents a relation, and the rest of the non-terminals are used 
for intermediate derivations. Our language forms a subset of a 
more general formalism known as Lambda Dependency-based 
Compositional Semantics [47] a notationally simpler alternative 
to lambda calculus which is particularly well-suited for 
expressing queries over knowledge-graphs. 

Our parser uses a Floating Parser architecture [48] and does 
not require hand-engineering of lexicalized rules, e.g., as is 
common with synchronous CFG or CCG based semantic 
parsers. This allows users to express lexically and syntactically 
diverse, but semantically equivalent statements such as “I am 
going to choose the item that says coffee with the lowest price” 
and “click on the cheapest coffee” without requiring the 
developer to hand-engineer or tune the grammar for different 
apps. Instead, the parser learns to associate lexical and syntactic 
patterns (e.g., associating the word “cheapest” with predicates 
ARG_MIN and containsPrice) with semantics during 
training via rich features that encode co-occurrence of unigrams, 
bigrams and skipgrams with predicates and argument structures 
that appear in the logical form. We trained the parser used in the 
preliminary usability study via a small number of example 
utterances paired with annotated logical forms and knowledge-
graphs (840 examples), using 4 of the 8 apps used in the user 
studies as a basis for training examples. We use the core Floating 
Parser implementation within the SEMPRE framework [49]. 

C. Interaction Proxy Overlay 
Prior mobile app GUI-based PBD systems such as SUGILITE 

[2] instrument GUIs by passively listening for the user’s actions 
through the Android accessibility service, and popping up a 
disambiguation dialog after an action if clarification of the data 
description is needed. This approach allows PBD on unmodified 
third-party apps without access to their internal data, which is 
constrained by working with Android apps (unlike web pages, 
where run-time interface modification is possible [5], [50], [51]). 
However, at the time when the dialog shows up, the context of 
the underlying app may have already changed as a result of the 
action, making it difficult for users to refer back to the previous 
context to specify the data description for the action. For exam-
ple, after the user taps on a restaurant, the screen changes to the 
next step, and the choice of restaurant is no longer visible. 

To address these issues, we implemented an interaction 
proxy [52] to add an interactive overlay on top of third-party 
GUIs. Our mechanism can run on any phone running Android 
6.0 or above, without requiring root access. The full-screen over-
lay can intercept all touch events (including gestures) before de-
ciding whether, or when to send them to the underlying app, al-
lowing APPINITE to engage in the disambiguation process while 
preventing the demonstrated action from switching the app away 
from the current context. Users can refine data descriptions 
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through multi-turn conversations, try out different natural lan-
guage instructions, and review the state of the underlying app 
when demonstrating an action without invoking the action.  

The overlay is also used for conveying the state of APPINITE 
in the mixed-initiative disambiguation to improve transparency. 
An interactive visualization highlights the target UI object in the 
demonstration, and matched UI objects in the natural language 
instruction when the user’s instruction matches multiple UI ob-
jects (Fig. 1d), or the wrong object (Fig. 2a). This helps users to 
focus on the differences between the highlighted objects of con-
fusion, assisting them to come up with additional differentiating 
criteria in follow-up instructions to further refine data descrip-
tions. In the “verbal-first” mode where no demonstration 
grounding is available, APPINITE also uses similar overlay high-
lighting to allow users to preview the matched object results for 
the current data description query on the underlying app GUI. 

VI. USER STUDY 
We conducted a preliminary lab usability study. Participants 

were asked to use APPINITE to specify data descriptions in 20 
example scenarios. The purpose of the study was to evaluate the 
usability of APPINITE on combining natural language instruc-
tions and demonstrations. 

A. Participants 
We recruited 6 participants (1 woman and 5 men, average 

age = 26.2) at Carnegie Mellon University. All but one of the 
participants were graduate students in technical fields. All 
participants were active smartphone users, but none had used 
APPINITE prior to the study. Each participant was paid $15 for 
an 1-hour user study session. 

Although the programming literacy of our participants is not 
representative of our target users, this was not a goal of this 
study. The primary goal was to evaluate the usability of our in-
teraction design on combining natural language instructions and 
demonstrations. The demonstration part of this usability study 
was based on SUGILITE’s [2], which found no significant differ-
ence in PBD task performances among groups with different 
programming expertise. Our formative study (Section III) 
showed that non-programmers were able to provide adequate 
natural language instructions from which APPINITE can 
generate generalizable data descriptions. 

