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Abstract. Submodular functions are discrete functions that model laws of diminishing returns
and enjoy numerous algorithmic applications. They have been used in many areas, including combi-
natorial optimization, machine learning, and economics. In this work we study submodular functions
from a learning theoretic angle. We provide algorithms for learning submodular functions, as well as
lower bounds on their learnability. In doing so, we uncover several novel structural results revealing
ways in which submodular functions can be both surprisingly structured and surprisingly unstruc-
tured. We provide several concrete implications of our work in other domains including algorithmic
game theory and combinatorial optimization. At a technical level, this research combines ideas
from many areas, including learning theory (distributional learning and PAC-style analyses), com-
binatorics and optimization (matroids and submodular functions), and pseudorandomness (lossless
expander graphs).
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1. Introduction. Submodular functions are a discrete analogue of convex func-
tions that enjoy numerous applications and have structural properties that can be
exploited algorithmically. They arise naturally in the study of graphs, matroids,
covering problems, facility location problems, etc., and they have been extensively
studied in operations research and combinatorial optimization for many years [22].
More recently, submodular functions have become key concepts in other areas in-
cluding machine learning, algorithmic game theory, and social sciences. For example,
submodular functions have been used to model bidders’ valuation functions in combi-
natorial auctions [41, 67, 20, 4, 95] and for solving several machine learning problems,
including feature selection problems in graphical models [61] and various clustering
problems [76].

In this work we use a learning theory perspective to uncover new structural prop-
erties of submodular functions. In addition to providing algorithms and lower bounds
for learning submodular functions, we discuss numerous implications of our work in
algorithmic game theory, economics, matroid theory, and combinatorial optimization.

One of our foremost contributions is to provide the first known results about
learnability of submodular functions in a distributional (i.e., PAC-style) learning set-
ting. Informally, such a setting has a fixed but unknown submodular function f* and
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a fixed but unknown distribution over the domain of f*. The goal is to design an
efficient algorithm which provides a good approximation of f* with respect to that
distribution, given only a small number of samples from the distribution.

Formally, let [n] = {1,...,n} denote a ground set of items and let 2[" be the
power set of [n]. A function f : 2["] — R is submodular if it satisfies

FTu{iy) - f(T) < f(SU{iy) = f(5)  VvVSCTCn]ieln)

The goal is to output a function f that, with probability 1 — § over the samples,
is a good approximation of f* on most of the sets coming from the distribution.
Here “most” means a 1 — e fraction and “good approximation” means that f(S) <
*(S) < a- f(S) for some approximation factor . We prove o = O(n'/?) upper and
o= Q(nl/ 3) lower bounds on the approximation factor achievable when the algorithm
receives only poly(n,1/€,1/) examples from an arbitrary (fixed but unknown) dis-
tribution. We additionally provide a learning algorithm with constant approximation
factor for the case that the underlying distribution is a product distribution. This is
based on strong concentration properties of submodular functions, a topic that has
independently been studied in prior work [40, Lemma 9], [14, Theorem 1.4], [97].

To prove the Q(nl/ 3) lower bound for learning under arbitrary distributions, we
construct a new family of matroids whose rank functions are fiendishly unstructured.
Since matroid rank functions are submodular, this shows unexpected extremal prop-
erties of submodular functions and gives new insights into their complexity. This
construction also provides a general tool for proving lower bounds in several areas
where submodular functions arise. We derive and discuss such implications in two
areas:

e Algorithmic game theory and economics: An important consequence of our
construction is that matroid rank functions do not have a “sketch,” i.e., a
concise, approximate representation. As matroid rank functions are known
to satisfy the gross substitutes property [75], our work implies that gross
substitutes functions also do not have a concise, approximate representation.
This provides a surprising answer to an open question in algorithmic game
theory and economics [8], [9, section 6.2.1], [10, section 2.2].

e Combinatorial optimization: Many optimization problems involving submod-
ular functions, such as submodular function minimization, are very well be-
haved and their optimal solutions have a rich structure. In contrast, we show
that, for several other submodular optimization problems which have been
considered recently in the literature, including submodular s-t min cut and
submodular vertex cover, their optimal solutions are very unstructured, in
the sense that the optimal solutions do not have a succinct representation, or
even a succinct, approximate representation.

Although our new family of matroids proves that matroid rank functions (and
more generally submodular functions) are surprisingly unstructured, the concentra-
tion result for submodular functions shows that, in a different sense, matroid rank
functions (and other sufficiently “smooth” submodular functions) are surprisingly
structured.

Submodularity has been an increasingly useful tool in machine learning in recent
years. For example, it has been used for feature selection problems in graphical
models [61] and various clustering problems [76]. In fact, submodularity has been
the topic of several tutorials and workshops at recent major conferences in machine
learning [78, 62, 63, 79]. Nevertheless, our work is the first to use a learning theory
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perspective to derive new structural results for submodular functions and related
structures (including matroids), thereby yielding implications in many other areas.
Our work also potentially has useful applications—our learning algorithms can be
employed in many areas where submodular functions arise (e.g., medical decision
making and economics). We discuss such applications in section 1.2. Furthermore,
our work defines a new learning model for approximate distributional learning that
could be useful for analyzing learnability of other interesting classes of real-valued
functions. In fact, this model has already been used to analyze the learnability of
several classes of set functions widely used in economics—see sections 1.1.2 and 8.1.

1.1. Our results and techniques. The central topic of this paper is proving
new structural results for submodular functions, motivated by learnability considera-
tions. In the following we provide a more detailed description of our results. For ease
of exposition, we start by describing our new structural results, then we present our
learning model and our learnability results within this model, and finally we describe
implications of our results in various areas.

1.1.1. New structural results.

A new matroid construction. The first result in this paper is the construction of a
family of submodular functions with interesting technical properties. These functions
are the key ingredient in our lower bounds for learning submodular functions, inap-
proximability results for submodular optimization problems, and the nonexistence of
succinct, approximate representations for gross substitutes functions.

Designing submodular functions directly is difficult because there is very little
tangible structure to work with. It turns out to be more convenient to work with
matroids,! because every matroid has an associated submodular function (its rank
function) and because matroids are a very rich class of combinatorial objects with
numerous well-understood properties.

Our goal is to find a collection of subsets of [n] and two values Thigh and riow
such that for any labeling of these subsets as either HIGH or LOW, we can construct
a matroid for which each set labeled HiGH has rank value 7hig, and each set labeled
Low has rank value 7,. We would like both the size of the collection and the ratio
Thigh/Tlow t0 be as large as possible.

Unfortunately existing matroid constructions can only achieve this goal with very
weak parameters; for further discussion of existing matroids, see section 1.3. Our new
matroid construction, which involves numerous technical steps, achieves this goal with
the collection of size superpolynomial in n and the ratio Thigh/Tow = Q(nl/ 3). This
shows that matroid rank functions can be fiendishly unstructured—in our construc-
tion, knowing the value of the rank function on all but one of the sets in the collection
does not determine the rank value on the remaining set, even to within a multiplicative
factor Q(n'/3).

More formally, let the collection of sets be Ay,..., Ay C [n] where each |A4;| =
Thigh. For every set of indices B C {1, ..., k} there is a matroid M g whose associated
rank function rg : 2[" — R has the form

(1.1)

) | < . -3 ) ) )
rp(S) = max{|IﬂS|: ‘IHUJGJAJ < Tlow - |J] EjeJL:LJIE“BUJGJfJT }

IFor the reader unfamiliar with matroids, a brief introduction to them is given in section 2.2.
For the present discussion, the only fact that we need about matroids is that the rank function of a
matroid on [n] is a submodular function on 2"
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We show that if the sets A; satisfy a strong expansion property, in the sense that any
small collection of A; has small overlap, and the parameters Thigh, r1ow, 7 are carefully
chosen, then this function satisfies 75(A4;) = Tow Whenever i € B and rg(A4;) = rhuigh
whenever i ¢ B.

Concentration of submodular functions. A major theme in probability theory is
proving concentration bounds for a function f : 2[" — R>o under product distribu-
tions.? For example, when f is linear, the Chernoff-Hoeffding bound is applicable.
For arbitrary f, the McDiarmid inequality is applicable. The quality of these bounds
also depends on the “smoothness” of f, which can be quantified using the Lipschitz
constant L := maxg;|f(SU{i}) — f(5)].

For a 1-Lipschitz function (i.e., L = 1), McDiarmid’s inequality gives concentra-
tion comparable to that of a Gaussian random variable with standard deviation /n.
For example, the probability that the value of f is \/n less than its expectation is
bounded above by a constant. Such a bound is quite weak when the expectation of f
is significantly less than /n, because it says that the probability of f being negative
is at most a constant, even though that probability is actually zero.

Several groups of researchers have independently shown that 1-Lipschitz, mono-
tone, submodular functions are extremely tightly concentrated around their expected
value. The quality of concentration is similar to Chernoff-Hoeffding bounds—
importantly, it depends only on the expected value of the function and not on the
dimension n. This phenomenon seems to have been first noticed by Hajiaghayi et
al. [40], who used the self-bounding function technique of Boucheron, Lugosi, and
Massart [11] to prove this sort of concentration for a particular subadditive function.
Independently, Chekuri and Vondrék [14, Theorem 1.4] used the Fortuin—Kasteleyn—
Ginibre (FKG) inequality to prove this sort of concentration for arbitrary nonnegative,
monotone, submodular functions. A subsequent note of Vondrdk [97] explains how
the technique of Boucheron, Lugosi, and Massart easily yields such concentration for
arbitrary nonnegative submodular functions (without requiring monotonicity). In sec-
tion 3.2 we show that Talagrand’s concentration inequality can also be used to prove
such concentration for nonnegative, monotone, submodular functions.

Approzimate characterization of matroids. Our new matroid construction de-
scribed above can be viewed at a high level as saying that matroids can be surprisingly
unstructured. One can pick numerous large regions of the matroid (namely, the sets
A;) and arbitrarily decide whether each region should have large rank or small rank.
Thus the matroid’s structure is very unconstrained.

Our next result shows that, in a different sense, a matroid’s structure is actually
very constrained. If one fixes any integer k and looks at the rank values among all sets
of size k, then those values are extremely tightly concentrated around their average—
almost all sets of size k have nearly the same rank value. Moreover, these averages are
concave as a function of k. That is, there exists a concave function h : [0,n] = R>q
such that almost all sets S have rank approximately h(|S]).

This provides an interesting converse to the well-known fact that the function
f 2] = R defined by f(S) = h(|S]) is a submodular function whenever h : R — R
is concave. Our proof uses the aforementioned result on concentration for submodular
functions under product distributions, and the multilinear extension [13] of submod-
ular functions, which has been of great value in recent work.

2A random set S C 2[" is said to have a product distribution if the events s € S and j € S are
independent for every i # j.
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1.1.2. Learning submodular functions.

The learning model. To study the learnability of submodular functions, we extend
Valiant’s classic PAC model [92], which captures settings where the learning goal is
to predict the future based on past observations. The abbreviation PAC stands for
“probably approximately correct.” The PAC model, however, is primarily designed for
learning Boolean-valued functions, such as linear threshold functions, decision trees,
and low-depth circuits [92, 58]. For real-valued functions, it is more meaningful to
change the model by ignoring small-magnitude errors in the predicted values. Our
results on learning submodular functions are presented in this new model, which we
call the probably mostly approximately correct (PMAC) model.

In this model, a learning algorithm is given a collection & = {S1,S52,...} of
polynomially many sets drawn independent and identically distributed (i.i.d.) from
some fixed, but unknown, distribution D over sets in 2["). There is also a fixed but
unknown function f* : 2" — R, and the algorithm is given the value of f* at
each set in §. The goal is to design a polynomial-time algorithm that outputs a
polynomial-time-evaluatable function f such that, with large probability over S, the
set of sets for which f is a good approximation for f* has large measure with respect
to D. More formally,

Prs, s,,.~p [Prs~p [f(S) < f*(S) <af(9)] > 1—-¢ > 1-4,

where f is the output of the learning algorithm on inputs { (Si, f*(S)) },=; - The
approximation factor a > 1 allows for multiplicative error in the function values.
Thus, whereas the PMAC model requires one to approzimate the value of a function
on a set of large measure and with high confidence, the traditional PAC model requires
one to predict the value exactly on a set of large measure and with high confidence.
The PAC model is the special case of our model with o« = 1.

An alternative approach for dealing with real-valued functions in learning theory
is to consider other loss functions such as the squared-loss or the L1-loss. However,
this approach does not distinguish between the case of having low error on most of
the distribution and high error on just a few points, versus moderately high error
everywhere. In comparison, the PMAC model allows for more fine-grained control
with separate parameters for the amount and extent of errors, and in addition it
allows for consideration of multiplicative error which is often more natural in this
context. We discuss this further in section 1.3.

Within the PMAC model we prove several algorithmic and hardness results for
learning submodular functions, as follows.

Algorithm for product distributions. Our first learning result concerns product
distributions. This is a natural first step when studying learnability of various classes
of functions, particularly when the class of functions has high complexity [53, 54, 69,
87]. By making use of the strong concentration results for monotone, submodular
functions under product distributions, we show that if the underlying distribution is
a product distribution, then sufficiently “smooth” (formally, 1-Lipschitz) submodular
functions can be PMAC-learned with a constant approximation factor « by a very
simple algorithm.

Inapproximability for general distributions. Although submodular functions that
are 1-Lipschitz can be PMAC-learned with a constant approximation factor under
product distributions, this result does not generalize to arbitrary distributions. By
making use of our new matroid construction, we show that every algorithm for PMAC-
learning monotone, submodular functions under arbitrary distributions must have
approximation factor Q(nl/ 3) even for constant ¢ and &, and even if the functions
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are matroid rank functions. Moreover, this lower bound holds even if the algorithm
knows the underlying distribution and it can adaptively query the given function at
points of its choice.

