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Abstract This chapter introduces an end user development (EUD) approach for han-
dling common types of failures encountered by goal-oriented conversational agents.
We start with identifying three common sources of failures in human-agent conversa-
tions: unknown concepts, out-of -domain tasks and wrong fulfillment means or level
of generalization in task execution. To handle these failures, it is useful to enable
the end user to program the agent and to “teach” the agent what to do as a fallback
strategy. Showing examples for this approach, we walk through our two integrated
systems: Sugilite andLia. Sugilite uses the programming by demonstration (PBD)
technique, allowing the user to program the agent by demonstrating new tasks or new
means for completing a task using the GUIs of third-party smartphone apps, while
Lia learns new tasks from verbal instructions, enabling the user to teach the agent
through breaking down the procedure verbally. Lia also enables the user to verbally
define unknown concepts used in the commands and adds those concepts into the
agent’s ontology. Both Sugilite and Lia can generalize what they have learned from
the user across related entities and perform a task with new parameters in a different
context.
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6.1 Introduction

Recently, goal-oriented conversational agents have made significant progress in
expanding the support formore task domains, refining the speech recognition compo-
nents for reduced recognition errors, improving the natural language understanding
model for better comprehension of user commands, and enhancing the dialog man-
agement system to have more natural and fluent conversations with users.

Despite the progress made, these conversational agents still inevitably encounter
errors and failures. In designing and implementing the user experience of a goal-
oriented conversational agent, a crucial part is failure handling—how should the
agent respond when it could not understand the user’s command, could not perform
the task the user asked for, or performed the task in a different way than what the user
had hoped for? Many UX guidelines for designing conversational flow and fallback
strategies in dialog management systems have been proposed, such as directing
the users to rephrase in a different way that the agent can understand (Pappu and
Rudnicky 2014; Armstrong 2017a), refocusing and redirecting the users to tasks
that the agent can support (Barkin 2016), updating and confirming the beliefs of
the system (Bohus and Rudnicky 2005a), or providing users options to correct the
input (Armstrong 2017b). Extensive work in dialog management systems have also
been conducted to detect and to recover from errors of non-understanding (Bohus
and Rudnicky 2005b, c), and to proactively elicit knowledge (Pappu and Rudnicky
2014) from users for helping reduce subsequent task failures in user’s dialogs with
conversational agents.

In this chapter, we take a different perspective to discuss an end-user development
(EUD) approach for failure handling in conversational agents. We believe that the
design goal for conversational agents should evolve from easy to use (i.e. users
should easily figure out how to provide a “good” or “valid” input for the agent with
the help of good UX design) to easy to develop (Lieberman 2001), where the end
users are empowered to “teach” the agent what to do for a given input, and to modify
how a task is executed by the agent. Such new capabilities can provide expandability,
customizability and flexibility to the users, catering to their highly diverse and rapidly
changing individual preferences, needs, personal language vocabulary and phrasings.
We share our experience on designing and implementing Lia and Sugilite, two
integrated systems that can enable end users of the conversational agent to define
new concepts in the ontology through giving natural language instructions, and to
instruct the agent’s new tasks by demonstrating the use of existing third-party apps
available on the phone. The two systems leverage different input modalities—Lia
relies on the user instructions in natural language, while Sugilite mainly uses the
user’s demonstrations on graphical user interfaces (GUI). We also discuss our future
work on further combing the two approaches to provide users with multi-modal end
user development experiences for conversational agents.

This chapter first explains three types of challenges that we identified on how
goal-oriented conversational agents handle failures in the dialog. Then we use our
two systems Lia and Sugilite as examples for explaining how supporting end user
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development can be adopted as a useful failure handling strategy for a conversational
agent. Finally, we discuss the directions of our ongoing and planned follow-up work.

6.2 Underlying Challenges

This section identifies three underlying challenges for goal-oriented conversational
agents in handling failures.

6.2.1 Understanding Unknown and Undefined Concepts

A great amount of work in the domains of speech recognition and natural language
processing has been put into helping conversational agents better understand verbal
commands. Large ontologies and knowledge graphs of both general and domain-
specific knowledge have been connected to the conversational agents, so they can
identify entities and concepts in the commands, understand relations, and perform
reasoning on these entities, concepts and relations (Dzikovska et al. 2003; Gruber
et al. 2017).