B. Tasks 
From the top free apps in Google Play, we picked 8 sample 

apps (OpenTable, Kayak, Amtrak, Walmart, Hotel Tonight, Fly 
Delta, Trulia and Airbnb) where we identified data description 
challenges. Within these apps, we designed 20 scenarios. Each 
scenario required the participant to demonstrate choosing an UI 
object from a collection of options. All the target UI objects had 
multiple possible and reasonable data descriptions where the 
correct ones (that reflect user intentions) could not be inferred 
from demonstrations alone, or using heuristic rules without 
semantic understanding of the context. The tasks required 
participants to specify data descriptions using APPINITE. For 
each scenario, the intended feature for the data description was 
communicated to the participant by pointing at the feature on the 
screen. Spoken instructions from the experimenter were mini-
mized, and carefully chosen to avoid biasing what the partici-
pant would say. Four out of the 20 scenarios were set up in a 

way that multi-turn conversations for disambiguation (e.g., Fig. 
1c and Fig. 1d) were needed. The chosen sample scenarios used 
a variety of different domains, GUI layouts, data description 
features, and types of expressions in target queries (i.e. joins, 
conjunctions and superlatives).   

C. Procedure 
After obtaining consent, the experimenter first gave each 

participant a 5-minute tutorial on how to use APPINITE. During 
the tutorial, the experimenter showed the supplemental video 
figure as an example to explain APPINITE’s features.  

Following the tutorial, each participant was shown the 8 
sample apps in random order on a Nexus 5X phone. For each 
scenario within each app, the experimenter navigated the app to 
the designated state before handing the phone to the participant. 
The experimenter pointed to the UI object which the participant 
should demonstrate clicking on, and pointed to the on-screen 
feature which the participant should use for verbally describing 
the intention. For each scenario, the participant was asked to 
demonstrate the action, provide the natural language description 
of intention, and complete the disambiguation conversation if 
prompted by APPINITE. The participant could retry if the speech 
recognition was incorrect, and try a different instruction if the 
parsing result was different from expected. APPINITE recorded 
participants’ instructions as well as the corresponding UI snap-
shot graphs, the demonstrations, and the parsing results. 

After completing the tasks, each participant was asked to 
complete a short survey, where they rated statements about their 
experience with APPINITE on a 7-point Likert scale. The 
experimenter also had a short informal interview with each par-
ticipant to solicit their comments and feedback. 

D. Results 
Overall, our participants had a good task completion rate. 

Among all 120 scenario instances across the 6 participants, 106 
(87%) were successful in producing the intended target data 
description query on the first try. Note that we did not count 
retries caused by speech recognition errors, as it was not a focus 
of this study. Failed scenarios were all caused by incorrect or 
failed parsing of natural language instructions, which can be 
fixed by (1) having bigger training datasets with better coverage 
for words and expressions users may use in instructions, and (2) 
enabling better semantic understanding of GUIs (details in 
Section VII). Participants successfully completed all initially 
failed scenarios in retries by rewording their verbal instructions 
after being prompted by APPINITE. Among all the 120 scenario 
instances, 24 instances required participants to have multi-turn 
conversations for disambiguation. 22 of these 24 (92%) were 
successful on the first try, and the rest were fixed by rewording.  

In our survey on a 7-point Likert scale from “strongly disa-
gree” to “strongly agree”, our 6 participants found APPINITE 
“helpful in programming by demonstration” (mean=7), 
“allowed them to express their intentions naturally” (mean=6.8, 
σ=0.4), and “easy to use” (mean=7). They also agreed that “the 
multi-modal interface of APPINITE is helpful” (mean=6.8, 
σ=0.4), “the real-time visualization is helpful for 
disambiguation” (mean=6.7, σ=0.5), and “the error messages 
are helpful” (mean=6.8, σ=0.4).  
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VII. DISCUSSION AND FUTURE WORK 
The study results suggested that APPINITE has good usability, 

and also that it has adequate performance for generating correct 
formal executable data description queries from demonstrations 
and natural language instructions in the sample scenarios. As the 
next step, we plan to run offline performance evaluations for the 
UI snapshot graph extractor and the natural language instruction 
parser, and in-situ field studies to evaluate APPINITE’s usage and 
performance for organic tasks in real-world settings. 

Participants praised APPINITE’s usefulness and ease of use. 
A participant reported that he found sample tasks very useful to 
have done by an intelligent agent. Participants also noted that 
without APPINITE, it would be almost impossible for end users 
without programming expertise to create automation scripts for 
these tasks, and it would also take considerable effort for experi-
enced programmers to do so. 