Algorithm for general distributions. Our Q(nl/ 3) inapproximability result for gen-
eral distributions turns out to be close to optimal. We give an algorithm to PMAC-
learn an arbitrary nonnegative, monotone, submodular function with approximation
factor O(y/n) for any € and & by using a number of samples O(n/elog(1/4)).

This algorithm is based on a recent structural result which shows that any mono-
tone, nonnegative, submodular function can be approximated within a factor of v/n
on every point by the square root of a linear function [33]. We leverage this result to
reduce the problem of PMAC-learning a submodular function to learning a linear sep-
arator in the usual PAC model. We remark that an improved structural result for any
subclass of submodular functions would yield an improved analysis of our algorithm
for that subclass. Moreover, the algorithmic approach we provide is quite robust and
can be extended to handle more general scenarios, including forms of noise.

The PMAC model. Although this paper focuses only on learning submodular
functions, the PMAC model that we introduce is interesting in its own right and can
be used to study the learnability of other real-valued functions. Subsequent work
by Badanidiyuru et al. [3] and Balcan et al. [5] has used this model for studying
the learnability of other classes of real-valued set functions that are widely used in
algorithmic game theory. See section 1.3 for further discussion.

1.1.3. Other hardness implications of our matroid construction.

Algorithmic game theory and economics. An important consequence of our ma-
troid construction is that matroid rank functions do not have a “sketch,” i.e., a concise,
approximate representation. Formally, there exist matroid rank functions on 2" that
do not have any poly(n)-space representation which approximates every value of the
function to within a o(n'/3/logn) factor.

In fact, as matroid rank functions are known to satisfy the gross substitute prop-
erty [75], our work implies that gross substitutes do not have a concise, approximate
representation, or, in game theoretic terms, gross substitutes do not have a bidding
language. This provides a surprising answer to an open question in economics [8] [9,
section 6.2.1], [10, section 2.2].

Implications for submodular optimization. Many optimization problems involving
submodular functions, such as linear optimization over a submodular base polytope,
submodular function minimization, and submodular flow, are very well behaved and
their optimal solutions have a rich structure. We consider several other submodular
optimization problems which have been considered recently in the literature, specif-
ically submodular function minimization under a cardinality constraint, submodular
s-t min cut, and submodular vertex cover. These are difficult optimization problems,
in the sense that the optimum value is hard to compute. We show that they are
also difficult in the sense that their optimal solutions are very unstructured: the opti-
mal solutions do not have a succinct representation, or even a succinct, approximate
representation.

Formally, the problem of submodular function minimization under a cardinality
constraint is

min{ f(4) : AC [n], |A] > d},

where f is a monotone, submodular function. We show that there is no representation
in poly(n) bits for the minimizers of this problem, even allowing a factor o(n'/3/logn)
multiplicative error. In contrast, a much simpler construction [34, 89, 33] shows
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that no deterministic algorithm performing poly(n) queries to f can approximate the
minimum value to within a factor o(nl/ 2 /logn), but that construction implies nothing
about small-space representations of the minimizers.

For the submodular s-t min cut problem, which is a generalization of the classic
s-t min cut problem in network flow theory, we show that there is no representation
in poly(n) bits for the minimizers, even allowing a factor o(n'/3/logn) multiplicative
error. Similarly, for the submodular vertex cover problem, which is a generalization
of the classic vertex cover problem, we show that there is no representation in poly(n)
bits for the minimizers, even allowing a factor 4/3 multiplicative error. In contrast,
the minimizers for the classic s-t min cut problem and the classic vertex cover problem
trivially have a representation in poly(n) bits as they are determined by a graph on n
vertices. Moreover, for the s-t min cut problem [83] and the vertex cover problem in
bipartite graphs, the minimizers can be expressed as the minimizers of a submodular
function, and so they can be efficiently represented as a lattice [71, section 5.1].

1.2. Applications. Algorithms for learning submodular functions could be very
useful in some of the applications where these functions arise. For example, in the con-
text of economics, our work provides useful tools for learning the valuation functions
of (typical) customers, with applications such as bundle pricing, predicting demand,
advertisement, etc. Our algorithms are also useful in settings where one would like
to predict the value of some function over objects described by features, where the
features have positive but decreasing marginal impact on the function’s value. Ex-
amples include predicting the rate of growth of jobs in cities as a function of various
amenities or enticements that the city offers, predicting the sales price of a house as a
function of features (such as an updated kitchen, extra bedrooms, etc.) that it might
have, and predicting the demand for a new laptop as a function of various add-ons
that might be included. In all of these settings (and many others) it is natural to
assume diminishing returns, making them well-suited to a formulation as a problem
of learning a submodular function.

1.3. Related work. This section focuses primarily on prior work. Section 8.1
discusses subsequent work that was directly motivated by this paper.

Submodular optimization. Optimization problems involving submodular functions
have long played a central role in combinatorial optimization. Recently there have
been many applications of these optimization problems in machine learning, algorith-
mic game theory, and social networks.

The past decade has seen significant progress in algorithms for solving submodular
optimization problems. There have been improvements in both the conceptual under-
standing and the running time of algorithms for submodular function minimization
[45, 47, 85]. There has also been much progress on approximation algorithms for
various problems. For example, there are now optimal approximation algorithms for
submodular maximization subject to a matroid constraint [13, 29, 95], nearly optimal
algorithms for nonmonotone submodular maximization [24, 25, 81], and algorithms
for submodular maximization subject to a wide variety of constraints [15, 16, 26, 64,
65, 66, 81, 96].

Approximation algorithms for submodular analogues of several other optimization
problems have been studied, including load balancing [89], set cover [46, 98], shortest
path [32], sparsest cut [89], s-t min cut [50], vertex cover [32, 46], etc. In this paper we
provide several new results on the difficulty of such problems. Most of these previous
papers on submodular optimization prove inapproximability results using matroids
whose rank function has the same form as (1.1), but only for the drastically simpler
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case of (k:): 1. Our construction is much more intricate since we must handle the case
k=nvl),

Recent work of Dobzinski and Vondrék [21] proves inapproximability of welfare
maximization in combinatorial auctions with submodular valuations. Their proof is
based on a collection of submodular functions that take high values on every set
in a certain exponential-sized family and low values on sets that are far from that
family. Their proof is in the same spirit as our inapproximability result, although
their construction is technically very different from ours. In particular, our result uses
a special family of submodular functions and family of sets for which the sets are local
manima of the functions, whereas their result uses a different family of submodular
functions and family of sets for which the sets are local maxima of the functions.

Learning real-valued functions and the PMAC model. In the machine learning
literature [42, 93], learning real-valued functions in a distributional setting is often
addressed by considering loss functions such as the Ls-loss or the Li-loss, where
the loss incurred by predicting according to hypothesis f on a given example z is
Li(z, f*) = (f(x) — f*(x))? for Lao-loss and lf(z, f*) = |f(x) — f*(z)| for Ly-loss. In
this context, one typically normalizes the function to be in [0, 1], and the aim is to
achieve low expected loss E; [If(z, f*)]. However, lower bounds on expected loss do
not distinguish between the case of achieving low loss on most of the distribution and
high loss on just a few points, versus moderately high loss everywhere.

For example, consider a function f with codomain {0,1,...,n}. Here we would
normalize by a factor 1/n, so a lower bound of Q(n'/3) on expected L;-loss before
normalizing is equivalent to a lower bound of Q(n~=2/3) after normalizing. But such
a lower bound would not distinguish between the following two scenarios: (1) one
where any hypothesis f produced by the algorithm has L;-loss of Q(n~2/3) on a 1/2
fraction of the points, and (2) one where an algorithm can output a hypothesis f that
is exactly correct on a 1—O(n~2/3) fraction of the points but has high loss on the rest.

In comparison, the PMAC model provides more fine-grained control, with sepa-
rate parameters for the amount € and extent « of errors. For instance, in scenario
(1) if the normalized function has f(z) = 1/n on the points of high L;-loss, then this
would correspond to a lower bound of a = Q(n'/3) and ¢ = 1/2 in the PMAC model.
In contr/ast, scenario (2) would correspond to having an upper bound of & = 1 and
€ =mn"2/3

Another advantage of the PMAC model is that, since it uses multiplicative er-
ror, an algorithm in the PMAC model provides good approximations uniformly at all
scales.> Existing work in the learning theory literature has also considered guaran-
tees that combine both multiplicative and additive aspects, in the context of sample
complexity bounds [43, 68]. However, this work did not consider the development of
efficient algorithms or learnability of submodular functions.

We remark that our construction showing the Q(nl/ 3) inapproximability in the
PMAC model immediately implies a lower bound of Q(n~2/3) for the L;-loss and
Q(n=%/3) for the Ly-loss (after normalization).

Learning submodular functions. To our knowledge, there is no prior work on learn-
ing submodular functions in a distributional, PAC-style learning setting. The most
relevant work is a paper of Goemans et al. [33], which considers the problem of “ap-
proximating submodular functions everywhere.” That paper considers the algorithmic

3For example, if f is a good hypothesis in the PMAC model, and one focuses on points x such
that f*(z) < c and rescales, then the multiplicative approximation guarantee provided by f remains
true in the restricted and rescaled domain, as long as this set has sufficiently large probability mass.
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problem of efficiently finding a function which approximates a submodular function
at every set in its domain. They give an algorithm which achieves an approximation
factor O(y/n), and they also show €2(,/n) inapproximability. Their algorithm adap-
tively queries the given function on sets of its choice, and their output function must
approximate the given function on every set.* In contrast, our PMAC model falls
into the more widely studied passive, supervised learning setting [2, 58, 92, 93], which
is more relevant for our motivating applications discussed in section 1.2.

Our algorithm for PMAC-learning under general distributions and the Goemans
et al. algorithm both rely on the structural result (due to Goemans et al.) that mono-
tone, submodular functions can be approximated by the square root of a linear func-
tion to within a factor v/n. In both cases, the challenge is to find this linear function.
The Goemans et al. algorithm is very sophisticated: it gives an intricate combinato-
rial algorithm to approximately solve a certain convex program which produces the
desired function. Their algorithm requires query access to the function and so it is not
applicable in the PMAC model. Our algorithm, on the other hand, is very simple:
given the structural result, we can reduce our problem to that of learning a linear
separator, which is easily solved by linear programming. Moreover, our algorithm is
noise-tolerant and more amenable to extensions; we elaborate on this in section 4.4.

On the other hand, our lower bound is significantly more involved than the lower
bound of Goemans et al. [33] and the related lower bounds of Svitkina and Flei-
scher [89]. Essentially, the previous results show only worst-case inapproximability,
whereas we need to show average-case inapproximability. A similar situation occurs
with Boolean functions, where lower bounds for distributional learning are typically
much harder to show than lower bounds for exact learning (i.e., learning everywhere).
For instance, even conjunctions are hard to learn in the exact learning model (from
random examples or via membership queries), and yet they are trivial to PAC-learn.
Proving a lower bound for PAC-learning requires exhibiting some fundamental com-
plexity in the class of functions. It is precisely this phenomenon which makes our
lower bound challenging to prove.

Learning valuation functions and other economic solutions concepts. As discussed
in section 1.2, one important application of our results on learning is for learning
valuation functions. Kalai [56] considered the problem of learning rational choice
functions from random examples. Here, the learning algorithm observes sets S C [n]
drawn from some distribution D, along with a choice ¢(S) € [n] for each S. The goal
is then to learn a good approximation to ¢ under various natural assumptions on c.
For the assumptions considered in [56], the choice function ¢ has a simple description
as a linear ordering. In contrast, in our work we consider valuation functions that
may be much more complex and for which the PAC model would not be sufficient
to capture the inherent easiness or difficulty of the problem. Kalai briefly considers
utility functions over bundles and remarks that “the PAC-learnability of preference
relations and choice functions on commodity bundles ... deserves further study” [55].

1.4. Structure of the paper. We begin with background about matroids and
submodular functions in section 2. In section 3 we present our new structural results:

4Technically speaking, their model can be viewed as “approximate learning everywhere with
value queries,” which is less natural in certain machine learning scenarios. In particular, in many
applications arbitrary membership or value queries are undesirable because natural oracles, such as
hired humans, have difficulty labeling synthetic examples [7]. Also, negative results for approximate
learning everywhere do not necessarily imply hardness for learning in more widely used learning
models. We discuss this in more detail below.
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a new extremal family of matroids and the concentration result for submodular func-
tions. We present our new framework for learning real-valued functions as well as our
results for learning submodular functions within this framework in section 4. We fur-
ther present implications of our matroid construction in optimization and algorithmic
game theory in sections 6 and 7.

2. Preliminaries: Submodular functions and matroids.

2.1. Notation. Let [n] denote the set {1,2,...,n}. This will typically be used
as the ground set for the matroids and submodular functions that we discuss. For any
set S C [n] and element x € [n], we let S + = denote S U {z}. The indicator vector
of a set S C [n]is x(S) € {0,1}", where x(S); is 1 if i is in S and 0 otherwise. We
frequently use this natural isomorphism between {0,1}" and 2],

2.2. Submodular functions and matroids. In this section we give a brief
introduction to matroids and submodular functions and discuss some standard facts
that will be used throughout the paper. A more detailed discussion can be found
in standard references [30, 31, 70, 82, 86]. The reader familiar with matroids and
submodular functions may wish to skip to section 3.