However, many of the concepts involved in the commands can be fuzzy or have
varying meanings that are specific to individual users, so they cannot be found in
existing ontologies. For example, a user may say things like “Show my important
meetings” or “Send emails to my colleagues”, where concepts like “important meet-
ings” and “my colleagues” are not clearly defined. There might also be customized
properties (e.g., each colleague has an affiliation) and criteria (e.g., colleagues all
have email addresses from the university domain) for those concepts. As result, the
conversational agents are not able to understand these commands. Even some agents
like Apple Siri, which actively builds personal ontologies through passively mining
personal data (e.g., emails, contacts, calendar events) (Gruber et al. 2017) are still
unlikely to cover all the concepts that the user may refer to in the commands due to
both technical difficulties and privacy concerns. It remains an important challenge
for conversational agents to learn those personal concepts found in user commands
that are unknown to the agent and undefined in existing ontologies (Azaria and Hong
2016).

In addition to understanding unknown classes of entities, a closely related problem
is understanding unknown language referring to actions. For example, the user might
request “Drop a note to Brad to say I’ll be late” but the agent might not know the
action “drop a note.” So, the problem of undefined concepts is both an ontology
problem and a language understanding problem.
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6.2.2 Executing Out-of-Domain Tasks

Traditionally, conversational agents were only able to perform tasks on a fixed set
of domains, whose fulfillments had been pre-programmed by their developers. For
example, Apple Siri used to only be able to perform tasks with built-in smartphone
apps (e.g., Phone, Message, Calendar, Music) and query a few integrated external
web services (e.g., Weather, Wikipedia, Wolfram). Consequently, many commands
that users give are out-of-domain for the agents, despite the fact that there are apps
available on the phone for executing these tasks. In these situations, the agents gen-
erally rely on fallback strategies, such as using web search, which does not perform
the task. Although many existing agents have made efforts to understand some parts
of the query so they can provide a more specific response than the most general “Do
youwant me toGoogle this for you?” those out-of-domain failures are still frustrating
for users in most cases. For example, we can observe the following dialog when a
user tries to order a cup of coffee using Apple Siri:

(1) Coffee Order

00 U: Order a cup of Cappuccino.
01 A: Here’s what I found: (Showing a list of Apple Map

results of nearby coffee shops)

In the Excerpt 1 above, we can see that although the agent has successfully rec-
ognized the user’s intent, it cannot fulfill the user’s request due to the lack of an API
for task fulfillment.

To address this issue, major “virtual assistant” agents like Apple Siri, Google
Assistant and Amazon Alexa have started opening their APIs to third-party devel-
opers so they can develop “skills” for the agents, or integrate their own apps into the
agents. However, based on what we can observe, only a small number of the most
popular third-party apps have been integrated into these agents due to the cost and
engineering effort required. In the foreseeable future, the “long-tail” of unintegrated
apps are not likely to be supported by the agents. While each long-tail app does not
have a massive user base, some of these apps are used frequently by a small group
of users. Thus, it can still be important to enable the agents to invoke commands
supported by these apps.

6.2.3 Using the Right Fulfillment Means and Generalization
in Task Execution

Another type of failure can happen when the agent understands the command cor-
rectly, has the capability to perform the task, but executes the task in a different
fashion, with different specifications, or through a different means than the user had
anticipated. This type of failure is often a result of assumptions made by the bot
developers on how the user might want the task to be performed.
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An example of this type of failure is assumingwhich service to use for fulfilling the
user’s intent. Virtual assistants like Apple Siri and Google Assistant often have a pre-
set service provider for each supported taskdomain, despite all the other apps installed
on the phone that can also perform the same task. In reality, each individual user may
have a different preferred service provider to use, or even a logic for choosing a service
provider on the fly (e.g., choosing the cheapest ride for the destination between Uber
and Lyft). As a result, the conversational agent should allow the user to customize
what service, or the criteria for choosing the service, to use when fulfilling an intent.

In some other situations, the agent makes too many assumptions about the task
parameters and asks too few questions. For example, in the customer reviews for an
Alexa skill of a popular pizza-delivery chain, a customer writes

…You can only order pizza; no sides, no drinks, just pizza. You also can’t order specials/deals
or use promo codes. Lastly, you can’t select an address to use. It will automatically select
the default address on the account. (Mitman93)

This skill also does not support any customization of the pizza, only allowing the
user to choose between a few fixed options. In contrast, the Android app for the same
chain supports all the features mentioned in the customer’s review, plus a screen for
the user to fully customize the crust, the sauce and the toppings. This phenomenon
is not unique as many conversational agents only support a subset of functionality
and features when compared with their smartphone app counterparts.