Our results illustrate the effectiveness of combining two 
input modalities, each with its own different of ambiguities, to 
more accurately infer user’s intentions in EUD. A major 
challenge in EUD is that end users are unable to precisely 
specify their intended behaviors in formal language. Thus, 
easier-to-use but ambiguous alternative programming 
techniques like PBD and natural language programming are 
adopted. Our results suggest that end users can effectively 
clarify their intentions in a complementary technique with 
adequate guidance from the system when the initial input was 
ambiguous. Further research is needed on how users naturally 
select modalities in multi-modal environments, and on how 
interfaces can support more fluid transition between modalities. 

Another insight is to leverage the GUI as a shared grounding 
for EUD. By asking users to describe intentions in natural 
language referring to GUI contents, our tool constrains the scope 
of instructions to a limited space, making semantic parsing 
feasible. Since users are already familiar with app GUIs, they do 
not have to learn new symbols or mechanisms as in scripting or 
visual languages. The knowledge graph extraction further 
provides users with greater expressive power by abstracting 
higher-level semantics from platform-specific implementations, 
enabling users to talk about semantic relations for the items such 
as “the cheapest restaurant” and “the score for Minnesota.” 

While APPINITE has already offered some semantic-based 
features to provide greater expressiveness than existing end user 
PBD task automation tools, participants were hoping for more 
powerful support to enable them to naturally express more com-
plicated logic in a more flexible way. To achieve this, we plan 
to improve APPINITE in the following areas: 

A. Learning Conceptual Knowledge 
We plan to leverage recent advances in natural language 

processing (e.g., [53]) to enable APPINITE to learn new concepts 
from users through verbal instructions. More specifically, we 
want to support users to add new relations into UI snapshot 
graphs through conversations. For example, for the interface 
shown in Fig. 1a, users can currently say, “the restaurant that is 
804 feet away” (corresponds to the hasText relation) or “the 
closest restaurant” (corresponds to the containsDistance 
relation), but not “restaurants within walking distance” as 
APPINITE does not yet know the concept of “walking distance.” 
We plan to enable future versions of APPINITE to ask users to 

explain unknown (and possibly personalized) concepts. For this 
example, a user may say “Walking distance means less than half 
a mile”, from which APPINITE can define a relation extractor for 
the isWalkingDistance modifier for existing objects with 
the containsDistance relation, and subsequently allow 
use of the new concept “walking distance” in future instructions.  

B. Computation in Natural Language Instructions 
Currently in APPINITE, users have a limited capability of 

specifying computations and comparisons in natural language 
instructions. For example, for the interface shown in Fig. 2b, 
users cannot use expressions like “flights that are cheaper than 
$700” or “if the flight is shorter than 4 hours” in specifying data 
descriptions, although the UI snapshot graph already contains 
the prices and the durations for all flights. Furthermore, users are 
not able to create control structures (e.g., conditionals, iterations, 
triggers) which would require computations and comparisons. 
To address this issue, we plan to leverage prior work on natural 
language programming [32], and more importantly, how non-
programmers can naturally describe computations, control 
structures and logic in solutions to programming problems [54] 
to extend our parser so that it can understand naturally expressed 
computations and the corresponding control structures. How-
ever, even with advanced semantic parsing and natural language 
processing techniques, GUI demonstrations will still remain 
essential for grounding users’ natural language inputs and 
resolving ambiguities in the natural language. 

C. Better Semantic Understanding of GUIs 
Future versions of APPINITE can benefit from having better 

semantic understanding of GUIs. Some understanding can be 
acquired from user instructions, while others can come from 
existing resources. As discussed previously, the format of our 
UI snapshot graph allows easy integration with existing 
knowledge bases, which enables APPINITE to understand the 
semantics of entities (e.g., JetBlue, Delta and American are all 
instances of airlines for the interface in Fig. 2b). This integration 
can allow APPINITE to have more accurate instruction parsing, 
and to ask more specific questions in follow-up conversations. 

GUI layouts can also be better leveraged to extract 
semantics. So far, we have only used the inter-object binary 
geometric relations such as above and nextTo to represent 
possible semantic relations between individual UI objects, but 
not the overall layout. Prior research suggests that app GUI 
designs often follow common design patterns, where the layout 
can suggest its functionality [55]. Also, for graphics in GUIs, 
especially for those without developer-provided accessibility 
labels, we can use runtime annotation techniques [56] to 
annotate their meanings. Visual features in GUIs can also be 
used in data descriptions, as discussed in [6], [57], [58]. 

VIII. CONCLUSION 
Natural language instruction is a natural and expressive 

medium for users to specify their intentions and can provide 
useful complementary information about user intentions when 
used in conjunction with other EUD approaches, such as PBD. 
APPINITE combines natural language instructions with demon-
strations to provide end users with greater expressive power to 
create more generalized GUI automation scripts, while retaining 
usability, transparency and understandability. 
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