Let V = {v1,...,v,} be a collection of vectors in some vector space F™. Roughly
one century ago, several researchers observed that the linearly independent subsets of
V satisfy some interesting combinatorial properties. For example, if B C V is a basis
of F and I C V is linearly independent but not a basis, then there is always a vector
v € B which is not in the span of I, implying that I 4+ v is also linearly independent.

These combinatorial properties are quite interesting to study in their own right, as
there are a wide variety of objects which satisfy these properties but (at least superfi-
cially) have no connection to vector spaces. A matroid is defined to be any collection
of elements that satisfies these same combinatorial properties, without referring to
any underlying vector space. Formally, a pair M = ([n],Z) is called a matroid if
7 C 2[" is a nonempty family such that

o if JCTand I €Z, then J€Z, and

e if [,J €T and |J| < |I|, then there exists an ¢ € I\ J such that J +1i € T.
The sets in Z are called independent.

Let us illustrate this definition with two examples:

Partition matroid. Let V;U---UVj, be a partition of [n], i.e., | J; Vi = [n] and V;NV; = 0
whenever i # j. Define Z C 2™ to be the family of partial transversals of
[n], ie., I € Ziff [INV;] <1 for all i € [k]. It is easy to verify that the pair
([n],Z) satisfies the definition of a matroid. This is called a partition matroid.
This definition can be generalized slightly. Let I € Z iff [T NV;| < b; for all
it =1,...,k, where the b; values are arbitrary. The resulting pair ([n],Z) is a
(generalized) partition matroid.

Graphic matroid. Let G be a graph with edge set E. Define T C 2F to be the
collection of all acyclic sets of edges. One can verify that the pair ([n],Z)
satisfies the definition of a matroid. This is called a graphic matroid.

One might wonder, Given an arbitrary matroid ([n],Z), do there necessarily exist
vectors V' = {v1,...,v,} in some vector space for which the independent subsets of V'
correspond to Z? Although this is true for partition matroids and graphic matroids,
in general the answer is no. So matroids do not capture all properties of vector spaces.
Nevertheless, many concepts from vector spaces do generalize to matroids.

For example, given vectors V' C F™, all maximal linearly independent subsets of
V have the same cardinality, which is the dimension of the span of V. Similarly, given
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a matroid ([n],Z), all maximal sets in Z have the same cardinality, which is called the
rank of the matroid.

More generally, for any subset V/ C V, we can define its rank to be the dimension
of the span of V’; equivalently, this is the maximum size of any linearly independent
subset of V’. This notion generalizes easily to matroids. The rank function of the
matroid ([n],Z) is the function rankys : 2" — N defined by

rankp (S) == max{|I| : IC S, ITe€T}.

Rank functions also turn out to have numerous interesting properties, the most
interesting of which is the submodularity property. Let us now illustrate this via an
example. Let V" € V/ C V be collections of vectors in some vector space. Suppose
that v € V is a vector which does not lie in span(V”). Then it is clear that v does not
lie in span(V"") either. Consequently,

rank(V’ + v) — rank(V’') = 1 = rank(V"” 4+ v) — rank(V") = 1.
The submodularity property is closely related: it states that
rankng (T + @) —rankp(T) < ranknm(S + @) — rankp (5) VS CT Cn], i€ [n].

The following properties of real-valued set functions play an important role in
this paper. A function f : 2" — R is

o normalized if f(0) =0,

e nonnegative if f(S) > 0 for all S,

e monotone (or nondecreasing) if f(S) < f(T) for all S C T,

e submodular if it satisfies

21) [T+ - f(T) < f(S+i)=f(S) VSCTC[n]ieln]
and an equivalent definition is

(2.2) f(A)+ f(B) > f(AUB)+ f(ANB) VA, B C [n],

o L-Lipschitz if |f(S+1¢) — f(S)| < L for all S C [n] and i € [n].

Matroid rank functions are integer-valued, normalized, nonnegative, monotone, sub-
modular, and 1-Lipschitz. The converse is also true: any function satisfying those
properties is a matroid rank function.

The most interesting of these properties is submodularity. It turns out that there
are a wide variety of set functions which satisfy the submodularity property but do
not come from matroids. Let us mention two examples:

Coverage function. Let Si,..., 5, be a subsets of a ground set [m]. Define the func-
tion f: 2" — N by

1y = |Us:

el

This is called a coverage function. It is integer-valued, normalized, nonnega-
tive, monotone, and submodular, but it is not 1-Lipschitz.
Cut function. Let G = ([n], E) be a graph. Define the function f : 2" — N by

fU) = 16Ul

where 6(U) is the set of all edges that have exactly one endpoint in U. This
is called a cut function. It is integer-valued, normalized, nonnegative, and
submodular, but it is not monotone or 1-Lipschitz.
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nl/3 —

8 log? n

F1G. 1. This figure aims to illustrate a function rankng, that is constructed by Theorem 1. This
is a real-valued function whose domain is the lattice of subsets of V.. The family B contains the sets
Ay and As, both of which have size nl/3. Whereas rankng, (S) is large (close to n1/3) for most sets

S of size n'/3, we have rankng; (A1) = ranky, (A2) = 8log?n. In order to ensure submodularity,

sets near A1 or As also have low values.

3. New structural results about matroids and submodular functions.

3.1. A new family of extremal matroids. In this section we present a new
family of matroids whose rank functions take wildly varying values on many sets. The
formal statement of this result is as follows.

THEOREM 1. For any k > 8 with k = 2”(”1/3), there exists a family of sets A C
20" and a family of matroids M = {Mp : BC A} with the following properties:

o |Al =k and|A| =n'/? for every A € A.

e For every B C A and every A € A, we have

rankn, (A) = {SIng (lf 4eb)
|A] (if Ae A\ B).

Theorem 1 implies that there exists a superpolynomial-sized collection of subsets
of [n] such that, for any labeling of those sets as HIGH or LOw, we can construct a
matroid where the sets in HIGH have rank myig, and the sets in LOW have rank 74y,
and the ratio ruigh /7w = Q(nl/?’). For example, by picking k = n!°8™, in the matroid
Mgp, a set A has rank only O(log”n) if A € B, but has rank n'/? if A € A\ B. In
other words, as BB varies, the rank of a set A € A varies wildly, depending on whether
A€ B.

Later sections of the paper use Theorem 1 to prove various negative results. In
section 4.3 we use the theorem to prove our inapproximability result for PMAC-
learning submodular functions under arbitrary distributions. In section 6 we use the
theorem to prove results on the difficulty of several submodular optimization problems.

In the remainder of section 3.1 we discuss Theorem 1 and give a detailed proof.

3.1.1. Discussion of Theorem 1 and sketch of the construction. We begin
by discussing some set systems which give intuition on how Theorem 1 is proven. Let
A ={A;,..., A;} beacollection of subsets of [n] and let by, . .., by be positive integers.
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Consider the set system
T = {I : |I|§r N ‘IﬂAj|§bj VJE[k‘]}

If 7 is the family of independent sets of a matroid M, and if rankng(A;) = b; for each
7, then perhaps such a construction can be used to prove Theorem 1.

Even in the case & = 2, understanding 7 is quite interesting. First of all, 7
typically is not a matroid. Consider takingn =5, r =4, A; = {1,2,3}, Ay = {3,4,5},
and by = by = 2. Then both {1,2,4,5} and {2,3,4} are maximal sets in Z but their
cardinalities are unequal, which violates a basic matroid property. However, one can
verify that Z is a matroid if we additionally require that r < by + by — |41 N A3|. In
fact, we could place a constraint on |I N (A; U Ag)| rather than on |I|, obtaining

{I:|IﬂA1|§b1 A |IﬂA2|§b2 A\ ‘Iﬁ(AlUAQ)‘§b1+b2—|AlﬂA2|},

which is the family of independent sets of a matroid. In the case that A; and As are
disjoint, the third constraint becomes |I N (A; U As)| < by + ba, which is redundant
because it is implied by the first two constraints. In the case that A; and A, are
“nearly disjoint,” this third constraint becomes necessary and it incorporates an “error
term” of —|A4; N Ag|.

To generalize to k > 2, we impose similar constraints for every subcollection of
A, and we must include additional “error terms” that are small when the A;’s are
nearly disjoint. First define

Ay = (A4
jeJ

Theorem 2 proves that
(3.1) = A{1:[InAWJ)| =< g(J) vJCIkl}

is a matroid, where the function g : 2¥1 — Z is defined by

(3-2) g(J) = Y by = | DA = AW

jeJ jeJ

The proof appears in section 3.1.3. In the definition of g(J), we should think of
—(32 e 1451 —[A(J)]) as an “error term,” since it is nonpositive, and it captures the
“overlap” of the sets { A; : j € J }. In particular, in the case J = {1,2}, this error
term is —| Ay N As|, as it was in our discussion of the case k = 2.

THEOREM 2. The family T given in (3.1) is the family of independent sets of a
matroid, if it is nonempty.

Let us now consider a special case of this construction. If the A;’s are all disjoint,
then the error terms are all 0, so the family Z reduces to

{1 [INA;l < b; Vjelk]},

which is a (generalized) partition matroid, regardless of the b; values. Unfortunately
these matroids cannot achieve our goal of having superpolynomially many sets labeled
HicH or Low. The reason is that, since the A;’s must be disjoint, there can be at
most n of them.



716 MARIA-FLORINA BALCAN AND NICHOLAS J. A. HARVEY

In fact, it turns out that any matroid of the form (3.1) can have at most n sets
in the collection A. To obtain a superpolynomially large A we must modify this
construction slightly. Theorem 3 shows that, under certain conditions, the family

T ={I:)]<d A [INAWJ)| <g(J) VJC K], |J| <7}

is also the family of independent sets of a matroid. Introducing the crucial parameter
7 allows us to obtain a superpolynomially large A.

There is an important special case of this construction. Suppose that |4;| = d
and b; = d — 1 for every j and that |[A; N A;| <2 for all ¢ # j. The resulting matroid
is called a paving matroid, a well-known type of matroid. These matroids are quite
relevant to our goals of having superpolynomially many sets labeled HiGH and Low.
The reason is that the conditions on the A;’s are equivalent to A being a constant-
weight error-correcting code of distance 4, and it is well known that such codes can
have superpolynomial size. Unfortunately this construction has 7w = d — 1 and
Thigh = d; this small, additive gap is much too weak for our purposes.

The high-level plan underlying Theorem 1 is to find a new class of matroids that
somehow combines the positive attributes of both partition and paving matroids.
From paving matroids we will inherit the large size of the collection A, and from
partition matroids we will inherit a large ratio 7pign /Tlow-

One of our key observations is that there is a commonality between partition
and paving matroids: the collection A must satisfy an “expansion” property, which
roughly means that the A;’s cannot overlap too much. With partition matroids the
A;’s must be disjoint, which amounts to having “perfect” expansion. With paving
matroids the A;’s must have small pairwise intersections, which is a fairly weak sort
of expansion.

It turns out that the “perfect” expansion required by partition matroids is too
strong for A to have superpolynomial size, and the “pairwise” expansion required by
paving matroids is too weak to allow a large ratio ruigh/7ow. Fortunately, weakening
the expansion from “perfect” to “nearly perfect” is enough to obtain a collection A
of superpolynomial size. With several additional technical ideas, we show that these
nearly perfect expansion properties can be leveraged to achieve our desired ratio
Thigh/Tlow = Q(n'/3). These ideas lead to a proof of Theorem 1.

3.1.2. Our main matroid construction. As mentioned above, our basic ma-
troid construction (Theorem 2) does not suffice to prove Theorem 1. To see why,
suppose that |A| = k > n and that b; < |4;| for every i. Then g([k]) < n —k <0,
and therefore Z is empty. So the construction of Theorem 2 is applicable only when
k < n, which is insufficient for proving Theorem 1.

We now modify the preceding construction by introducing a sort of “truncation”
operation which allows us to take k > n. We emphasize that this truncation is not
ordinary matroid truncation. The ordinary truncation operation decreases the rank
of the matroid, whereas we want to increase the rank by throwing away constraints
in the definition of Z. We will introduce an additional parameter 7 and only keep
constraints for |J| < 7. So long as g is large enough for a certain interval, then we
can truncate g and still get a matroid.

DEFINITION 1. Let d and T be nonnegative integers. A function g : 2(F — R is
called (d, T)-large if

(3-3) 9(J) =

0 vJ C k], |J] <,
d  YICk], r<|J]<2r -2
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The truncated function G : 2% — 7 is defined by

3 = {gu) (if |7 < 7),

d (otherwise).

THEOREM 3. Suppose that the function g defined in (3.2) is (d,7)-large. Then
the family -
T = {(I:InA() <g(]) W CH)

is the family of independent sets of a matroid.

Consequently, we claim that the family
T = {1:|[<d A INAW) < g(J) I C K], 1] < 7}

is also the family of independent sets of a matroid. This claim follows immediately
if the A;’s cover the ground set (i.e., A([k]) = [n]), because the matroid definition in
Theorem 3 includes the constraint |I| = [I N A([k])| < g([k]) = d. Alternatively, if
A([k]) # [n], we may we apply the well-known matroid truncation operation which
constructs a new matroid simply by removing all independent sets of size greater
than d.

This construction yields quite a broad family of matroids. We list several interest-
ing special cases in Appendix E. In particular, partition matroids and paving matroids
are both special cases. Thus, our construction can produce “nonlinear” matroids (i.e.,
matroids that do not correspond to vectors over any field), as the Vamos matroid is
a paving matroid that is nonlinear [82].

3.1.3. Proofs of Theorems 2 and 3. In this section, we will prove Theorems 2
and 3. We start with a simple but useful lemma which describes a general set of
conditions that suffice to obtain a matroid.

