
Detecting Parkinsons’ Symptoms in Uncontrolled Home Environments:
A Multiple Instance Learning Approach

Samarjit Das, Breogan Amoedo, Fernando De la Torre and Jessica Hodgins
The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract— In this paper, we propose to use a weakly super-
vised machine learning framework for automatic detection of
Parkinson’s Disease motor symptoms in daily living environ-
ments. Our primary goal is to develop a monitoring system
capable of being used outside of controlled laboratory settings.
Such a system would enable us to track medication cycles
at home and provide valuable clinical feedback. Most of the
relevant prior works involve supervised learning frameworks
(e.g., Support Vector Machines). However, in-home monitoring
provides only coarse ground truth information about symptom
occurrences, making it very hard to adapt and train supervised
learning classifiers for symptom detection. We address this
challenge by formulating symptom detection under incomplete
ground truth information as a multiple instance learning (MIL)
problem. MIL is a weakly supervised learning framework that
does not require exact instances of symptom occurrences for
training; rather, it learns from approximate time intervals
within which a symptom might or might not have occurred on
a given day. Once trained, the MIL detector was able to spot
symptom-prone time windows on other days and approximately
localize the symptom instances. We monitored two Parkinson’s
disease (PD) patients, each for four days with a set of five
triaxial accelerometers and utilized a MIL algorithm based on
axis parallel rectangle (APR) fitting in the feature space. We
were able to detect subject specific symptoms (e.g. dyskinesia)
that conformed with a daily log maintained by the patients.

Index Terms— Parkinson’s Disease (PD), continuous motor
symptom monitoring, multiple instance learning

I. INTRODUCTION

Recently, there has been an increased interest in develop-
ing wearable sensing systems for patient-centric healthcare.
The ultimate goal of these collaborative efforts between
the healthcare and engineering communities is to enable
unobtrusive autonomous monitoring of the patients’ state
and generate valuable clinical feedback. In that regard,
motor symptom monitoring in Parkinson’s Disease (PD) has
gained significant attention over the years [11], [15]. In most
cases, these symptoms (e.g. tremors, dyskinesia) fluctuate
during daily living depending on the medication intake. The
knowledge of these medication cycles could be very useful
for PD treatments including: a) evaluation of the potential
benefit of deep brain stimulation (DBS), b) patient adapted
drug therapy and c) tracking disease progression over time.
However, due to the limited frequency and duration of clinic
visits, robust assessments of medication cycles is difficult and
often relies on self-reports by the patients. Hence, there is a
need for sensing systems capable of unobtrusive continuous
monitoring of the motor symptoms in uncontrolled daily
living environments.
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Fig. 1. The sensing system and a daily log that the patients
maintained. The green boxes indicate accelerometer locations. In
the log, the symbol X indicates medication intake and O indicates
symptom occurrences (indicated by the arrow). The motion sensors
(APDM Inc.) are shown on the far right.

Several researchers have addressed the problem of quan-
titative assessment of PD motor symptoms [12], [3], [11],
[6]. In [11], researchers explored the feasibility of using
accelerometer data to estimate the severity of motor symp-
toms symptoms using a support vector machine (SVM)
classifier [4]. In [19], the authors developed a monitoring
system that provided motor assessments by simultaneously
analyzing current motor activity of the patients (e.g., sitting,
walking) in a simulated daily living environment. Other
related works performing accelerometer-based PD motor
symptom assessment include [7], [17], [9].

Most of the existing work involves supervised learning
frameworks under controlled laboratory settings or simulated
home environments. The key difficulty in monitoring within
uncontrolled environments is the lack of reliable ground truth
information, which makes the use of supervised learning
frameworks very challenging. The inherent problem lies in
the fact that accurate labeling of human behavior is error
prone, subjective and time consuming. These issues are ac-
centuated when self-report is the only form of measurement
available. We address these by using a weakly supervised
learning framework known as multiple instance learning
(MIL) [5]. Weakly supervised learning has found many
applications in recent years including objection detection in
computer vision [10]. MIL does not require accurate labels
for every time instant. While training, it only needs to know
whether or not a time interval contains discriminative pat-
terns (e.g. a symptom) anywhere within it. MIL automatically
learns those patterns and localizes them during the test phase
(i.e. detect time intervals containing symptom occurrences as
well as identify symptom instances).

We monitored two PD patients, each for four days with a



set of five triaxial accelerometers (located at the waist and
limbs). Our detector was able to spot the subject specific mo-
tor symptoms that conformed with the daily log maintained
by the patients.

II. THE MONITORING SYSTEM

Our home monitoring system comprised of five wearable
triaxial accelerometers sampling at 40 Hz with 16 bit reso-
lution. Each unit was capable of continuous data logging for
about 20 hours and their batteries were recharged at night.
The devices were strapped to the wrists, ankles and waist
as shown in Fig. 1. The subjects were asked to wear them
during all waking hours of the day (except water activities)
and to complete their regular daily living activities as normal.
There was no predefined scripted activity performance during
the monitoring period. The subjects were asked to maintain
a daily log of their medication intakes as well as to note
the approximate time intervals of symptom occurrences on
a time scale (e.g. within a range of 20 minutes to half an
hour). A snapshot of the daily log is shown in Fig. 1.