On the other hand, it is also crucial to keep the dialog brief and avoid overwhelming
users with too many options. This is especially true in speech interfaces, as users
can quickly skim over many available options presented in the GUI, but this is not
possible when using voice. However, it is not easy to decide what parameters a
conversational agent should present to the users, as users often have highly diverse
needs and personal preferences. An important question to ask for one user may seem
redundant for another. We argue that conversational agents should (1) make all the
options available but also (2) personalize for each user the questions to ask every
time and the parameters that the agent should simply save as default values.

6.3 Learning from Demonstration

Learning from the user’s demonstration allows a conversational agent to learn how
to perform a task from observing the user doing it. This approach helps the agent
address the two challenges of executing out-of -domain tasks and using the right
fulfillmentmeans and generalization in task execution in failure handling as described
in the previous sections. For out-of-domain tasks, the users can program these tasks
by demonstrating them for the agent. The users can also freely customize how a
task is executed by the agent and incorporate their personal preferences in the task
demonstration.

In this section, we introduce our programming by demonstration agent Sugilite
as an example to illustrate howprogramming by demonstration (PBD) can be adopted
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in failure handling for conversational agents. We also walk through the design goals
of Sugilite and how its implementation supports these design goals.

6.3.1 SUGILITE

Sugilite (Li et al. 2017a) is a multi-modal programming-by-demonstration system
that enables end users to program arbitrary smartphone tasks for conversational
intelligent agents. The end user does this by combining the demonstrations made
by directly manipulating the regular graphical user interface (GUI) of smartphone
apps, along with verbal instructions. Sugilite allows the users to invoke arbitrary
third-party apps on anAndroid smartphone to performpreviously-demonstrated tasks
using voice commands without having to repeatedly navigate through the GUI of the
app.

Amajor benefit of using the demonstration approach is usability. Sugilite adopts
the programming-by-demonstration (PBD) technique, which significantly lowers the
learning barrier for end users. By using Sugilite, an end user of a conversational
intelligent agent is able to “teach” the agentwhat to do for an out-of-domain command
to expand the capabilities of the agentwithout necessarily knowing any programming
language. Instead, the user can demonstrate the task using familiar GUIs of existing
third-party mobile apps, leveraging their knowledge and experience on how to use
those apps from the user’s perspective. Unlike conventional programming languages
which require the user to map what they see on the GUI to a textual representation
of actions, the PBD approach enables users to naturally program in the same envi-
ronment in which they perform the actions (Cypher and Halbert 1993; Myers et al.
2017).

PBD techniques have already been used in software for automating repetitive
computing tasks. For example, Adobe Photoshop allows users to record a series of
operations in photo editing, and to replay the recorded operations later on a different
photo. Similarly, in Microsoft Office, the users can record a macro for automating
operations on documents. PBD techniques have also been used in prior systems for
automating tasks in domains such as email processing (Cypher 1993), arithmetic
calculation (Witten 1993), programming intelligent tutors (Koedinger et al. 2004)
and performing web tasks (Allen et al. 2007; Leshed et al. 2008).

However, an advantage of Sugilite compared with prior systems is applicability.
Most prior systems each focus on a single domain, while Sugilite can be used for
tasks in any arbitraryAndroid smartphone app, or acrossmultiple apps. Sugilite also
doesn’t require any modification of the app or access to the app’s internal structures,
unlike Chinle (Chen and Weld 2008) requiring the app to be implemented in the
Supple (Gajos and Weld 2004) framework) or CoScripter (Leshed et al. 2008)
leveraging the DOM structure of the web page.
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6.3.2 An Example Scenario

In this section, we walk through an example use case of Sugilite to exhibit how
the PBD approach can help an end user to program an out-of-domain task for a
goal-oriented conversational agent by demonstration. In this example, the agent fails
to fulfill the user’s command to order a cup of Cappuccino. To respond, the user
demonstrates ordering a cup of Cappuccino using the Starbucks app. Sugilite then
generalizes the script so the agent learns to order any Starbucks drink.

Suppose a user first asks the conversational agent, “Order a Cappuccino”
(Figure 6.1a), for which the agent answers “I don’t understand what you mean by
order a cappuccino, you can explain or demonstrate…” In our example, the user
responds, “I’ll demonstrate” and starts demonstrating the procedure of ordering a
Cappuccino using the Starbucks app installed on the phone. Alternatively, the user
could also choose to use any other available coffee shop app for demonstrating this
task.