Let C C 2™ be an arbitrary family of sets and let g : C — Z be a function.
Consider the family

(3.4) T = {1:]InC|<g(C)VCeC}.

For any I € Z, define T(I) = {C €C : |[INC| = g(C) } to be the set of constraints
that are “tight” for the set I. Suppose that g has the following property:

(35) VI € I, Cl,CQ € T(I) = (Cl ulCs, e T(I)) V (Cl NCy = @)

Properties of this sort are commonly called “uncrossing” properties. Note that we do
not require that Cy N Cy € C. We show in the following lemma that this uncrossing
property is sufficient® to obtain a matroid.

LEMMA 1. Assume that (3.5) holds. Then T is the family of independent sets of
a matroid if it is nonempty.

Proof. We will show that Z satisfies the required axioms of an independent set
family. If I C I’ € Z, then clearly I € T also. So suppose that I € Z, I’ € Z, and
[I| < |I'|. Let Ci,...,Cy, be the maximal sets in T'(I) and let C* = U; C;. Note

5There are general matroid constructions in the literature which are similar in spirit to Lemma 1,
e.g., the construction of Edmonds [22, Theorem 15] and the construction of Frank and Tardos [86,
Corollary 49.7a]. However, we were unable to use those existing constructions to prove Theorems 2
or 3.
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that these maximal sets are disjoint; otherwise we could replace any intersecting sets
with their union. In other words, C; N C; = ) for i # j; otherwise (3.5) implies that
C; UC; € T(I), contradicting maximality. So

'ncr = Y I'nc| < > g(Ci) = Y |INCi| = [InC”|.
i=1 i=1 i=1
Since |I'| > |I| but |I' N C*| < |I N C*|, we must have that |I' \ C*| > [T\ C*|. The
key consequence is that some element x € I’ \ T is not contained in any tight set, i.e.,
there exists # € I’ \ (C*UI). Then I +x € Z because for every C' € C with z € C we
have [INC| < g(C) — 1. d

We now use Lemma 1 to prove Theorem 2, restated here.

THEOREM 2. The family T defined in (3.1), namely,
T = {I:]InAWJ)| < g(J) YJC[k]},

where

g(7) == b — | Y14 - |A()) and A = 4,

jeJ jeJ jeJ
is the family of independent sets of a matroid if it is nonempty.

This theorem is proven by showing that the constraints defining Z can be “un-
crossed” (in the sense that they satisfy (3.5)), then applying Lemma 1. It is not
a priori obvious that these constraints can be uncrossed: in typical uses of uncross-
ing, the right-hand side g(J) should be a submodular function of J and the left-hand
side |I N A(J)| should be a supermodular function of J. In our case both g(J) and
|I N A(J)| are submodular functions of J.

Proof of Theorem 2. The proof applies Lemma 1 to the family
C={AWJ): JC[k]}.

We must also define a function ¢’ : C — Z for which (3.5) will hold. However, there is a
small issue: it is possible that there exist J # J' with A(J) = A(J’) but g(J) # g(J'),
so we cannot simply define ¢'(A(J)) = g(J). Instead, we define the value of ¢'(A(J))
according the tightest constraint on |I N A(J)], i.e.,

g (C) :==min{g(J) : A(J)=C} vC e C.
Now fix I € Z and suppose that C; and Cy are tight, i.e., |[I N C;| = ¢'(C;) for
both i = 1,2. Define h; : 28 — Z by
hi(J) = g(J) = [INAW)] = [A)\T] =D (145] = b))
jed

We claim that h; is a submodular function of J. This follows because J +— |A(J)\ 1| is
a submodular function of J (cf. Theorem 24 in Appendix A.1), and J — >, ;(|4;]—
b;) is a modular function of J.

Now choose J; satisfying C; = A(J;) and ¢'(C;) = g(J;) for both i € {1,2}. Then

hi(Ji) = g(Ji) = TN A(Ji)| = ¢'(Ci) = [INCi| =0



LEARNING SUBMODULAR FUNCTIONS 719

for both i € {1,2}. However, hy > 0, since we assume I € Z and therefore [TNA(J)| <
g(J) for all J. So we have shown that J; and Jy are both minimizers of h;. It is
well known that the minimizers of any submodular function are closed under union
and intersection. (See Lemma 7 in Appendix A.1.) So J; U Jy and Jy N Jy are also
minimizers, implying that A(J; U J3) = A(Jy) U A(J2) = C1 U Cs is also tight.
This shows that (3.5) holds, so the theorem follows from Lemma 1. |
A similar approach is used for our second construction.

Proof of Theorem 3. Fix I € Z. Let J; and Jo satisfy |[I N A(J;)| = g(J;). By
considering two cases, we will show that

[INA(JLUJy)| > g(J1U ),

so the desired result follows from Lemma 1.
Case 1: max {|J1|,|J2|} > 7. Without loss of generality, |J1| > |J2|. Then

g(J1UJy)=d=g(J1) = [INA(J)| < [ITNAJL U JL)|.

Case 2: max{|Ji|,|J2|} <7 —1. So |J1 UJs| <27 —2. We have |[I N A(J;)| =
g(J;) = g(J;) for both i. As argued in the proof of Theorem 2, we also have |I N
A(J; U )| = g(J1 U J3). But g(J1 U Je) > g(J1 U Jo) since g is (d, 7)-large, so
|Iﬂ A(J1 U J2)| > g(J1 U JQ), as desired. O

3.1.4. Putting it all together: Proof of Theorem 1. In this section we use
the construction in Theorem 3 to prove Theorem 1, which is restated here.

THEOREM 1. For any k > 8 with k = 20(”1/3), there exists a family of sets A C
2"l and a family of matroids M = { Mg : B C A} with the following properties:

o |Al =k and|A| =n'/? for every A € A.

o For every B C A and every A € A, we have

8log k (if A e B),

rankn, (A) = {|A| (if A e A\ B).

To prove this theorem, we must construct a family of sets A = {4;,..., Ax}
where each |A;| = n'/3, and for every B C A we must construct a matroid M with
the desired properties: It will be convenient to let d = n'/3 denote the size of the
A;’s, to let the index set of A be denoted by U := [k], and to let the index set for B be
denoted by Ug :={i€U : A; € B}. Each matroid Mg is constructed by applying
Theorem 3 with the set family B instead of A, so its independent sets are

Ig = {I : [I|<d A |INA(J)|<gs(J) VJ CUg, |J| <7},

where the function gg : 2V5 — R is defined as in (3.2), taking all b;’s to be equal to
a common value b (independent of i and B):

gs(J) = D b — | DA =AU | = 0D +]AV) VI C Us.
jeJ jeJ

Several steps remain. We must choose the set family A, then choose parameters
carefully such that, for every B C A, we have as follows:



720 MARIA-FLORINA BALCAN AND NICHOLAS J. A. HARVEY

e P1: Mjp is indeed a matroid;

o P2: rankny, (A;) = 8logk for all A; € B; and

o P3: rankn, (A;) = |A| for all A; € A\ B.

Let us start with P2. Suppose A; € B. The definition of Zp includes the constraint
[T N A;| < gp({i}), which implies that rankng, (4;) < gs({i}) = b. This suggests that
choosing b := 8log k may be a good choice to satisfy P2.

On the other hand, if A; € B, then P3 requires that A; is independent in Mpg.
To achieve this, we need the constraints |[I N A(J)| < gg(J) to be as loose as possible,
i.e., gn(J) should be as large as possible. Notice that gs(J) has two terms, ZjeJ b,
which grows as a function of J, and —(Zj€J|Aj| — |A(J)]), which is nonpositive. So
we desire that |A(.J)| should be as close as possible to 3 ;[A;| for all J with [J] <.
Set systems with this property can be constructed from expander graphs.

DEFINITION 2. Let G = (U UV, E) be a bipartite graph. For J C U, define
T(J) :== {v: 3ueJ such that {u,v} € E}.
The graph G is called a (d, L, €)-expander if

T({u})| = d Vu € U,
Tl = A—-e-d-|J|  VJCU |J <L
Additionally, G is called a lossless expander if € < 1/2.

Given such a graph G, we construct the set family A = {A;,..., Ay} C 2I" by
identifying U = [k], V = [n], and for each vertex ¢ € U defining A; := I'({i}). The
resulting sets satisfy

4] = d VieU,
(3.6) AW > A-¢-d-1J]  VICU I <L,
— YAl AU < ed- 1] v CU, || < L.

This last inequality will allow us to show that gs(J) is sufficiently large.

To make things concrete, let us now state the expander construction that we
will use. Lossless expanders are well-studied [39, 44|, and several probabilistic con-
structions are known, both in folklore and in the literature [12, Lemma 3.10], [44,
section 1.2], [88, Theorem 26|, [91, Theorem 4.4]. The following construction has
parameters that match our requirements.

THEOREM 4 (Buhrman et al. [12, Lemma 3.10]). Suppose that k > 8, that
n > 25L1og(k)/€%, and that d > log(k)/2¢. Then there exists a graph G = (UUV, E)
with [U| = k and |V| = n that is a (d, L, €)-lossless expander.

The next theorem states another (folklore) probabilistic construction that also
matches our requirements. We include a proof in Appendix D for the sake of com-
pleteness and because we will require a slight variant in section 6.

THEOREM 5. Let G = (UUV, E) be a random multigraph where |U| =k, |V| = n,
and every u € U has exactly d incident edges, each of which has an endpoint chosen

uniformly and independently from all nodes in V. Suppose that k > 4, d > log(k)/e,
and n > 16Ld/e. Then, with probability at least 1 — 2/k,

D) > (1—¢)-d-|J] VJCU, |J|<L.

If it is desired that [T'({u})| = d for all w € U, then this can be achieved by replacing
any parallel edges incident on u by new edges with distinct endpoints. This cannot
decrease |T'(J)| for any J.
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We require an expander with the following parameters. Recall that n is arbitrary
and k = 200"
nt/3 2logk

d = n'/3 L = —— = .
e 2logk’ ¢ nt/3

These satisfy the hypotheses of Theorem 4 (and Theorem 5), so a (d, L, €)-expander
exists, and a set family A satisfying (3.6) exists. Next we use these properties of .4
to show that P1, P2, and P3 hold.

The fact that P1 holds follows from Theorem 3 and the following claim. Recall
that b = 8log k.

CrAM 1. Set 7 =n'/3/4logk. Then gg is (d,7)-large, as defined in (3.3).
Proof. Consider any J C U with |J| < 27 — 2. Then

g95(J) = (0—=d)|J| +[A(J)|
> blJ| — ed|J| (by (3.6), since |J| <27 —2 < L)

b
(3.7 = 3Z|J| (since € = b/4d).

This shows gg(J) > 0. If additionally |J| > 7, then gg(J) > (3/4)br > d. |
The following claim implies that P2 holds.
CLAIM 2. For all B C A and all A; € B we have ranky, (A4;) = b.

Proof. The definition of Zg includes the constraint |[I N A;| < gg({i}) = b. This
immediately implies rankag, (4;) < b. To prove that equality holds, it suffices to
prove that gg(J) > b whenever |J| > 1, since this implies that every constraint in the
definition of Zp has a right-hand side at least b (except for the constraint corresponding

to J = 0, which is vacuous). For |J| = 1 this is immediate, and for |J| > 2 we use
(3.7) to obtain gg(J) = 3b|J|/4 > b. 0

Finally, the following claim implies that P3 holds.
CLAIM 3. For all BC A and all A; € A\ B we have rankn, (4;) = d.

Proof. Since d = |A;|, the condition rankpg, (A4;) = d holds iff A; € Zg. So it
suffices to prove that A; satisfies all constraints in the definition of Zj.

The constraint |A4;| < d is trivially satisfied. So it remains to show that for every
J C Ug with |J] < 7, we have

(3.8) [AinA()| < gs(J).
This is trivial if J = (), so assume |J| > 1. We have

[Ai N A(D)| = [Ail + [A(D)] = [A(T +9)]

< d+dlJ|—(1—edJ+i  (by (3.6))
= b|J4+ i (since € = b/4d)

_ ol

- 2

< gs(J)  (by (3.7)).

This proves (3.8), so A; € Zp, as desired. d
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3.2. Concentration properties of submodular functions. In this section
we prove the following strong concentration bound for submodular functions.

THEOREM 6. Let f : 2" — R4 be a nonnegative, monotone, submodular, 1-
Lipschitz function. Let the random variable X C [n] have a product distribution. For
any b,t >0,

Pr[f(X)<b—tvVb|-Prf(X)2b] < exp(—2/4).

To understand Theorem 6, it is instructive to compare it with standard results.
For example, the Chernoff bound is precisely a concentration bound for linear, Lip-
schitz functions. On the other hand, if f is an arbitrary 1-Lipschitz function, then
McDiarmid’s inequality implies concentration, although of a much weaker form, with
standard deviation roughly y/n. If f is additionally known to be submodular, then we
can apply Theorem 6 with b equal to a median, which can be much smaller than n. So
Theorem 6 can be viewed as saying that McDiarmid’s inequality can be significantly
strengthened when the given function is known to be submodular.

Our proof of Theorem 6 is based on the Talagrand inequality [90, 1, 74, 49]. As
mentioned above, similar results have previously been proven using the machinery of
self-bounding functions [40, 97] and using the FKG inequality [14].

Theorem 6 most naturally implies concentration around a median of f(X). As
shown in the following corollary, this also implies concentration around the expected
value. This corollary, with better constants, also follows from the results of Chekuri
and Vondrak [14] and Vondrék [97]

COROLLARY 1. Let f : 2" — R, be a nonnegative, monotone, submodular, 1-
Lipschitz function. Let the random variable X C [n] have a product distribution. For
any 0 < a <1,

Pr{[f(X) —E[f(X)]]>aB[f(X)]] < dexp(-o’E[f(X)]/422).

