
It is somewhat surprising that
in spite of over 30 years of
research in the areas of empirical
studies of programmers (ESP)
and human-computer interac-
tion (HCI), the designs of new
programming languages and
debugging tools have generally
not taken advantage of what has
been discovered. For example,
the C#, JavaScript, and Java lan-
guages use the same mechanisms

for looping, conditionals, and
assignments shown to cause
many errors for both beginning
and expert programmers in the
C language. Systems such as
MacroMedia’s Director and
Flash, Microsoft’s Visual Basic,
and general-purpose program-
ming environments like
MetroWerks’ CodeWarrior and
Microsoft’s Visual C++, all pro-
vide the same debugging tech-

niques available for 60 years:
breakpoints, print statements,
and showing the values of vari-
ables.

Our thorough investigation of
the ESP and HCI literature
revealed many results that can be
used to guide the design of new
programming systems, many of
which have not be utilized in
previous designs. However, there
are many significant gaps in our

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 47

An environment that works the way nonprogrammers
expect is more inviting and helps users become more
confident and productive.

Over the last six years, we have been working to create programming
languages and environments that are more natural, or closer to the way people
think about their tasks. Our goal is to make it possible for people to express
their ideas in the same way they think about them. To achieve this, we have
performed various studies about how people think about programming tasks,
both when trying to create a new program and when trying to find and fix
bugs in existing programs. We then use this knowledge to develop new tools
for programming and debugging. Our user studies have shown the resulting
systems provide significant benefits to users.

NATURAL PROGRAMMING
LANGUAGES AND
ENVIRONMENTS

By Brad A. Myers,
John F. Pane and Andy Ko

48 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

knowledge about how people reason about programs
and programming. For example, there has been very
little study about which fundamental paradigms of
computing are the most natural or what questions
people ask when debugging. We are performing user
studies which investigate these questions.

It is in this context that we developed the Natural
Programming design process, that treats usability as a
first-class objective by following these steps:

• Identify the target audience and the domain, that
is, the group of people who will be using the sys-
tem and the kinds of problems they will be work-
ing on.

• Understand the target audience, by studying the
actual language, techniques, and thinking they
naturally use when trying to solve problems. This
includes an awareness of general HCI principles
as well as prior work in the psychology of pro-
gramming and empirical studies. When issues or
questions arise that are not answered by the prior
work, conduct new user studies to examine them.

• Design the new system based on this informa-
tion.

• Evaluate the system to measure its success, and to
understand any new problems the users have.
Redesign the system based on this evaluation, and
then reevaluate it, following the standard HCI
principle of iterative design.

Thus, the Natural Programming approach is an
application of the standard user-centered design
process to the specific domain of programming lan-
guages and environments.

This article provides an overview of some of the
work of the Natural Programming project.1 We
explore why naturalness might be better for develop-
ers and what might be more natural in programs for
graphics and data processing based on initial user
studies. The results were used in the design of a new
language and environment called Human-centered
Advances for the Novice Development of Software
(HANDS). We also discuss our survey of program-
mers creating small and medium-size programs using
a different environment called Alice (see www
.alice.org).

Why Natural Might Be Better
The premise of our research project is that program-
mers will have an easier job if their programming
tasks are made more natural. By “natural,” we mean
“faithfully representing nature or life,” which here

implies it works in the way people expect. By “nat-
ural programming” we are aiming for the language
and environment to work the way that nonpro-
grammers expect.

Why would this make programming easier? One
way to define programming is the process of trans-
forming a mental plan in familiar terms into one
compatible with the computer [3]. The closer the lan-
guage is to the programmer’s original plan, the easier
this refinement process will be. This is closely related
to the concept of directness that, as part of direct
manipulation, is a key principle in making user inter-
faces (UI) easier to use. UI designers and researchers
have been promoting directness at least since Ben
Shneiderman identified the concept in 1983, but it
has not even been a consideration in most program-
ming language designs.

Conventional programming languages require the
programmer to make tremendous transformations
from the intended tasks to the code design. For exam-
ple, a typical program to add a set of numbers in C
uses three kinds of parentheses and three kinds of
assignment operators in five lines of code, whereas a
single “SUM” operator is sufficient in a spreadsheet
[2]. We argue that if the computer language were to
enable people to express algorithms and data more
like their natural expressions, the transformation
effort would be reduced.

Similarly, debugging activities could benefit from
being more natural. Research describes debugging as
an exploratory activity aimed at investigating a pro-
gram’s behavior, involving several distinct and inter-
leaving activities [12]:

• Hypothesizing what runtime actions caused failure;
• Observing data about a program’s runtime state;
• Restructuring data into different representations;
• Exploring restructured runtime data;
• Diagnosing what code caused faulty runtime

actions; and
• Repairing erroneous code to prevent such actions.