She first clicks on the Starbucks icon on the home screen, taps on the main menu
and chooses “Order,” which is exactly the same procedure as what she would have
done had she been ordering manually through the Starbucks app. (Alternatively, she
could also say verbal commands for each step such as “Click on Starbucks,” etc.)
After each action, a confirmation dialog fromSugilite pops up (Fig. 6.1b) to confirm
the user’s desire for the action to be recorded by the Sugilite service.

The user proceeds through the task procedure by clicking on “MENU,” “Espresso
Drinks,” “Cappuccinos,” “Cappuccino,” “Add to Order” and “View Order” in
sequence, which are all the same steps that she would use to perform the task man-
ually without Sugilite. In this process, the user could also demonstrate choosing
options such as the size and the add-ins for the coffee according to her personal
preferences. These customizations will be included every time the task is invoked by
the agent, allowing the user to personalize how a task should be performed by the
conversational agent.

Sugilite pops up the confirmation dialog after each click, except for the one
on the menu option “Cappuccino,” where Sugilite is confused and must ask the
user to choose from two identifying features on the same button: “Cappuccino” and
“120 cal” (Fig. 6.1c). When finished, the user clicks on the Sugilite status icon and
selects “End Recording.”

After the demonstration, Sugilite analyzes the recording and parameterizes the
script according to the voice command and its knowledge about the UI hierarchy of
the Starbucks app (details in the Generalizability section).

This parameterization allows the user to give the voice command “Order a
[DRINK]” where [DRINK] can be any of the drinks listed on the menu in the
Starbucks app. Sugilite can then order the drink automatically for the user by
manipulating the user interface of the Starbucks app. Alternatively, the automation
can also be executed by using the Sugilite graphical user interface (GUI) or invoked
externally by a third-party app using the Sugilite API.
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Fig. 6.1 Screenshots of the
current version of Sugilite
prototype: a the
conversational interface; b
the recording confirmation
popup; c the recording
disambiguation/operation
editing panel and d the
viewing/editing script
window

6.3.3 Key Design Goals

In this section, we identify three key design goals for PBD in goal-oriented con-
versational agents: generalizability, robustness, and multi-modality, followed by a
discussion of how the Sugilite implementation of achieves these design goals.
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6.3.3.1 Generalizability

A PBD agent should produce more than just record-and-replay macros that are very
literal (e.g., sequences of clicks and keystrokes), but learn the task at a higher level
of abstraction so it can perform the task in new contexts with different parameters.
To achieve this, Sugilite uses a multi-modal approach to infer the user’s intents and
makes correct generalizations on what the user demonstrates. Sugilite collects a
spoken utterance from the user for the intent of the task before the demonstration,
automatically identifies the parameters in the utterance, matches each parameter with
an operation in the demonstration of the user, and creates a generalized script.

While recording the user’s demonstration, Sugilite compares the identifying
features of the target UI elements and the arguments of the operations against the
user’s utterance, trying to identify possible parameters by matching the words in the
command. For example, for a verbal command “Find the flights fromNew York to Los
Angeles,” Sugilite identifies “NewYork” and “Los Angeles” as the two parameters,
if the user typed “New York” into the departure city textbox and “Los Angeles” into
the destination textbox during the demonstration.

This parameterization method provides control to users over the level of person-
alization and abstraction in Sugilite scripts. For example, if the user demonstrated
ordering a venti Cappuccino with skim milk by saying the command “Order a Cap-
puccino,” we will discover that “Cappuccino” is a parameter, but not “venti” or
“skim milk.” However, if the user gave the same demonstration, but had used the
command, “Order a venti Cappuccino,” then we would also consider the size of the
coffee (“venti”) to be a parameter.

For the generalization of text entry operations (e.g., typing “New York” into the
departure city textbox), Sugilite allows the use of any value for the parameters.
In the checking flights example, the user can give the command “Find the flights
from [A] to [B],” for any [A] and [B] values after demonstrating how to find the
flights from New York to Los Angeles. Sugilite will simply replace the two city
names by the value of the parameters in the corresponding steps when executing the
automation.

When the user chooses an option, Sugilite also records the set of all possible
alternatives to the option that the user selected. Sugilite finds these alternatives
based on the UI pattern and structure, looking for those in parallel to the target
UI element. For example, suppose the user demonstrates “Order a Cappuccino” in
which an operation is clicking on “Cappuccino.” from the “Cappuccinos” menu that
has two parallel options “Cappuccino” and “Iced Cappuccino.” Sugilite will first
identify “Cappuccino” as a parameter, and then add “Iced Cappuccino” to the set as
an alternative value for the parameter, allowing the user to order Iced Cappuccino
using the same script. By keeping this list of alternatives, Sugilite can also dif-
ferentiate tasks with similar command structure but different values. For example,
the commands “Order Iced Cappuccino” and “Order cheese pizza” invoke different
scripts, because the phrase “Iced Cappuccino” is among the alternative elements of
operations in one script, while “cheese pizza” would be among the alternatives of
a different script. If multiple scripts can be used to execute a command (e.g., if the
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user has two scripts for ordering pizza with different apps), the user can explicitly
select which script to run.