As an interesting application of Corollary 1, let us consider the case where f is the
rank function of a linear matroid. Formally, fix a matrix A over any field. Construct
a random submatrix by selecting the ith column of A with probability p;, where these
selections are made independently. Then Corollary 1 implies that the rank of the
resulting submatrix is highly concentrated around its expectation, in a way that does
not depend on the number of rows of A.

The proofs of this section are technical applications of Talagrand’s inequality
and are provided in Appendix B. Later sections of the paper use Theorem 6 and
Corollary 1 to prove various results. In section 4.2 we use these theorems to analyze
our algorithm for PMAC-learning submodular functions under product distributions.
In section 5 we use these theorems to give an approximate characterization of matroid
rank functions.

4. Learning submodular functions.

4.1. A new learning model: The PMAC model. In this section we intro-
duce a new learning model for learning real-valued functions in the passive, supervised
learning paradigm, which we call the PMAC model. In this model, a learning algo-
rithm is given a collection & = {x1,z2,...,2¢} of polynomially many sets drawn
i.i.d. from some fixed, but unknown, distribution D over an instance space X. There
is also a fixed but unknown function f* : & — R,, and the algorithm is given the
value of f* at each set in S. The algorithm may perform an arbitrary polynomial time
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computation on the examples {(x;, f*(x;))},<;<,, then must output another function
f: X = R,. This function is called a “hypothesis function.” The goal is that, with
high probability, f is a good approximation of f* for most points in D. Formally, we
have the following.

DEFINITION 3. Let F be a family of nonnegative, real-valued functions with do-
main X. We say that an algorithm A PMAC-learns F with approximation factor «
if, for any distribution D over X, for any target function f* € F, and for e > 0 and
0 > 0 sufficiently small,

o the input to A is a sequence of pairs {(z;, f*(i))},<;<, where each x; is

i.4.d. from D,
e the number of inputs £ provided to A and the running time of A are both at
most poly(n,1/e, 1/6),

e the output of A is a function f : X — R that can be evaluated in time

poly(n,1/€e,1/0) and that satisfies

Pro, awp [Pro~p [f(2) < f7(2) <a-f(2)] 21— > 1-4.

PMAC is an extension of the PAC model to learning nonnegative, real-valued
functions, allowing multiplicative error a. The PAC model for learning Boolean func-
tions is precisely the special case when a = 1.

In this paper we focus on the PMAC-learnability of submodular functions. In
this case X = {0,1}" and F is the family of all nonnegative, monotone, submodular
functions. We note that it is quite easy to PAC-learn the class of Boolean submodular
functions. Details are given in Appendix C.1. The rest of this section considers
the much more challenging task of PMAC-learning the general class of real-valued,
submodular functions.

4.2. Product distributions. A first natural and common step in studying
learning problems is to study learnability of functions when the examples are dis-
tributed according to the uniform distribution or a product distribution [53, 60, 69].
In this section we consider learnability of submodular functions when the underlying
distribution is a product distribution. Building on the concentration results in sec-
tion 3.2 we provide an algorithm that PMAC learns the class of Lipschitz submodular
functions with a constant approximation factor.

We will let L < M < H and K be universal constants, whose values we can
take to be L = 10550, M = 11250, H = 12500, and K = 26000. We begin with the
following technical lemma, which states some useful concentration bounds.

LEMMA 2. Let f : 2[" — R be a nonnegative, monotone, submodular, 1-Lipschitz
function. Suppose that Si,...,S; are drawn from a product distribution D over
2"l Let p the empirical average p = Zle f*(Si)/L, which is our estimate for
Es.p[f*(S)]. Lete,6 <1/5. We have the following:

(1) IfE[f*(S)] > Hlog(1/e) and ¢ > 161og(1/4), then

Prpu> Mlog(1/e)] > 1—4§/4.
(2) IfE[f*(S)] > Llog(1/e) and £ > 161og(1/6), then
Pr2E[f*(S)]<pn<3E[f(9)]] = 1-6/4
(3) IFE[f*(S)] < Hlog(1/e), then
Pr[f(S) < Klog(1/e)] > 1—e.
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Algorithm 1. An algorithm for PMAC-learning a nonnegative, monotone, 1-
Lipschitz, submodular function f* with minimum nonzero value 1, when the examples

come from a product distribution. Its input is a sequence of labeled training examples
(S1, f*(S1)),...,(Se, f*(Se)), parameters € and £.

o Let p=>1_, f*(Si)/L.

e Case 1: If u > Mlog(1/e¢), then return the constant function f = p/4.

e Case 2: If 4 < Mlog(1/e), then compute the set U = ;. ;- (si)=0 Si- Return
the function f where f(A)=0if ACU and f(4) =1 othcrw1se

(4) IfE[f*(S)] < Llog(1/e) and ¢ > 161og(1/4), then
Priu< Mlog(l/e)] > 1—46/4.

The proof of Lemma 2, which is provided in Appendix C.2, follows easily from The-
orem 6 and Corollary 1. We now present our main result in this section.

THEOREM 7. Let F be the class of nonnegative, monotone, 1-Lipschitz, submod-
ular functions with ground set [n] and minimum nonzero value 1. Let D be a product
distribution on {0,1}". For any sufficiently small € > 0 and § > 0, Algorithm 1
PMAC-learns F with approximation factor a« = Klog(1/€). The number of training
examples used is £ = nlog(n/d)/e + 161og(1/6).

If it is known a priori that E[ f*(S)] > Llog(1/e), then the approzimation factor
improves to 8, and the number of examples can be reduced to £ = 16log(1/0), which
is independent of n and €.

Proof. We begin with an overview of the proof. Consider the expected value of
f*(S) when S is drawn from distribution D. When this expected value of f* is large
compared to log(1/¢), we simply output a constant function given by the empirical
average u estimated by the algorithm. The concentration bounds for submodular
functions (Theorem 6 and Corollary 1) allow us to show that this constant func-
tion provides a good estimate. However, when the expected value of f* is small,
we must carefully handle the zeros of f*, since they may have large measure under
distribution D. The key idea here is to use the fact that the zeros of a nonnegative,
monotone, submodular function have special structure: they are both union-closed
and downward-closed, so it is sufficient to PAC-learn the Boolean NOR function which
indicates the zeros of f*.

We now present the proof formally. By Lemma 2, with probability at least 1 — §
over the choice of examples, we may assume that the following implications hold:

(4.1)
p>Mlog(l/e) = E[f"(S)] > Llog(l/e) and gE[f*(S)] << gE[f(5)],
p<Mlog(l/e) = E[f"(5)] < Hlog(1/e).

Now we show that the function f output by the algorithm approximates f* to within
a factor K log(1/e).

Case 1. 1 > M log(1/e). Since we assume that (4.1) holds, we have 2 E[ f*(5)] <
p< 2E[f*(S)] and E[f*(S)] > Llog(1/e). Using these together with Corollary 1
we obtain

Prip/4 < f7(S) < 2u]

Pr[LE[F(S)] < F(8) < SE[F(S)]]
(4.2) .

<
1= Pr[|f*(S) -E[f <S>]|><2/3> [f*(9)]]
1—dexp (—E[f*(5)]/950) > 1-¢

vV IV IV
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since L > 4000 and e < 1/2. Therefore, with confidence at least 1 — §, the constant
function f output by the algorithm approximates f* to within a factor 8 on all but
an e fraction of the distribution.

Case 2. u < Mlog(1/e). As mentioned above, we must separately handle the
zeros and the nonzeros of f*. To that end, define

P={S:/(9)>0} and Z={S5:f(5)=0}.

Recall that the algorithm sets U = | £+(81)=0 S;. Monotonicity and submodularity
imply that f*(U) = 0. Furthermore, setting £ ={ T : T C U }, monotonicity implies
that

(4.3) F(T) =0 YTecL

We wish to analyze the measure of the points for which the function f output by
the algorithm fails to provide a good estimate of f*. So let S be a new sample from
D and let £ be the event that S violates the inequality

f(S) < f1(8) < (Klog(1/e)) - f(S).

Our goal is to show that, with probability 1 — é over the training examples, we have
Pr[€&] <e. Clearly

Pr(€] =Pr[ENSEP | +Pr[EANSeZ].

We will separately analyze these two probabilities.

First we analyze the nonzeros of f*. So assume that S € P, which implies that
f*(S) > 1 by our hypothesis. Then S € U (by (4.3)), and hence f(S) = 1 by the
definition of f. Therefore the event £ A S € P can only occur when f*(S) > K log(1/e).
Since we assume that (4.1) holds, we have E[ f*(S)] < Hlog(1/e), so we can apply
Lemma 2, statement (3). This shows that

Pr(£ A SeP] < Pr[f*(S)> Klog(l/e)] < e

It remains to analyze the zeros of f*. Assume that S € Z, i.e., f*(S) = 0. Since
our hypothesis has f(S) =0 for all S € L, the event £ A S€ Z holds only if S € Z\ L.
The proof now follows from Claim 4. O

CraM 4. With probability at least 1 — 0, the set Z \ L has measure al most €.

Proof. The idea of the proof is as follows. At any stage of the algorithm, we
can compute the set U and the subcube £L = {T : T CU }. We refer to L as the
algorithm’s null subcube. Suppose that there is at least an € chance that a new example
is a zero of f* but does not lie in the null subcube. Then such an example should
be seen in the next sequence of log(1/d)/e examples, with probability at least 1 — 4.
This new example increases the dimension of the null subcube by at least one, and
therefore this can happen at most n times.

Formally, for k < ¢, define

U= |JS and Ly = {S:5CU}.
i<k
fr(8:)=0
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As argued above, we have £, C Z for any k. Suppose that, for some k, the set Z\ Ly,
has measure at least e. Define k¥’ = k + log(n/d)/e. Then among the subsequent
examples Sk1, ..., Sk, the probability that none of them lie in Z\ Ly is at most

(1-— 6)log(n/é)/6 < é/n.

On the other hand, if one of them does lie in Z \ L, then |Uy/| > [Uy|. But |Ux| <n
for all k, so this can happen at most n times. Since ¢ > nlog(n/d)/e, with probability
at least 0 the final set Z \ £, has measure at most e. |

The class F defined in Theorem 7 contains the class of matroid rank functions.
We remark that Theorem 7 can be easily modified to handle the case where the
minimum nonzero value for functions in F is n < 1. To do this, we simply modify
step 2 of the algorithm to output f(A) =7 for all A  U. The same proof shows that
this modified algorithm has an approximation factor of K log(1/¢)/n.

4.3. Inapproximability under arbitrary distributions. The simplicity of
Algorithm 1 might raise one’s hopes that a constant-factor approximation is possible
under arbitrary distributions. However, we show in this section that no such approx-
imation is possible. In particular, by making use of the new family of matroids we
presented in section 3.1, we show that no algorithm can PMAC-learn the class of non-
negative, monotone, submodular functions with approximation factor o(nl/ 3 /logn).
Formally, we have the following.

THEOREM 8. Let ALG be an arbitrary learning algorithm that uses only a polyno-
mial number of training examples drawn i.i.d. from the underlying distribution. There
exists a distribution D and a submodular target function f* such that, with probability
at least 1/8 (over the draw of the training samples), the hypothesis function f output
by ALG does not approzimate f* within an o(n'/3/logn) factor on at least a 1/4
fraction of the examples under D. This holds even for the subclass of matroid rank
functions.

Proof. To show the lower bound, we use the family of matroids from Theorem 1
in section 3.1.4, whose rank functions take wildly varying values on a large set of
points. The high-level idea is to show that for a superpolynomial-sized set of k£ points
in {0,1}", and for any partition of those points into HiIGH and LOW, we can construct
a matroid where the points in HIGH have rank ry;gn and the points in LOW have rank
Tlow, and the ratio rhigh /Tow = Q(nl/ 3). This then implies hardness for learning over
the uniform distribution on these k£ points from any polynomial-sized sample, even
with value queries.

To make the proof formal, we use the probabilistic method. Assume that ALG
uses £ < n€ training examples for some constant ¢. To construct a hard family of
submodular functions, we will apply Theorem 1 with k = 2¢, where ¢ = clog(n) + 3.
Let A and M be the families that are guaranteed to exist by Theorem 1. Let the
underlying distribution D on 2" be the uniform distribution on A. (We note that D
is not a product distribution.) Choose a matroid Mg € M uniformly at random and
let the target function be f* = rankp,. Clearly ALG does not know B.

Assume that ALG uses a set S of £ training examples. For any A € A that is not a
training example, the algorithm ALG has no information about f*(A); in particular,
the conditional distribution of its value, given S, remains uniform in {8¢, |A|}. So ALG
cannot determine its value better than randomly guessing between the two possible
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values 8t and |A|. The set of nontraining examples has measure 1 — 27t+1°8¢, Thus

1— 2—t+log 0

Ejs | Pr [£7(4) ¢ [£(A) 57 (A ]| = ——— = 716,

Therefore, there exists f* such that
* n'/3
Pr[ Pr[r7(a) ¢ 1), 5 s (A)]] = 1/4] = 18
That is, there exists f* such that with probability at least 1/8 (over the draw of the
training samples) we have that the hypothesis function f output by ALG does not

approximate f* within a o(n'/3/logn) factor on at least 1/4 fraction of the examples
under D. ]

We can further show that the lower bound in Theorem 8 holds even if the algo-
rithm is told the underlying distribution, even if the algorithm can query the func-
tion on inputs of its choice, and even if the queries are adaptive. In other words,
this inapproximability still holds in the PMAC model augmented with value queries.
Specifically, we have the following.