Current debugging tools support some of these
activities, while hindering others. For example, break-
points and code-stepping support observation of con-
trol flow but hinder exploration and restructuring,
whereas visualization tools help restructure data but
hinder diagnosis and observation [5]. Yet none of
these tools support hypothesizing activities. The argu-
ment behind our Natural Programming approach to
debugging is that support for such question-related
activities will significantly improve success. If pro-
grammers have a weak hypothesis about the cause of
a failure, any implicit assumptions about what did or1More details are available from other papers at www.cs.cmu.edu/~NatProg).

did not happen at run-
time will go unchecked.
Not only do these
unchecked assumptions
cause debugging to take
more time [12], but they
also result in new errors.
For example, in a study of
Alice users we found that
50% of all errors were due
to programmers’ false assumptions in the hypotheses
they formed while debugging existing errors [6].

Related work. We build on the research of many
others, who have studied programming and debug-
ging. Prior studies (see [10] for a summary) have
shown that features of the programming environment
are a crucial part of making a programming language
effective and easy to use. For example, providing
immediate feedback about problems and testing helps
with problem solving. The ability to test partial solu-
tions is an important feature for novices and experts
alike, especially during testing and when reusing code.
This incremental and frequent testing should be

encouraged because it is a useful
debugging strategy. When
novices test their code incremen-
tally, they perform better [2].

The idea that the program-
ming environment can help users
construct programs has a long
history. “Syntax Directed Editors”
(also called “Structure Editors”)
have been used to help eliminate
syntax errors at least since the
Cornell Program Synthesizer
[11], and there have been many
variations. Modern tools like
Visual Basic provide context-
dependent pop-up menus that
insert correctly formatted code,
but do not restrict what users can
type. Alice takes an extreme

stance and only allows syntactically correct statements
to be entered, since all editing is performed by drag-
ging-and-dropping statements and using pop-up
menus to specify parameters. A number of environ-
ments have adapted the successful spreadsheet style of
end-user programming to other domains (for exam-
ple, [1, 4]).

Many tools have been created to help with debug-
ging, but most focus on visualization of data and con-
trol flow. Research by Kehoe, Stasko, and Taylor
suggests, however, that these are not particularly help-
ful for debugging [5]. Communications devoted a spe-
cial section to new ideas for debugging in April 1997,
but none of the systems have been user tested or
widely deployed [8].

Language Studies
We conducted two studies to examine the language
and structure that children and adults naturally use
in solving problems before they have been exposed
to programming. Participants were presented with
programming tasks and asked to solve them on
paper using whatever text or diagrams they wanted

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 49

The goal is to make it possible for people to express their ideas in
the same way they think about them.

cardname
x
y
kind
back
nectar
speed
direction

Bumbles
777
178
bee
bumble.gif
5
1
251

The bee with the most nectar is: Stripes
He has this much nectar: 8
All the bees have collected: 45

Figure 1. The HANDS system
portrays the components of a
program on a round table. All

data is stored on cards, and
the programmer inserts code
into Handy’s thought bubble

at the upper left corner. When
the play button is pressed,

Handy begins responding to
events by manipulating cards

according to the instructions in
the thought bubble.

to use. To avoid biasing the subjects’ answers, the
study materials were constructed with great care,
using graphical depictions and terse descriptions of
problem scenarios. One study used the PacMan
video game and another used database access scenar-
ios more typical of business programming tasks.

Some observations from these studies were:

• An event-based or rule-based structure was often
used, where actions were taken in response to
events. For example, “When PacMan loses all his
lives, it’s game over.”

• Aggregate operators (acting on a set of
objects all at once) were used much more
often than iterating through the set and act-
ing on the objects individually. For example,
“Move everyone below the 5th place down
by one.”

• Participants rarely used Boolean expressions,
but when they did they were likely to make
errors. That is, their expressions were not
correct if interpreted according to the rules
of Boolean logic in most programming lan-
guages.

• Participants often drew pictures to sketch out
the layout of the program, but resorted to
text to describe actions and behaviors.

Additional details about these studies are reported
in [9].

The HANDS Environment and
Language
The next step was to design and implement
HANDS, a new programming language and envi-
ronment. The various components of this system
were designed in response to the observations in our
studies as well as prior work.

HANDS uses an event-based language that fea-
tures a new model for computation, provides queries
and aggregate operators that match the way nonpro-
grammers express problem solutions, has high visibil-
ity of program data, and includes domain-specific
features for the creation of interactive animations and
simulations.

In HANDS, the computation is represented as an
agent named Handy, sitting at a table manipulating a
set of cards (see Figure 1). All the data in the system
is stored on these cards, which are global, persistent,
and visible on the table.