III. FEATURE EXTRACTION

Prior work on accelerometer based activity recognition [2]
utilized various features like mean, energy, high frequency
energy content, correlation and frequency domain entropy
extracted from multiple accelerometers. While we use similar
features, we put particular emphasis on the choice of features
depending specific PD symptoms.

We extracted several features from the raw accelerometer
data over six second windows with one second overlap.
Similar window sizes have been found to be optimal for
accelerometer based activity analysis [2], [11]. Features
included mean, energy, high frequency energy content, cor-
relation and frequency domain entropy as well as a five
bin histogram representation of the spectral contents over
all three axes (similar to a bag of words representation
[13] in the frequency domain). The feature extraction was
particularly targeted at two specific motor symptoms that
were prominent in our subject pool: a) dyskinesia in the left
hand and b) a shaky left hand with predominant left-right
asymmetry. For dyskinesia detection, we chose frequency
domain histogram, high frequency energy content (beyond
4Hz) and frequency domain entropy, all extracted from the
accelerometer in the left wrist. Similar features were also
found to suit well for detecting left-right asymmetry by using
discriminative measures across the two wrists (e.g., differ-
ence in high frequency contents). These features, adapted
to individuals and their specific symptoms, are essential for
building person-specific models for home monitoring.

IV. MULTIPLE INSTANCE LEARNING

Multiple Instance Learning (MIL) [5], [1], [10] is proposed
as a weakly supervised learning algorithm for problems with
incomplete knowledge about the labels of training examples.
In supervised learning, every training instance (e.g., a feature
vector from the accelerometer data) is assigned with a dis-
crete or real-valued label (e.g. dyskinesia or normal activity).
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Fig. 2. The intuitive idea behind multiple instance learning (MIL)
in contrast to supervised learning approaches.

In comparison, for MIL, the labels are only assigned to bags
of instances (i.e. a collection of feature vectors over a time
interval). A bag is labeled as positive if at least one instance
in that bag is positive, and the bag is labeled negative if all
the instances in it are negative (see Fig. 2). In other words,
if a symptom occurred at any time within the interval, then
the entire interval receives the corresponding symptom label
and it is labeled symptom-free only if no instance within that
interval is associated with a symptom. Thus, for training, it
is not necessary to know the exact instances of symptom
occurrences i.e. there is no label for individual instances. The
goal of MIL is to classify unseen bags of instances based on
the labeled bags as training data. Some variants of MIL [5],
[10] also estimate the instance labels during the test phase,
which would imply temporal localization of the symptom
instances within the time segments.

The problem definition of MIL can be posed as follows.
Consider a set of feature vectors xi, i = 1,2, . . . ,N. Under
a supervised learning framework, each feature vector i.e.
instance would have a labels li = f (xi) ∈ {+1,−1}. In
contrast, a weakly supervised MIL framework does not have
labels for each instance, rather, it has labels for a set of
instances (a bag). Consider a feature space with B bags. The
b

th bag with mb feature vectors Xb = [xb

1,xb

2, . . . ,xb
mb
] will be

labeled Lb = f (Xb) ∈ {+1,−1} as follows

f (Xb) =

�
1 if ∃ j ∈ {1, . . .mb} with g(xb

j
) = 1

−1 otherwise
(1)

where b= 1,2, . . .B. In other words, if the observed bag label
is positive then at least one of the variant instances must have
produced that positive result. Furthermore, if the observed
label is negative, then none of the variant instances could
have produced a positive result. This rule can be modeled
by introducing the function g(xb

i
) that takes a single instance

and produces a result. During training, we will only know
the external bag labels i.e. Lb = f (Xb) and do not know the
internal function g(·). The ideal goal of the MIL algorithm
is to construct an approximation ĝ(·) of g(·). A hypothesis
ĝ is consistent with a set of training examples if it classifies
every feature vector of every negative example as negative
while classifying at least one feature vector of every positive
example as positive. Thus, under this framework, given a
test bag of instances Xtest

b
, we would be able to predict the



corresponding label f (Xtest

b
) ∈ {+1,−1} as well as compute

ĝ(xb

i
), xb

i
∈ Xtest

b
. Some variants of MIL only predict bag

labels f (Xtest

b
) during the test phase. The main difference of

the MIL framework from supervised learning is that each
training example is represented by multiple instances (hence
the name).

A. MIL Algorithms

The solution to the MIL problem was first proposed in [5].
It involved finding an axis-parallel hyper-rectangle (APR) in
the feature space that captures the target concept. Intuitively,
this APR should contain at least one instance from each
positive bag and meanwhile exclude all the instances from
negative bags. In [5], the authors suggested three variants
of the APR algorithm: 1) a “standard” algorithm that finds
the smallest APR which bounds all the instances from
positive bags, 2) an “outside-in” algorithm for constructing
the smallest APR that bounds all the instances in positive
bags and then shrinks the APR to exclude false positives and,
3) an “inside-out” algorithm that starts from a seed point and
then grows a rectangle from it with the goal of finding the
smallest APR which covers at least one instance per positive
bag and no instances from negative bags. For details please
refer to [5].