THEOREM 9. Let ALG be an arbitrary learning algorithm that uses only a polyno-
mial number of training examples, which can be either drawn i.i.d. from the underlying
distribution or value queries. There exists a distribution D and a submodular target
function f* such that, with probability at least 1/4 (over the draw of the training
samples), the hypothesis function output by ALG does not approzimate f* within an
o(n'/3/logn) factor on at least a 1/4 fraction of the examples under D. This holds
even for the subclass of matroid rank functions.

Theorem 8 is an information-theoretic hardness result. A slight modification
yields Corollary 2, which is a complexity-theoretic hardness result.

COROLLARY 2. Suppose one-way functions exist. For any constant € > 0, no
algorithm can PMAC-learn the class of nonnegative, monotone, submodular functions
with approzimation factor O(n*/3=¢), even if the functions are given by polynomial-
time algorithms computing their value on the support of the distribution.

The proofs of Theorem 9 and Corollary 2 are given in Appendix C.3. The lower
bound in Corollary 2 gives a family of submodular functions that are hard to learn,
even though the functions can be evaluated by polynomial-time algorithms on the
support of the distribution. However, we do not prove that the functions can be
evaluated by polynomial-time algorithms at arbitrary points, and we leave it as an
open question whether such a construction is possible.

4.4. An O(y/n)-approximation algorithm. In this section we discuss our
most general upper bound for efficiently PMAC-learning the class of nonnegative,
monotone, submodular functions with an approximation factor of O(y/n).

We start with a useful structural lemma concerning submodular functions.

LeMMA 3 (Goemans et al. [33]). Let f : 2" — R be a normalized, nonnegative,

monotone, submodular function. Then there exists a function f of the form f(S) =
wTx(S) where w € R such that for all S C [n] we have

f(8) < f(S) < Vuf(s).

This result, proven by Goemans et al. [33], follows from properties of submodular
polyhedra and John’s theorem on approximating centrally symmetric convex bodies
by ellipsoids [52]. We now use it in proving our main algorithmic result.
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Algorithm 2. Algorithm for PMAC-learning the class of nonnegative, monotone,
submodular functions.
Input: A sequence of labeled training examples S§ = {(S1,f*(51)),
(S0, £7(S2)), - (S £* (S}
o Let Sz = {(A1, f*(41)),...,(Aa, f*(Aq))} be the subsequence of S with
f*(A;) #0 Vi. Let Sp = S\ Sxzo. Let Up be the set of indices defined as

Z/{O = U Sl

i<t
£ (5:)=0

e For each i € [a], let y; be the outcome of flipping a fair {+1, —1}-valued coin,
each coin flip independent of the others. Let x; € R™*! be the point defined
by

o = JOx(A), (A (if yi = +1),
(X(4), (n+1) - f2(A))  (ifys = —1).

e Find a linear separator u = (w, —z) € R"*! where w € R™ and z € R, such
that w is consistent with the labeled examples (x;,y;) Vi € [a], and with the
additional constraint that w; =0 Vj € Uy.

) W)\ 2
Output: The function f defined as f(S) = <(nj_‘1)z) .

THEOREM 10. Let F be the class of nonnegative, monotone, submodular functions
over X = 2"l There is an algorithm that PMAC-learns F with approzimation factor
vn+ 1. That is, for any distribution D over X, for any €, 6 sufficiently small, with
probability 1 — &, the algorithm produces a function f that approrimates f* within
a multiplicative factor of v/n+1 on a set of measure 1 — € with respect to D. The
algorithm uses { = 482 log(%2) training ezamples and runs in time poly(n,1/e,1/6).

Proof. Asin Theorem 7, because of the multiplicative error allowed by the PMAC-
learning model, we will separately analyze the subset of the instance space where f*
is zero and the subset of the instance space where f* is nonzero. For convenience, let
us define

P={S:f(9)#0} and Z={S:f(5)=0}.

The main idea of our algorithm is to reduce our learning problem to the standard
problem of learning a binary classifier (in fact, a linear separator) from i.i.d. samples
in the passive, supervised learning setting [58, 93] with a slight twist in order to handle
the points in Z. The problem of learning a linear separator in the passive supervised
learning setting is one where the instance space is R™, the samples are independently
drawn from some fixed and unknown distribution D’ on R™, and there is a fixed but
unknown target function ¢* : R™ — {—1,+1} defined by ¢*(z) = sgn(u"z) for some
vector u € R™. The examples induced by D’ and ¢* are called linearly separable.

The linear separator learning problem we reduce to is defined as follows. The
instance space is R™ where m = n + 1 and the distribution D’ is defined by the
following procedure for generating a sample from it. Repeatedly draw a sample S C [n]
from the distribution D until f*(S) # 0. Next, flip a fair coin. The sample from D’ is

(x(S), f*(9)?) (if the coin is heads),

(44 (x(8), (n+1)- f*(5)*) (if the coin is tails).



LEARNING SUBMODULAR FUNCTIONS 729

The function ¢* defining the labels is as follows: samples for which the coin was heads
are labeled +1, and the others are labeled —1.

We claim that the distribution over labeled examples induced by D’ and ¢* is
linearly separable in R™. To prove this we use Lemma 3, which says that there exists
a linear function f(S) = wTx(S) such that

(4.5) f(S) < () < n-f(5)  vSCn]
Let u = ((n +1/2) - w, 71) € R™. For any point z in the support of D’ we have

) F(S) = f*(S)* > 0,
) f(S) = (n+1)- f7(S)* < 0.

z = (x(5), f1(9)?) = ua=(n+
v = (x(S), (n+1)-F(5P) — uTo=(n+

N[= N[

This proves the claim.

Moreover, due to (4.5), the linear function f also satisfies f(S) = 0 for every
S € Z. In particular, every training example S; satisfies f(Sl) = 0 whenever S; € Z,
and moreover

f{i) =w; =0 VjeUp, where Up = U Si.
S, eZ

Our algorithm is now as follows. It first partitions the training set

S = {(Slaf*(‘sl))7 L) (Sg,f*(Sg))}

into two sets Sy and Sxo, where Sy is the subsequence of & with f*(S;) = 0, and
Szo = 8\ Sp. For convenience, let us denote the sequence Sy as

Szo = ((A1, (A1), (Aas [(Ad)) ) -

Note that a is a random variable and we can think of the sets the A; as drawn
independently from D, conditioned on belonging to P. Let

Uy = U s and Lo = {S:SCU}.

Using S0, the algorithm then constructs a sequence S;O = ((xl, Y1), -, (Ta, ya))
of training examples for the binary classification problem. For each i € [a], let y; be
—1 or 1, each with probability 1/2. Define x; as in (4.4):

(X(Ai), (n+1)- f*(A)?) (if y; = —1).

The last step of our algorithm is to solve a linear program in order to find a linear
separator u = (w, —z) where w € R", z € R, and

e 1w is consistent with the labeled examples (z;,y;) for alli=1,... a, and

o w; =0 forall j €Up.

.
The output hypothesis is f(S) = (?nﬁ‘)gz) )2,

To prove correctness, note first that the linear program is feasible; this follows
from our earlier discussion using the facts that (1) Sl is a set of labeled examples

drawn from D’ and labeled by c¢*, and (2) Uy C Up. It remains to show that f

zi = {(X(Ai)’ /7 (40)%) (if g = +1),
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approximates the target on most of the points. Let ) denote the set of points S € P
such that both of the points (x(S), f**(S)) and (x(S), (n + 1) - £**(S)) are correctly
labeled by sgn(u'xz), the linear separator found by our algorithm. It is easy to see
that the function f approximates f* to within a factor v/n 4+ 1 on all the points in
the set V: for any point S € ), we have

w'x(S) — zf*(S)*> > 0 and wx(S) — z(n+1)f*(S)% <0
W\ — (wT(8) )
= ((n+1)z) < 18 < n+1<(n+1)z)

w'x(85)
(n+1)z

So, for any point in S € ), the function f(S) = ( )1/2 approximates f* to
within a factor v/n + 1.

Moreover, by design the function f correctly labels as 0 all the examples in L. To
finish the proof, we now note two important facts: for our choice of ¢ = 167” log(5%),

with high probability both P\ Y and Z \ £y have small measure.

CrLAaM 5. With probability at least 1 — §, the set Z\ Ly has measure at most €
under D.

Proof. The proof is very similar to Claim 4. For 1 < k < ¢, define

v = |Js and Lr = {S:S5CU}.
i<k
fr(S:)=0
For any k, monotonicity and submodularity imply that f*(Uy) = 0, so monotonic-
ity again implies that £, C Z. Suppose that, for some k, the set Z \ L has
measure at least e. Define ¥’ = k + log(n/d)/e. Then among the subsequent ex-
amples Sk41,...,Sk, the probability that none of them lie in Z \ Lj is at most
(1 — e)log(n/9)/¢ < §/n. On the other hand, if one of them does lie in Z \ Ly, then
U/ | > |Ug|. But [Ug] < n for all k, so this can happen at most n times. Since
¢ > nlog(n/d)/e, with probability at least ¢ the final set Z\ £, = Z\ Ly has measure
at most e. a

CraM 6. With probability at least 1 — 25, the set P\ Y has measure at most 2¢
under D.

Proof. Let ¢ =1—p="Prg.p[S €P]. If ¢ < e, then the claim is immediate,
since P has measure at most €. So assume that ¢ > €. Let u = E[a] = ¢f/. By
assumption p > 16nlog(n/de)2. Then Chernoff bounds give that

Pr [a < 8nlog(n/6e)g} < exp(—nlog(n/d)g/e) < 6.

So with probability at least 1 — 4§, we have a > 8nlog(gn/de)Z. By a standard sample
complexity argument [93] (which we reproduce in Theorem 25 in Appendix A.2), with
probability at least 1 — §, any linear separator consistent with &’ will be inconsistent
with the labels on a set of measure at most ¢/q under D’. In particular, this property
holds for the linear separator computed by the linear program. So for any set S,
the conditional probability that either (x(S), f*(9)?) or (x(S),(n + 1) - f*(9)?) is
incorrectly labeled, given that S € P, is at most 2¢/q. Thus

Pr(SeP AN Sg&Y] = Pr[SeP]-Pr[S¢EY | SeP] < q-(2/q),

as required. O
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In summary, our algorithm produces a hypothesis f that approximates f* to
within a factor v/n + 1 on the set YUL,. The complement of this set is (Z\Lg)U(P\Y),
which has measure at most 3¢, with probability at least 1 — 36. ]

Remark. Our algorithm proving Theorem 10 is significantly simpler than the
algorithm of Goemans et al. [33], which achieves a slightly worse approximation factor
in the model of approximately learning everywhere with value queries.

4.4.1. Extensions. Our algorithm for learning submodular functions is quite
robust and can be extended to handle more general scenarios, including forms of
noise. In this section we discuss several such extensions.

It is clear from the proofs of Theorem 10 that any improvements in the approxima-
tion factor for approximating submodular functions by linear functions (i.e., Lemma 3)
for specific subclasses of submodular functions yield PMAC-learning algorithms with
improved approximation factors.

Next, let us consider the more general case where we do not even assume that
the target function is submodular but that it is within a factor a of a submodular
function on every point in the instance space. Under this relaxed assumption we are
able to achieve the approximation factor av/n + 1. Specifically, we have the following.

THEOREM 11. Let F be the class of nonnegative, monotone, submodular functions
over X = 2" and let

F'o= {f:3g€eF, g8 <f(S)<a-g(S) VSCn}

for some known « > 1. There is an algorithm that PMAC-learns F' with approxi-
mation factor an/n + 1. The algorithm uses £ = 487" log(%—?) training examples and
runs in time poly(n,1/e,1/4).

Proof. By assumption, there exists g € F such that g(5) < f*(S9) < a - g(5).
Combining this with Lemma 3, we get that there exists f(S) = wTx(S) such that

wx(S) < f2(S) < n-a?-w'x(S) VSCinl

We then apply the algorithm described in Theorem 10 with the following modifica-
tions: (1) in the second step if y; = 41 we set z; = (x(S), £**(S)) and if y; = —1 we set
z; = (x(S),a?(n+1)-f*(9)); (2) we output the function f(S) = (mwa(S))l/Q.
It is then easy to show that the distribution over labeled examples induced by D’ and
c* is linearly separable in R"*1; in particular, u = (a?(n+1/2)-w,—1) € R"™! defines
a good linear separator. The proof then proceeds as in Theorem 10. 0

We can also extend the result in Theorem 10 to the agnostic case where we
assume that there exists a submodular function that agrees with the target on all
but an 7 fraction of the points; note that on the 5 fraction of the points the target
can be arbitrarily far from a submodular function. In this case we can still PMAC-
learn with a polynomial number of samples O(Z log(s%)), but using a potentially
computationally inefficient procedure.

THEOREM 12. Let F be the class of nonnegative, monotone, submodular functions
over X =2 Let

F' = {f:3geF st f(S)=g(S) on more than 1 —n fraction of the points }.

There is an algorithm that PMAC-learns F' with approzimation factor v/n + 1. That
is, for any distribution D over X, for any €, § sufficiently small, with probability
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1—9, the algorithm produces a function f that approximates f* within a multiplicative
factor of v/n + 1 on a set of measure 1 — e —n with respect to D. The algorithm uses
O(% log(5:)) training examples.