HANDS is event-based—a programming style
that most closely matches the problem solutions in
our studies. It has full support for aggregate opera-
tions—all operators can accept lists or singletons as

operands. Lists can be generated as needed, by using
query operators that search all of the cards for the
ones matching the programmer’s criteria. Queries and
aggregate operations work in tandem to enable the
programmer to concisely express actions that would
require iteration in most languages. For example, the
following is a typical HANDS statement combining
queries and aggregates:

set the nectar of all flowers to 0

To examine the effective-
ness of HANDS, we con-
ducted a user study.
Ten-year-olds were able to
learn the HANDS system during a three-hour ses-
sion, and then use it to solve programming problems.
Children using the full-featured version of HANDS
performed significantly better than their peers who
used a version modified to be more like typical pro-
gramming systems. Additional details about this
study are reported in [9].

Debugging Studies
Our studies of the language and structure that peo-
ple use helped us to design a more natural program-
ming language. We are also performing studies of
how programming environments can help program-
mers avoid making errors, and help them find and fix
the errors they have already made. An important part
of these studies is determining what causes program-
mers to make errors in the first place.

We have integrated many strands of prior research
on human error, and have found that errors are ulti-
mately caused by long chains of breakdowns that hap-
pen for one of two reasons: some breakdowns occur in
the programmer’s head, such as using an inappropriate

50 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

Figure 2. The Alice
programming environment

with a “why didn’t”
question in progress.

strategy, or having a misunderstanding about a partic-
ular aspect of a programming language. The other type
of breakdown is caused by things outside of the pro-
grammers’ head, in the programming language and
environment. For example, when it is difficult to
inspect the values of variables at runtime, program-
mers may have breakdowns in debugging. Or, when a
language supports different meanings for the same text
(such as the “+” operator in Java), programmers may
accidentally introduce errors.

Thus, to prevent errors, program-
ming environments should help pre-
vent these types of breakdowns. We
have developed methods of studying
programmers’ work in order to deter-
mine how the programming language
and environment might be changed

to prevent breakdowns. We have recently focused on
preventing breakdowns in debugging.

In order to see what tools might be useful, we per-
formed two studies of both experts’ and novices’ pro-
gramming activity [6] using the Alice programming
environment (see Figure 2). We chose Alice for these
studies because it simplifies the creation of programs
by using drag-and-drop to place tiles of code into the
code area and pop-up menus to choose parameters.
This interaction prevents all type errors and syntax
errors (see www.alice.org for more details).

We observed that all of the programmers’ questions
at the time of failure were one of two types: 32% were
why did questions, which assume the occurrence of an
unexpected runtime action, and 68% were why didn’t
questions, which assume the absence of an expected run-
time action. Furthermore, 50% of all errors were due to
programmers’ false assumptions in the hypotheses they
formed while debugging existing errors, resulting in the

insertion of new errors that had to be debugged.

Design of the WhyLine
No existing programming environment allows users
to ask these kinds of “why” questions. By analyzing
the control flow graph of the programs, and annotat-
ing it with the complete history of all assignments
and uses of properties’ values, we are able to answer
these questions directly in the Alice UI (see Figure 2)
through the “Why did” and “Why didn’t” menus.

The submenus contain the objects in the
world that were or could have been
affected.

In addition to highlighting the relevant
piece of code, we present a visualization of
the answer to the question in Whyline—
the Workspace that Helps You Link
Instructions to Numbers and Events (see
Figure 3).

We performed a user study comparing
the Alice environment with and without
the Whyline. Subjects were Master’s stu-
dents with programming experience rang-
ing from beginning Visual Basic to
extensive C++ and Java. Analyzing six sit-
uations that were identical across the two
conditions, the Whyline significantly
decreased debugging time from an aver-

age of 155 seconds per bug down to 20 seconds,
which is a factor of 7.8. Furthermore, in the 90 min-
utes allotted, programmers with the Whyline com-
pleted 40% more tasks than those without. Full
details are available in [7].

Conclusion
We are currently working on extending these ideas
in many directions. We are investigating new
domains in which to design more natural languages.
We are extending the programming environment
research to help with other parts of program analysis
and creation.

While making programming languages and envi-
ronments more natural may be controversial when
aimed at professional programmers, we believe it is of
significant importance for end-user development. In
addition to supplying new knowledge and tools
directly, the human-centered approach followed by
the Natural Programming project provides a model of
a methodology that can be followed by other devel-
opers and researchers when designing their own lan-
guages and environments. We believe this will result
in more usable and effective tools that allow both end-
users and professionals to write more useful and cor-
rect programs. c

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 51

Figure 3. The
Whyline’s
answer shows a
visualization of the
runtime actions
that prevented Pac
from resizing.

References
1. Burnett, M., Yang, S., and Summet, J. A scalable method for deductive

generalization in the spreadsheet paradigm. ACM Trans. Computer-
Human Interaction 9, 4 (2002), 253–284.