A limitation of the above method in extracting alternative elements is that it
only generalizes at the leaf level of a multi-level menu structure. For example, the
generalized script for “Order a Cappuccino” can be generalized for ordering Iced
Cappuccino, but cannot be used to order drinks like a Latte or Macchiato because
they are on other branches of the Starbucks “Order”menu. Since the user did not go to
those branches during the demonstration, this method could not know the existence
of those options or how to reach those options in the menu tree. This is a challenge
of working with third-party apps, which do not expose their internal structures to us
and which menu structures we are unable to traverse without invoking the apps on
the main UI thread.

To address this issue, we created a background tracking service that records all the
clickable elements in apps and the corresponding UI path to reach each element. This
service can run in the background all the time, so Sugilite can learn about all the
parts of an app that the user visits. Through this mechanism, Sugilite can construct
which path to navigate through the menu structure to reach all the UI elements seen
by the service. The text labels of all such elements can then be added to the sets
of alternative values for the corresponding parameters in scripts. This means that
Sugilite can allow the user to order drinks that are not an immediate sibling to
Cappuccino at the leaf level of the Starbucks order menu tree, despite obtaining only
a single demonstration.

Thismethod has its trade-offs. First, it generates false positives. For example, there
is a clickable node “Store Locator” in the Starbucks “Order” menu. The generalizing
process will then mistakenly add “Store Locator” to the list of what the user can
order. Second, running the background tracking affects the phone’s performance.
Third, Sugilite cannot generalize for items that were never viewed by the user.
Lastly, many participants expressed privacy concerns about allowing background
tracking to store text labels from apps, since apps may dynamically generate labels
containing personal data like an account number or an account balance.

6.3.3.2 Robustness

It is important to ensure robustness of PBD agents, so the agent can reliably perform
the demonstrated task in different conditions. Yet, the scripts learned from demon-
stration are often brittle to any changes in the app’sUI, or any new situations unseen in
the demonstration. Error checking and handling has been a major challenge for many
PBD systems (Cypher and Halbert 1993; Lieberman 2001). Sugilite provides error
handling and checking mechanism to detect when a new situation is encountered
during execution or when the app’s UI changes after an update.

When executing a script, an error occurs when the next operation in the script
cannot be successfully performed. There are at least three reasons for an execution
error. First, the appmay have been updated and the layout of theUI has been changed,
so Sugilite cannot find the object specified in the operation. Second, the app may
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be in a different state than it had been during the demonstration. For example, if a
user demonstrates how to request an Uber car during normal pricing and then uses
the script to request a car during surge pricing, then an error will occur because
Sugilite does not know how to handle the popup from the Uber app for surge price
confirmation. Third, the execution may also be interrupted by an external event like
a phone call or an alarm.

In Sugilite, when an error occurs, an error handling popup will be shown, ask-
ing the user to choose between three options: keep waiting, stop executing, or fix
the script. The “keep waiting” option will keep Sugilite waiting until the current
operation can be performed. This option should be used in situations like prolonged
waiting in the app or an interrupting phone call, where the user knows that the app
will eventually return to the recorded state in the script, which Sugilite knows how
to handle. The “stop executing” option will end the execution of the current script.

The “fix the script” option has two sub-options: “replace” and “create a fork,”
which allow the user to either demonstrate a procedure from the current step that
will replace the corresponding part of the old script or create a new alternative fork
in the old script. The “replace” option should be used to handle permanent changes
in the procedure due to an app update or an error in the previous demonstration, or
if the user changes her mind about what the script should do. The “create a fork”
option (Fig. 6.1d) should be used to enable the script to deal with a new situation.
The forking works like the try-catch statement in programming languages, where
Sugilite will first attempt to perform the original operation and then executes the
alternative branch if the original operation fails. (Other kinds of forks, branches, and
conditions are planned as future work.)