Proof sketch. The proof proceeds as in Theorem 10. The main difference is
that in the new feature space R™, the best linear separator has error (fraction of
mistakes) n. It is well known that even in the agnostic case the number of samples
needed to learn a separator of error at most n + € is O(Z log(:)) (see Theorem 26
in Appendix A.2). However, it is NP-hard to minimize the number of mistakes, even
approximately [38], so the resulting procedure uses a polynomial number of samples,
but it is computationally inefficient. O

5. An approximate characterization of matroid rank functions. We now
present an interesting structural result that is an application of the ideas in section 4.2.
The statement is quite surprising: matroid rank functions are very well approximated
by univariate, concave functions. The proof is also based on Theorem 6. To motivate
the result, consider the following easy construction of submodular functions, which
can be found in Lovész’s survey [70, p. 251]

PROPOSITION 1. Let h : R — R be concave. Then f : 2 — R defined by
f(S) = h(|S]) is submodular.

Surprisingly, we now show that a partial converse is true.

THEOREM 13. There is an absolute constant ¢ > 1 such that the following is
true. Let f : 2"l — Z be the rank function of a matroid with no loops, i.e., f(S)>1
whenever S # 0. Fiz any € > 0, sufficiently small. There exists a concave function
h:[0,n] — R such that, for every k € [n], and for a 1 —e¢ fraction of the sets S € ([Z]),

h(k)/(clog(1/e) < f(S) < clog(1/e)h(k).

The idea behind this theorem is as follows. For z € [0,n], we define h(z) to be
the expected value of f under the product distribution which samples each element
independently with probability /n. The value of f under this distribution is tightly
concentrated around h(x), by the results of sections 3.2 and 4.2. For any k € [n], the
distribution defining h(k) is very similar to the uniform distribution on sets of size k,
so f is also tightly concentrated under the latter distribution. So the value of f for
most sets of size k is roughly h(k). The concavity of this function h is a consequence
of submodularity of f.

Henceforth, we will use the following notation. For p € [0,1], let R(p) C [n]
denote the random variable obtained by choosing each element of [n] independently
with probability p. For k € [n], let S(k) C [n] denote a set of cardinality k chosen
uniformly at random. Define the function A’ : [0,1] — R by

W'(p) = E[f(R(p))].

For any 7 € R, define the functions g, : [0,1] = R and ¢~ : [n] = R by

g-(p) = Prf(R(p) >7],
gr(k) = Pr[f(S(k))>rT].

Finally, let us introduce the notation X =Y to denote that random variables X and
Y are identically distributed.
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LEMMA 4. h' is concave.

Proof. One way to prove this is by appealing to the multilinear extension of f,
which has been of great value in recent work [13]. This is the function F : [0, 1] — R
defined by F(y) = E[f(§)], where § € {0,1}["] is a random variable obtained
by independently setting g; = 1 with probability y;, and g; = 0 otherwise. Then
W(p) = F(p,...,p). It is known [13] that agjé;f < 0 for all 4,j. By basic cal-
culus, this implies that the second derivative of h’ is nonpositive, and hence h' is
concave. O

LEMMA 5. g is a monotonically nondecreasing function.

Proof. Fix k € [n — 1] arbitrarily. Pick a set S = S(k). Construct a new set T'
by adding to S a uniformly chosen element of V' \ S. By monotonicity of f we have
f(S)>1 = f(T)>r. Thus Pr[f(S) > 7] <Pr[f(T)> 7] Since T = S(k+1),
this implies that g, (k) < g,(k + 1), as required. |

LEMMA 6. g.(k) <2-g.(k/n) for allT € R and k € [n].

Proof. This lemma is reminiscent of a well-known property of the Poisson ap-
proximation [73, Theorem 5.10], and the proof is also similar. Let p = k/n. Then

g-(p) = Pr[f(R(p)) > 7]

= ZPr[f(R(p))>T | |R(p)| = i] - Pr[|R(p)| = 4]

= ZQT -Pr(|R(p)| = i]

v

ZgT -Pr[|R(p)| =] (by Lemma 5)

= gT( )-Pr[|R(p)| > k]
> g,(k)/2,

since the mean k of the binomial distribution B(n,k/n) is also a median. |

Proof of Theorem 13. For x € [0,n], define h(x) = h'(z/n) = E[ f(R(z/n))]. Fix
k € [n] arbitrarily. We use the same constants L < M < H and K as in section 4.2.

Case 1. Suppose that h(k) > Llog(1/e¢). As argued in (4.2), since L > 4000 and
€ <1/2 we have

Pr| f(R(k/n)) < %h(k) < e and Pr| f(R(k/n)) > gh(kz) < e

shik) < f(S(k) < 3h(k) | = 1-4e.

This completes the proof of Case 1.
Case 2. Suppose that h(k) < Llog(1/€). This immediately implies that

h(k)

Pr[f(S(k) <1] = 0



734 MARIA-FLORINA BALCAN AND NICHOLAS J. A. HARVEY

since k > 1 and since we assume that f(S) > 1 whenever S # . These same
assumptions lead to the following lower bound on h:

(5.2) h(k) > Pr[f(R(k/n) > 1] = Pr[R(k/n) #0] = 1—(1—k/n)" > 1-1/e.

Thus
Pr [ f(S(k)) > (2K log(1/€)) - h(k) |
< 2-Pr[ f(R(k/n)) > (2K log(1/€)) - h(k)] (by Lemma 6)
< 2. Pr[f(R(b/n) > Klog(1/e)]  (by (52))
< 2- €,

by Lemma 2, statement (3), since E[ f(R(k/n))] = h(k) < Llog(1/¢). Thus,

h(k)
Tiogri/g < fSk) < (K log(1/)h(k) | 2 1-26,

completing the proof of Case 2. ]

6. Implications of our matroid construction for submodular optimiza-
tion. The original motivation of our matroid construction in section 4.3 is to show
hardness of learning in the PMAC model. In this section we show that this con-
struction has implications beyond learning theory; it reveals interesting structure of
matroids and submodular functions. We illustrate this interesting structure by us-
ing it to show strong inapproximability results for several submodular optimization
problems.

6.1. Submodular minimization under a cardinality constraint. Minimiz-
ing a submodular function is a fundamental problem in combinatorial optimization.
Formally, the problem is

(6.1) min{ f(S) : SCn]}.
There exist efficient algorithms to solve this problem exactly.

THEOREM 14 (Grotschel, Lovész, and Schrijver [35], Iwata, Fleischer, and Fu-
jishige [45], Schrijver [85]). Let f : 2[" — R be any submodular function.

(a) There is an algorithm with running time poly(n) that computes the minimum
value of (6.1).

(b) There is an algorithm with running time poly(n) that constructs a lattice
which represents all minimizers of (6.1). This lattice can be represented in
space poly(n).

The survey of McCormick [71, section 5.1] contains further discussion about algo-
rithms to construct the lattice of minimizers. This lattice efficiently encodes a lot of
information about the minimizers. For example, given any set S C [n], one can use the
lattice to efficiently determine whether S is a minimizer of (6.1). Also, the lattice can
be used to efficiently find the inclusionwise-minimal and the inclusionwise-maximal
minimizer of (6.1). In summary, submodular function minimization is a very tractable
optimization problem, and its minimizers have a rich combinatorial structure.

The submodular function minimization problem becomes much harder when we
impose some simple constraints. In this section we consider submodular function
minimization under a cardinality constraint:

(6.2) min{ £(S) : SCn],IS|>d}.
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This problem, which was considered in previous work [89], is a minimization variant
of submodular function maximization under a cardinality constraint [77] and is a
submodular analogue of the minimum coverage problem [94]. Unfortunately, (6.2) is
not a tractable optimization problem. We show that, in a strong sense, its minimizers
are very unstructured.

The main result of this section is that the minimizers of (6.2) do not have a
succinct, approximate representation.

THEOREM 15. There exists a randomly chosen monnegative, monotone, submod-
ular function f : 2" — R such that, for any algorithm that performs any number of
queries to f and outputs a data structure of size poly(n), that data structure cannot
represent the minimizers of (6.2) to within an approzimation factor o(n'/?/logn).
Moreover, any algorithm that performs poly(n) queries to f cannot compute the min-
imum value of (6.2) to within a o(n'/?/logn) factor.

Here, a “data structure representing the minimizers to within a factor a” is a
program of size poly(n) that, given a set .S, returns “yes” if S is a minimizer, returns
“no” if f(S) is at least o times larger than the minimum, and otherwise can return
anything.

Previous work [34, 89, 33] showed that there exists a randomly chosen nonneg-
ative, monotone, submodular function f : 2" — R such that any algorithm that
performs poly(n) queries to f cannot approximate the minimum value of (6.2) to
within a o(n'/?/logn) factor. Also, implicit in the work of Jensen and Korte [51,
p. 186] is the fact that no data structure of size poly(n) can ezactly represent the
minimizers of (6.2). In contrast, Theorem 15 is much stronger because it implies that
no data structure of size poly(n) can even approzimately represent the minimizers of
(6.2).

To prove Theorem 15 we require the matroid construction of section 3.1.4, which
we restate as follows.

THEOREM 16. Let n be a sufficiently large integer and let h(n) be any function
satisfying h(n) = o(n'/3/logn). Define k = n"™ + 1, d = n'/3 b = 8logk, 7 =
d/4logk, and € = 2log(k)/n'/3.

Set U = {uy,...,ux} and V. = {v1,...,v,}. Suppose that H = (UUV,E) is a
(d, L, €)-lossless expander. We construct a family A= {A1,...,Ar} of subsets of [n],
each of size d, by setting

As before, T'(J) denotes the neighbors of the vertex set J C U.
For every B C U there is a matroid Mg = ([n],Z) whose rank function satisfies

b (if u; € B),

Furthermore, every set S C [n] with |S| > b has rankn, (S) > b.

Proof of Theorem 6.2. Fix any function h(n) = w(1). Let d = n'/3, k = n(") 41,
and let U = {uq,...,ur} be a set of vertices. Pick a subset B C U \ {uy} randomly.
We now define a submodular function on the ground set [n]. We apply Theorem 5
with L = d/2logk and € = 1/L to obtain a random bipartite multigraph H. With
probability at least 1—2/k, the resulting graph H is a (d, L, €)-lossless expander (after
eliminating parallel edges). In this case, we can apply Theorem 16 to obtain the
matroid Mp, which we emphasize does not depend on I'({u}). We let f = ranky,.

rankn, (4;) = {
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Define A4; asin (6.3) for i = 1,...,k—1. The last sentence of Theorem 16 ensures
that f(S) > b whenever |S| > b, and therefore A; is a minimizer of (6.2) whenever
u; € B.

First consider an algorithm ALG that performs any number of queries to f and
attempts to represent B in poly(n) bits. Since B is a random subset of U \ {uy},
which has cardinality n"("), the probability that B can be represented in poly(n) bits
is o(1). If B cannot be exactly represented by ALG, then, with probability 1/2, there
is some set A; whose value is not correctly represented. The multiplicative error in
the value of A; is d/b = ©(n'/3/h(n)logn). This proves the first statement of the
theorem.

Next we will argue that any algorithm ALG performing m = poly(n) queries
to f = rankyg, has low probability of determining whether B = (). If B = (), then
f(S) = min {|S|,d}, so the minimum value of (6.2) is d = n'/3. On the other hand,
if B # (), then the minimum value of (6.2) is b = O(h(n)logn). Therefore this will
establish the second part of the theorem.

Suppose the algorithm ALG queries the value of f on the sets Sy,...,Sn C [n].
Consider the ith query and suppose inductively that rankyy,(S;) = rankn, (S;) for
all j < i¢. Thus ALG has not yet distinguished between the cases f = rankm,
and f = rankpg,. Consequently the set S; used in the ith query is independent of
A17 ey Akrfl-

Let S; be a set of size |S;| = d obtained from S; by either adding (if |.S;| < d)
or removing (if |S;| > d) arbitrary elements of [n], or setting S = S; if |S;| = d. We
will apply Theorem 5 again, but this time we make an additional observation. Since
the definition of expansion does not depend on the labeling of the ground set, one
may assume in Theorem 5 that one vertex in U, say, ux, chooses its neighbors deter-
ministically and that all remaining vertices in U choose their neighbors at random.
Specifically, we will set

F({ue}) = {v;:je S},
The neighbors I'({u;}) for i < k are not randomly rechosen; they are chosen to be
the same as they were in the first invocation of Theorem 5. With probability at least
1 —2/k we again obtain a (d, L, €)-lossless expander, in which case Theorem 16 shows
that rankn, (S]) = d = |S]]. That event implies

|Si| = rankng, (S;) (if |S;] < d),

knmg (Si) =
rankn, (i) {d = ranky, (S;) (if [S:] = d),

and hence the inductive hypothesis holds for ¢ as well.
By a union bound over all m queries, the probability of distinguishing whether
B =0 is at most 2m/k = o(1). O

6.2. Submodular s-t min cut. Let G be an undirected graph with edge set
E and n = |E|. Let s and ¢ be distinct vertices of G. A set C C E is called an s-t
cut if every s-t path intersects C. Let C C 2F be the collection of all s-t cuts. The
submodular s-t min cut problem [50] is

(6.4) min{ f(C) : CeC},
where f : 2F — R is a nonnegative, monotone, submodular function.

THEOREM 17 (Jegelka and Bilmes [50]). Any algorithm for the submodular s-t
min cut problem with approzimation ratio o(nl/ 3) must perform exponentially many
queries to f.
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Modifying their result to incorporate our matroid construction in section 4.3, we
obtain the following theorem.

THEOREM 18. Let d = n'/3. Let G be a graph with edge set E consisting of d
internally-vertex-disjoint s-t paths, each of length ezactly n/d. Assume that f : 27 —
R is a nonnegative, monotone, submodular function. For any algorithm that performs
any number of queries to [ and outputs a data structure of size poly(n), that data
structure cannot represent the minimizers of (6.4) to within an approximation factor
o(n'/3/logn). Moreover, any algorithm that performs poly(n) queries to f cannot
compute the minimum value of (6.4) to within a o(n'/?/logn) factor.