2. Green, T.R.G. and Petre, M. Usability analysis of visual programming
environments: A cognitive dimensions framework. J. Visual Languages
and Computing 7, 2 (1996), 131–174.

3. Hoc, J.-M. and Nguyen-Xuan, A. Language semantics, mental models
and analogy. J.-M. Hoc et al., Eds. Psychology of Programming. Acade-
mic Press. London, 1990, 139–156.

4. Johnson, J.A., Nardi, B.A., Zarmer, C.L., and Miller, J.R. Ace: Build-
ing interactive graphical applications. Commun. ACM 36, 4 (Apr.
1993). ACM, NY, 41–55.

5. Kehoe, C., Stasko, J., and Taylor, A. Rethinking the evaluation of algo-
rithm animations as learning aids: An observational study. Interna-
tional J. Human-Computer Studies 54, 2 (2001), 265–284.

6. Ko, A.J. and Myers, B.A. Development and evaluation of a model of
programming errors. IEEE Symposia on Human-Centric Computing
Languages. (Auckland, New Zealand, 2003), 7–14; www-
cs.cmu.edu/~ajko/HCC2003.pdf.

7. Ko, A.J. and Myers, B.A. Designing the Whyline, a debugging inter-
face for asking why and why not questions about runtime failures. In
Proceedings of 2004 Human Factors in Computing Systems (CHI04).
Vienna, Austria, Apr. 2004), 151–158.

8. Lieberman, H. The debugging scandal and what to do about it. Com-
mun. ACM 40, 4 (Apr. 1997). Special section, 26–78.

9. Pane, J. A programming system for children that is designed for usabil-
ity. Ph.D. thesis, 2002. Carnegie Mellon University, Pittsburgh, PA;
www.cs.cmu.edu/~pane/thesis/.

10. Pane, J.F. and Myers, B.A. Usability issues in the design of novice pro-
gramming systems. School of Computer Science Technical Report,
CMU-CS-96-132 (Aug. 1996), Carnegie Mellon University, Pitts-
burgh, PA; www.cs.cmu.edu/~pane/tr96/.

11. Teitelbaum, T. and Reps, T. The Cornell Program Synthesizer: A syn-
tax-directed programming environment. Commun. ACM 24, 9 (Sept.
1981), 563–573.

12. von Mayrhauser, A. and Vans, A.M. Program understanding behavior
during debugging of large scale software. In Proceedings of 7th Annual
Workshop for Empirical Studies of Programmers. (Alexandria, VA, 1997).

Brad A. Myers (bam@cs.cmu.edu) is a professor in the Human
Computer Interaction Institute, School of Computer Science at
Carnegie Mellon University, Pittsburgh, PA.
John F. Pane (jpane@rand.org) is an associate information scientist
at RAND, Pittsburgh, PA.
Andy Ko (ajko@cmu.edu) is a Ph.D. student in the Human
Computer Interaction Institute at Carnegie Mellon University,
Pittsburgh, PA.

This research has been funded in part under NSF grants IRI-9900452 and IIS-
0329090, and by the EUSES Consortium under NSF grant ITR-0325273. Opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the NSF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/0900 $5.00

52 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

Notice of Intent to De-Charter

ACM is considering the de-charter of the following chapters due to inactivity. Members
interested in revitalizing their chapter should contact Susan Wood, Local Activities
Coordinator, wood_s@acm.org. ACM will terminate the chapters listed here after 90 days unless inter-
ested volunteers express a desire to reactivate their chapter and prepare acceptable revitalization plans.

Belgian ACM Chapter
Bulgarian ACM SIGCHI Chapter
Central Ohio ACM SIGCHI (BuckCHI) Chapter
Clear Lake Area ACM SIGAda Chapter
Czech ACM Chapter
Dallas/Ft. Worth ACM SIGCHI Chapter
Egypt ACM Chapter
Huachuca ACM SIGAda Chapter
Hungarian ACM Chapter
Huntsville ACM SIGAda Chapter
Hyderabad/India ACM Chapter
Italian ACM Chapter
Kaluga Region/Russian ACM SIGAPL Chapter
Los Angeles ACM SIGCHI Chapter
LVIV/Ukraine ACM Chapter

Mexico ACM SIGCAS Chapter
New York City ACM SIGCSE Chapter
Ottawa ACM SIGART Chapter
Rio Grande ACM Chapter
Rochester ACM Chapter
Rome/Italy ACM SIGAPL Chapter
Southeast Michigan ACM SIGART Chapter
Tampa Bay ACM Chapter
Toronto ACM SIGAPL Chapter
Washington D.C. ACM SIGAda Chapter
Westchester Fairfield ACM Chapter
Yemen ACM Chapter
Yogyakarta-Indonesia ACM Chapter
Yokohama/Japan ACM SIGAda Chapter
Oktibehha ACM SIGGRAPH Chapter