The forking mechanism can also handle new situations introduced by general-
ization. For example, after the user demonstrates how to check the score of the NY
Giants using the Yahoo! Sports app, Sugilite generalizes the script so it can check
the score of any sports team. However, if the user gives a command “Check the score
of NY Yankees,” everything will work properly until the last step, where Sugilite
cannot find the score because the demonstrations so far only show where to find
the score on an American football team’s page, which has a different layout than a
baseball team’s page. In this case, the user creates a new fork and demonstrates how
to find the score for a baseball team.

6.3.3.3 Multi-modality

Another design goal of ours is to support multiple modalities in the agent to provide
flexibility for users in different contexts. In Sugilite, both creating the automa-
tion and running the automation can be performed through either the conversational
interface or the GUI.

The user can start a demonstration after giving an out-of-domain verbal command,
for which Sugilite will reply “I don’t understand… You can demonstrate to teach
me” or the user can manually start a new demonstration using the Sugilite GUI.
When teaching a new command to Sugilite, the user can use verbal instructions,
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demonstrations, or a mix of both in creating the script. Even though in most cases,
demonstrating on the GUI through direct manipulation will be more efficient, we
anticipate some useful scenarios for voice instruction when handling the phone is
inconvenient or for users with motor impairment.

The user can also execute automations by either giving voice commands or by
selecting from a list of scripts. Running an automation by voice allows the user to
give a command from a distance. For scripts with parameters, the parameter values
are either explicitly specified in the GUI or inferred from the verbal command when
the conversational interface is used.

During recording or executing, the user has easy access to the controls of Sugilite
through the floating duck icon (see Fig. 6.1, where the icon is on the right edge of
the screen). The floating duck icon changes the appearance to indicate the status of
Sugilite—whether it is recording, executing, or tracking in the background. The
user can start, pause or end the execution/recording as well as view the current script
(Fig. 6.1d) and the script list from the pop-up menu that appears when users tap on
the duck. The GUI also enables the user to manually edit a script by deleting an
operation and all the subsequent operations or to resume recording starting from the
end of the script. Selecting an operation lets the user edit it using the editing panel
(Fig. 6.1c).

The multi-modality of Sugilite enables many useful usage scenarios in different
contexts. For example, the user may automate tasks like finding nearby parking or
streaming audible books by demonstrating the procedures in advance through direct
manipulation. Then the user can perform those tasks by voice while driving without
needing to touch the phone. A user with motor impairment can have her friends or
family program the conversational agent for her common tasks so she can execute
them later by voice.

6.3.4 Evaluation

To evaluate how end users with various levels of programming skill can success-
fully operate learning-by-demonstration conversational agents like Sugilite, we ran
a lab-based usability analysis of Sugilite with 19 participants across a range of
programming skills (from non-programmers to skilled programmers). Of the scripts
created by the participants, 65 out of 76 (85.5%) ran and performed the intended task
successfully. Of the four tasks given, 8 out of the 19 (42.1%) participants succeeded
in all four tasks (e.g., sending emails, checking sports scores, etc.); all participants
completed at least two tasks successfully.

In the results, we found no significant difference in both task completion time
and task completion rate between groups of participants with different levels of pro-
gramming skill. This result suggests that by using Sugilite, non-programmers can
introduce new tasks for conversational agents just as well as programmers. Looking
at the completion time of the participants, wemeasured that programming a repetitive
task with Sugilite and using the agent for executing the task later is more efficient
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than performing the task manually if the task will be performed more than 3–6 times,
depending on the task.

6.4 Learning from Verbal Instruction

As we have discussed earlier, another major source for failures in the user’s dialog
with conversational agents is when the user uses unknown or undefined concepts
in the command. For example, suppose a user gives the following commands to a
conversational agent for creating task automation rules:

• If there is an important email, forward it to my project team.
• Whenever there is a late homework, forward it to the TAs.
• If the weather is bad in the morning, wake me up at 7 AM.
• When I get an important meeting request, put it on my calendar.

The programming by demonstration approach we have described in the previous
section allows the user to handle failures where the agent does not know how to
fulfill the actions in the command, such as “forward to” and “put it on my calendar.”
However, the above commands also introduce another type of challenge. In the com-
mands, the user refers to concepts such as important email, my project team and bad
weather. For the agent, those concepts may be either undefined or unclearly defined.
Consequently, the agent might not be able to execute these commands successfully.

Besides learning from demonstration, another useful EUD strategy that can help
the conversational agent to address this issue is learning from verbal instruction
(Azaria et al. 2016). We designed a conversational task automation agent named Lia
that allows the user to verbally define concepts used in the conditions and actions
found in the user’s verbal commands. The agent can learn those new concepts by
adding them into the ontology. Lia also enables the user to teach the agent to perform
a new task by verbally breaking down an unknown action into smaller steps, which
complements the learning-by-demonstration approach used in Sugilite especially
in situations where verbal instruction is more convenient or more natural for the user
than demonstrating on the GUI.