In our current work, we use an iterative, discriminative
variant of the APR algorithm [5] (ID-APR) for multiple
instance learning. It is a combination of the standard and
outside-in APR algorithms. It treats the time series moni-
toring data in terms of temporal windows of fixed lengths
where each instance corresponds to a single window. We
compared the performance of ID-APR with several other
MIL algorithms that use a similar formulation (more details
in the next section). Algorithms like detection-segmentation
SVMs [10] perform weakly supervised learning on time
series data and pull out discriminative noncontiguous time
segments across two time series classes. However, these
methods involve optimizations that tend to have many local
minimas and this issue poses a major hurdle for training with
large datasets that include uncontrolled activities.

V. EXPERIMENTS AND RESULTS

In our preliminary study, we had two PD patients (one
male and one female) participate. The male subject was aged
55 years with a disease duration of 6.5 years whereas the
female was aged 54 years with a disease duration of 6 years.
Each individual wore our monitoring system continuously
except during sleep for four days and continued their regular
daily activities. They maintained a daily log as mentioned in
Sec. II. Our study protocol was approved by Carnegie Mellon
University’s Institutional Review Board (IRB) for human
subject protection. Each patient was interviewed beforehand
in order to gather information about their disease state as
well as their specific motor complications. This information
guided us during the feature selection process. The female
patient took her PD medication four times a day and had
predominant left hand dyskinesia, mostly around medication
intake times. The male patient took his PD medications three

times a day and suffered from a shaky left hand, mostly
during the morning hours.

The patient logs provided us with approximate time inter-
vals which might contain symptom occurrences. We trained
an APR based [5] multiple instance learning algorithm with
chunks of accelerometer data of 20-40 minute durations (i.e.
bags containing hundreds of instances or features vectors).
We assigned the bags with positive or negative levels depend-
ing on whether or not it contained a symptom occurrence.
Our monitoring system was implemented using the ID-APR
algorithm of MIL Toolkit [16]. The training was performed
on eight hours of monitoring data collected during day
1. Then, provided with the test data from the same day
or a different day, the algorithm was able to spot 20-40
minute segments where symptoms occurred and provide an
estimate of when it happened within the segment. In Fig.
3, we demonstrate the results over a six hour monitoring
period for the female patient with dyskinesia. The ground
truth information acquired from the patient logs is compared
against the output of the MIL detector and the results are
promising. Similar experiments were performed for detecting
the symptoms of the male patient and the results are shown
in Fig. 4. The predominance of his motor symptoms during
the morning hours can clearly be seen as picked up by the
MIL detector.

Next, we compared the performance characteristics of the
ID-APR based MIL detector with other MIL algorithms like
multiple instance SVM (MI-SVM) [1], citation k-nearest
neighbor (kNN) [14], diverse density (DD) [8], expectation
maximization version of DD [18]. For each patient, we
tested hours worth of monitoring data over 50 time segments
extracted from all the four days (each with lengths greater
than 20 minutes containing symptom or no symptom labels).
Then we analyzed the performance characteristics of the
algorithms by computing their bag level accuracies (i.e.
percentage of total bags correctly classified as symptom or
normal). As it can be seen in Fig. 5, the ID-APR based
MIL algorithm outperforms the rest of the algorithms. These
preliminary results indicate that multiple instance leaning
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Fig. 5. The performance comparison of ID-APR algorithm with
other MIL algorithms like multiple instance SVM (MI-SVM) [1],
citation k-nearest neighbor (kNN) [14], diverse density (DD) [8],
expectation maximization version of DD [18]. As it can be seen that
ID-APR has the highest accuracy in detecting the PD symptoms.



Fig. 3. Detection of dyskinesia for the female patient during a six hour monitoring period. The spikes indicates the estimated instances
of symptom occurrences as predicted by the MIL detector. Notice the prevalence of motor symptoms around the medication times.

Fig. 4. Monitoring of the motor symptoms of the male subject over several hours across two days. The prominence of his symptoms
(shaky left hand) during the morning hours is clearly visible as predicted by the MIL detector.

could potentially be a promising direction for developing
monitoring systems capable of learning symptom character-
istics from partial ground truth information and detecting
them in an uncontrolled daily living environments.

VI. CONCLUSION

In this paper, we have demonstrated the use of multi-
ple instance learning for detecting PD motor symptoms in
uncontrolled home environments. Our work addressed the
formulation of PD symptom detection from weakly labeled
data as a semi-supervised multiple instance learning problem.
The features were carefully chosen to address the subject and
symptom specific nature of the problem. We show promising
preliminary results on four days of monitoring performed
with two PD subjects. In future work, we plan to increase our
subject pool and utilize optimal feature selection strategies
under MIL frameworks for developing robust person-specific
models. These techniques can potentially be adapted to vari-
ous other physiological sensing and monitoring applications
as well.
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