Lia allows the user to define “trigger-action” style automation rules in natural
language like the command examples shown above. The popularity of tools like
IFFFT (If-This-Then-That) and Zapier, which allow users to define simple trigger-
action rules in visual programming environments, has demonstrated the general need
for intuitive-to-use automation tools to simplify day-to-day tasks. However, we argue
that without the capacity to teach such rules in natural language, such tools are
fundamentally limited. This limitation stems from the fact that for these tools to be
effective, the user’s needs must be matched to pre-built IF and THEN components in
a library of functions. However, if the user’s need strays beyond common scenarios
(e.g., there probably will not be an “important email” or “late homework” function
in the library), these tools become difficult or impossible to use. The experience of
building anything remotely more complex with the current tools (e.g., rules with
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multiple conditions) starts to resemble traditional programming and thus becomes
inaccessible for many end users.

6.4.1 Learning Rules

We believe that giving a conversational agent the capacity to be taught rules and con-
cepts verbally opens the possibility of letting users teach more complex and more
personalized rules beyond what is currently possible with systems like IFFFT. The
key advantage of a conversational setting is that the agent can take initiative when
certain things are left ambiguous by the user—an issue which cannot be handled
in more traditional programming environments (which also include visual program-
ming tools like IFFFT and Zapier). For example, the user may want to create a rule
by saying the request “When I get an important meeting request, forward it to the
assistant.”

When the agent encounters this request, it first attempts to ground it to a known
function, e.g., creating anewcalendar event or sending an email. In this case, however,
the Natural Language Understanding (NLU) system detects that it is not able to parse
this expression into any a known function, and in that case, it would ask the user if
she wants to teach this as a new rule. If the user decides to teach, the agent then asks
the user to break it down into steps so it can learn. A possible breakdown sequence
for the above example could be:

(2) Learning Sequence Breakdown
00 U: Suppose I get a new email.
01 A: OK, I will wait for a new email.
02 U: Check if the subject mentions words like meet or

meeting.
03 A: OK, I will check that, what should I do if that’s

the case?
04 U: Also see if the sender’s email address is an email

of a colleague.
05 A: OK, I will check that, what should I do if that’s

the case?
06 U: Then forward this email to the assistant.

Once the user finishes teaching, the agent can leverage this breakdown to gener-
alize the command by identifying slots in the original request and allowing the user
to give variations of the original command with different arguments, such as “When
I get an important meeting request, forward it to my friends.”

Unlike traditional programming environments, the conversational setting allows
the user to:

1. Teach new conditions, such as important meeting requests.
2. Let the user naturally define complex rules that consist of multiple conditions.
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3. Allow the system to take initiative in asking about the programming flow, reduc-
ing the burden on the user. For example, the agent may ask questions like “What
should I do if that’s the case?” (when the user describes what to do in a situation)
and “What should I do if you are not available at that time?” (when the user asks
to create a meeting on their calendar).

6.4.2 Learning Concepts

A key advantage of a conversational interface for learning new rules from verbal
instructions is that it allows the user to be more expressive by relying on concepts
that have been taught previously, such as the concept of a “colleague” or an assistant.
This provides the flexibility to re-use these concepts as building blocks in defining
future procedures and rules. If the user’s assistant changes later or if there are new
members on the team, the rule will not have to be redefined. Thus, in attempting to
express their need efficiently, users can use concepts such as variables in a traditional
programming language sense (without possibly even being aware of it).

The user can define concepts and concept properties by saying things like “Create
a concept called a friend,” “Create something called a colleague” or “Most of my
colleagues have a university affiliation.”

Currently the system provides the userwith the ability to define concepts (e.g., stu-
dent, professor, colleague), its properties (e.g., university affiliation) and instantiate
these concepts. For example, the user can say “Oscar is a colleague. His affiliation
is CMU.”

This example illustrates two distinct types of concepts: concepts that are “crisp,”
e.g., colleague, and can be defined by enumerating instances of this concept, and
those that are “fuzzy,” e.g., important email or important requests, which cannot
be defined but can have certain salient characteristics that the user can convey to
the agent. The agent must have the capacity to learn both types of concepts from
the user via dialog. In teaching fuzzy concepts, the user is more likely to express
characteristics such as:

(3) Teaching Fuzzy Concepts

00 A: What’s an important email?
01 U: An important email will usually be from a colleague

and might contain words like meet or meeting.
02 A: Are there any other characteristics of important

emails?
03 U: They might also mention a date and a time.
04 U: Important emails will often be from a university

domain

The challenge in taking advantage of these “fuzzy” statements is to transform
them into a statistical model which can predict whether a given instance is a member
of a particular concept. To address this issue, we develop a method for training a
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natural language parser of such statements that uses a small number of instances as
examples (e.g., emails tagged with different concepts) in order to improve its ability
to parse such statements (Srivastava et al. 2017).

6.5 Conclusion and Future Work

Conversation failures in human-agent conversations can be tackled frommany differ-
ent angles ranging from speech recognition, dialog management system architecture
to the design of fallback responses. In this chapter, we have explored using an end
user development (EUD) approach as a fallback strategy, where we allow the user
to teach the agent in case of failure in human-agent conversations. We first started
by identifying three major challenges in handling failures in goal-oriented conversa-
tional agents:

1. Understanding unknown and undefined concepts
2. Executing out-of-domain tasks
3. Using the right fulfillment means and generalization in task execution.

Then, we discussed two strategies for using EUD to address these challenges:
learning from demonstration and learning from verbal instruction, using the two
agents we designed—Sugilite and Lia respectively as examples. Particularly, we
highlighted the design goals for these agents and how the implementations help
achieve these design goals.

For the future work, our focus will be on further integration to create an agent
that learns from both the demonstration and the verbal instruction simultaneously
(Li et al. 2017c; Li 2017). We envision that the verbal instructions can be used to
disambiguate and enhance the demonstration, allowing the agent to learn not only the
user’s actions, but also the user’s rationale behind those actions. On the other hand,
demonstrations should also help ground the user’s verbal instructions, allowing the
user to refer to what is shown on the screen when teaching the agent new rules and
concepts.

In particular, our future work should address the following challenges:

Data Description Problem
The data description problem is long-standing in PBD (Cypher and Halbert
1993)—when the user demonstrates interacting with a UI element on the screen,
the PBD system needs to infer the user’s intent by determining what feature (e.g.,
text, label, id, screen location, child elements, etc.) should be used for finding which
item to operate on in future executions of the script when the context may be some-
what different. In a pilot study, we asked the users to narrate their actions while
demonstrating. We found that the narrations are often very helpful in disambiguat-
ing the features (e.g., the users said things like “Click on the first item in the list,”
“Click on the red button at the bottom of the screen” and “Choose the option with
the lowest price”).
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In some situations, the data description for the UI element in an action can be
non-trivial. For example, one may say “Choose the winning team” in a sports app,
which can translate to “Choose the name of a team that has a number next to it that
is greater than the other number located next to the name of another team.”

We plan to design a conversational user experience to allow users to naturally
narrate during the demonstration. Combining the narration and the demonstration,
the agent should be able to extract a query for finding the UI element to operate on
in future executions without users manually selecting the set of features to use (e.g.,
Fig. 6.1c) when the agent finds features of the UI element ambiguous or when the
agent is unsure about the user’s rationale for selecting a UI element to operate on.

Conditionals and Iterations
Expanding the support for conditionals in learning and representing tasks should
significantly help increase the range of tasks that a conversational agent can learn. In
Sect. 6.4.1, we discussed the current “trigger-action” rules supported by our agent as
well as how a user can break down the steps to evaluate conditionals in the trigger for
the agent (e.g., what an important meeting request is). In our work (Li et al. 2017b),
we also support the user in using phone notifications, app launches or events from
external web services to trigger task automations. In future work, we plan to enable
the user to verbally describe complex conditionals with references to contents shown
on the current screen and past screens for grounding.

We will also add support for looping and iterations. This will be useful for pro-
cessing all the elements of a list in batch, for example to tap on each menu item on a
screen, copy each entry and paste it into an email, or apply a filter to all images. In
addition to manually adding the iteration, the conversational agent will allow users
to verbally indicate that the task should be performed on all items (or the particularly
desired subset) over a list and will be able to engage with the user in a dialog to refine
the resulting script.

Procedure Editing
We would like to enable users to explicitly specify different parameter values for an
existing learned task. For example, the user should be able to run amodified variation
of a previously demonstrated task by using utterances like “Get my regular breakfast
order, except instead of iced coffee, I want hot coffee.” We wish to explore how the
presentation of the conversation in the mixed-initiative interface can be designed
to cater to this kind of procedure editing behaviors, leveraging the context of the
existing scripts and GUI elements.
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