The proof of this theorem is almost identical to the proof of Theorem 15. All that
we require is a slightly different expander construction.

THEOREM 19. Let U = {uy,...,ur} and V be disjoint vertex sets, where |V]| =n
and n is a multiple of d. Write V' as the disjoint union V. =V; U---UVy, where each
[Vi| =n/d.

Generate a random bipartite multigraph H with left-vertices U and right-vertices
V' as follows. The vertex uy has exactly d neighbors in V', chosen deterministically
and arbitrarily. For each vertex up with £ < k — 1, pick exactly one neighbor from
each Vi, uniformly and independently at random. Thus each vertex in U has degree
ezactly d.

Suppose that k > 4, L > d, d > log(k)/e, and n > 22Ld/e. Then, with probability
at least 1 — 2/k, the multigraph H has no parallel edges and satisfies

T{u})| = d Vuel,
Tl = A=¢)-d-[J  VICU |[J| < L.

Proof. The proof is nearly identical to the proof of Theorem 5 in Appendix D. The
only difference is in analyzing the probability of a repeat when sampling the neighbors
of a set J C U with |J| = j. First consider the case that u; € J. When sampling

the neighbors I'(J), an element v; is considered a repeat if v; € {vq,...,v;—1} or if
v; € T'({ux}). Conditioned on vy,...,v;—1, the probability of a repeat is at most %.

If up ¢ J, then this probability is at most jd/n. Consequently, the probability of
having more than €jd repeats is at most

(o) (S5 < () ()™ < e

The last inequality follows from j + d < 2L and our hypothesis n > 22Ld/e. The
remainder of the proof is identical to the proof of Theorem 5. O

Proof of Theorem 18. Let V; be the edges of the ith s-t path. The minimal s-¢
cuts are those which choose exactly one edge from each s-t path; in other words, they
are the transversals of the V;’s. Let V = V; U---U Vy; this is also the edge set of the
graph G.

As in Theorem 15, fix h(n) = w(1), k = n"™ 4+ 1, and U = {uy,...,us}. Pick a
subset B C U \ {u} randomly. We now define a submodular function on the ground
set V' = [n]. We apply Theorem 19 with L = d and € = 2log(k)/d to obtain a random
bipartite multigraph H. With probability at least 1 — 2/k, the resulting graph H is a
(d, L, €)-lossless expander. In this case we can apply Theorem 16 to obtain a matroid
Mp. We let f = rankm,.
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Define A; as in (6.3) for ¢ = 1,...,k — 1. Because the expander construction
of Theorem 19 ensures that each vertex u, has exactly one neighbor in each V;, the
corresponding set Ay = I'(uy) is a minimal s-t cut. Consequently, A; € C. The last
sentence of Theorem 16 ensures that f(S) > b whenever |S| > b, and therefore A; is
a minimizer of (6.4) whenever u; € B.

First consider an algorithm ALG that performs any number of queries to f and
attempts to represent B in poly(n) bits. As in Theorem 15, with probability 1/2
there is some set A; whose value is not correctly represented, with multiplicative
error ©(n'/3/h(n)logn). This proves the first statement of the theorem.

Next we will argue that any algorithm ALG performing m = poly(n) queries to f
has low probability of determining whether B = 0. If B = (), then f(S) = min {|S|, d},
so the minimum value of (6.2) is d = n'/3, because any S € C has |S| > d. On the
other hand, if B # (0, then, as mentioned above, A; is a minimizer whenever u; € B.
The remainder of the argument that establishes the second statement of the theorem
is analogous to Theorem 15, replacing Theorem 5 with Theorem 19. 0

6.3. Submodular vertex cover. Let G = (V, E) be a graph with n = |V|. A
set C C V is a vertex cover if every edge has at least one endpoint in C. Let C C 2V

be the collection of vertex covers in the graph. The submodular vertex cover problem
[32, 46] is

(6.5) min{ f(S) : SeC},

where f : 2¥ — R is a nonnegative, submodular function. An algorithm for this
problem is said to have approzximation ratio « if, for any function f, it returns a set
S for which f(S) < a-min{ f(S) : SeC}.

THEOREM 20 (Goel et al. [32], Iwata and Nagano [46]). There is an algorithm
which performs poly(n) queries to f and has approzimation ratio 2.

Goel et al. only state that their algorithm is applicable for monotone, submodular
functions, but the monotonicity restriction seems to be unnecessary.

THEOREM 21 (Goel et al. [32]). For any constant ¢ > 0, any algorithm for the
submodular vertex cover problem with approrimation ratio 2 — € must perform expo-
nentially many queries to f.

Modifying their result to incorporate our matroid construction in section 4.3, we
obtain the following theorem.

THEOREM 22. Let G = (UUV, E) be a bipartite graph. Assume that f : 2V9V —
R is a nonnegative, monotone, submodular function. Let ¢ € (0,1/3) be a constant.
For any algorithm that performs any number of queries to f and outputs a data
structure of size poly(n), that data structure cannot represent the minimizers of (6.5)
to within an approximation factor better than 4/3 — e. Moreover, any algorithm that
performs poly(n) queries to f cannot compute the minimum value of (6.4) to within
a 4/3 — € factor.

Proof. Let G be a graph with vertex set U UV such that |U| = |V| = |E| =
n/2, and where the edges in E form a matching between U and V. The minimal
vertex covers are those that contain exactly one endpoint of each edge in E. Set
k=2"/40 4 1. Let A= {A;,..., A} be a family of sets where

e cach A, CUUV,

e Ay is an arbitrary set with |Ag| = n/2, and

e Ay,...,A;_1 are independently and uniformly chosen minimal vertex covers.
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For any ¢ # j, E[|A; N A;|] = n/4 and a Chernoff bound shows that
Pr|A;NA;| > (1+en/d] < exp(—e*n/12).

A union bound shows that, with high probability, |4; N A;| < (14 ¢)n/4 for all ¢ # j.
We now condition on that event.

We now apply Lemma 8 (in Appendix E.2) with each b; = b = (3 + ¢)n/8 and
d =n/2. We have

'mi[r]i](bi +b;—|A;NAj]) > 20— (1+¢€en/4 = 2B3+¢)n/8—(1+¢)n/4 = n/2,

IS
and therefore the hypotheses of Lemma 8 are satisfied. It follows that for any set
B C A the set

Is = {I: |I|§d A\ |IﬂAJ|§b VAJGB}

is the family of independent sets of a matroid. Let f = rankns, be the rank function
of this matroid. Observe that f(S) > b whenever |S| > b.
Suppose ALG performs any number of queries to f. As in Theorem 15, the set
B has probability o(1) of being representable in poly(n) bits, in which case there is
a minimal vertex cover A; whose value is not correctly represented with probability
1/2. The multiplicative error in the value of A; is
d n/2 4
b~ Bron 3
This proves the first part of the theorem.
Next we will argue that any algorithm ALG performing m = poly(n) queries to f
has low probability of determining whether B = 0. If B = (), then f(S) = min {|S|, d},
so the minimum value of (6.4) is d. On the other hand, suppose that B # (). As every
C € C has |C| > n/2, we must have f(C) > b, and hence the minimum value
of (6.4) is b. This will show that the multiplicative error is at least d/b, thereby
proving the second part of the theorem. The remainder of the proof is analogous to
Theorem 15. O

— €.

7. Implications to algorithmic game theory and economics. An impor-
tant consequence of our matroid construction in section 3.1 is that matroid rank func-
tions do not have a “sketch,” i.e., a concise, approximate representation. As matroid
rank functions can be shown to satisfy the “gross substitutes” property [75], our work
implies that gross substitutes functions do not have a concise, approximate represen-
tation. This provides a surprising answer to an open question in economics [8, 9, 10].
In this section we define gross substitutes functions, briefly describe their importance
in economics, and formally state the implications of our results for these functions.

Gross substitutes functions play an important role in algorithmic game theory
and economics, particularly through their use as valuation functions in combinatorial
auctions [18, 36, 80]. Intuitively, in a gross substitutes valuation, increasing the price
of certain items cannot reduce the demand for items whose price has not changed.
Formally, we have the following.

DEFINITION 4. For price vector o € R™, the demand correspondence Df(ﬁ) of
valuation f is the collection of preferred sets at prices p, i.e.,

D) = argmax {f(5) = csmi-

SC{1,...,n}

A function f is gross substitutes if for any price vector § > ¢ (i.e., for which ¢; >
pi for alli € [n]), and any A€ D;(p) there exists A’ € D;(q) with A’ D {i€ A:p;=gq;}.
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In other words, the gross substitutes property requires that all items ¢ in some
preferred set A at the old prices p’ and for which the old and new prices are equal
(pi = qi) are simultaneously contained in some preferred set A’ at the new prices ¢.

Gross substitutes valuations (introduced by Kelso and Crawford [59]) enjoy sev-
eral appealing structural properties whose implications have been extensively studied
by many researchers [8]. For example, given bidders with gross substitutes valua-
tions, simple item-price ascending auctions can be used for determining the socially
efficient allocation. As another example, the gross substitute condition is actually
necessary for important economic conclusions. For example, Gul and Stacchetti [36]
and Milgrom [72] showed that given any valuation that is not gross substitutes, one
can specify very simple valuations for the other agents to create an economy in which
no Walrasian equilibrium exists.

One important unsolved question concerns the complexity of describing gross sub-
stitutes valuations. Several researchers have asked whether there exists a “succinct”
representation for such valuations [8], [9, section 6.2.1], [10, section 2.2]. In other
words, can a bidder disclose the exact details of his valuation without conveying an
exceptionally large amount of information? An implication of our work is that the
answer to this question is “no,” in a very strong sense. Our work implies that gross
substitutes functions cannot be represented succinctly, even approximately, and even
with a large approximation factor. Formally, we have the following.

DEFINITION 5. We say that g : 2" — R, is an a-sketch for f: 2"l - R, if g
can be represented in poly(n) space and for every set S we have that f(S)/a < g(S) <
f(S).

As matroid rank functions are known to satisfy the gross substitute property [75],
our work implies that gross substitutes do not have a concise, approximate represen-
tation. Specifically, we have the following.

THEOREM 23. Gross substitutes functions do not admit o(n'/3/logn) sketches.

8. Conclusions. In this work we have used a learning theory perspective to
uncover new structural properties of submodular functions. We have presented the
first algorithms and lower bounds for learning submodular functions in a distributional
learning setting. We also presented numerous implications of our work in algorithmic
game theory, economics, matroid theory, and combinatorial optimization.

Regarding learnability, we presented polynomial upper and lower bounds on the
approximation factor achievable when using only a polynomial number of examples
drawn i.i.d. from an arbitrary distribution. We also presented a simple algorithm
achieving a constant-factor approximation under product distributions. These results
show that, with respect to product distributions, submodular functions behave in
a fairly simple manner, whereas with respect to general distributions, submodular
functions behave in a much more complex manner.

We constructed a new family of matroids with interesting technical properties
in order to prove our lower bound on PMAC-learnability. The existence of these
matroids also resolves an open question in economics: an immediate corollary of
our construction is that gross substitutes functions have no succinct, approximate
representation. We also used these matroids to show that the optimal solutions of
various submodular optimization problems can have a very complicated structure.

The PMAC model provides a new approach for analyzing the learnability of real-
valued functions. This paper has analyzed submodular functions in the PMAC model.
We believe that it will be interesting to study PMAC-learnability of other classes
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of real-valued functions. Indeed, as discussed below, subsequent work has already
studied subadditive and XOS functions in the PMAC model.

One technical question left open by this work is determining the precise approx-
imation factor achievable for PMAC-learning submodular functions—there is a gap
between the O(n'/2) upper bound in Theorem 10 and the Q(n'/3) lower bound in The-
orem 8. We suspect that the lower bound can be improved to Q(n'/2). If such an
improved lower bound is possible, the matroids or submodular functions used in its
proof are likely to be very interesting.

8.1. Subsequent work. Following our work, several authors have provided fur-
ther results for learning submodular functions in a distributional learning setting.

Balcan et al. [5] and Badanidiyuru et al. [3] have provided further learnability
results in the PMAC model for various classes of set functions commonly used in al-
gorithmic game theory and economics. Building on our algorithmic technique, Balcan
et al. [5] give a computationally efficient algorithm for PMAC-learning subadditive
functions to within an O(ﬁ) factor. They also provide new target-dependent learn-
ability result for XOS (or fractionally subadditive) functions. Their algorithms use
the algorithmic technique that we develop in section 4.4, together with new structural
results for these classes of functions. Badanidiyuru et al. [3] consider the problem of
sketching subadditive and submodular functions. They show that the existence of
such a sketch implies that PMAC-learning to within a factor « is possible if computa-
tional efficiency is ignored. As a consequence they obtain (computationally inefficient)
algorithms for PMAC-learning to within an O(,/n) factor for subadditive functions
and to within a 1 4 € factor for both coverage functions and OXS functions.

Regarding inapproximability, Badanidiyuru et al. and Balcan et al. show that
XOS (i.e., fractionally subadditive) functions do not have sketches that approximate
to within a factor o(y/n). Consequently, every algorithm for PMAC-learning XOS
functions must have approximation factor Q(y/n). The construction used to prove
this result is significantly simpler than our construction in section 4.3, because XOS
functions are a more expressive class than submodular functions.

Motivated by problems in privacy preserving data analysis, Gupta et al. [37]
considered how to perform statistical queries to a data set in order to learn the answers
to all statistical queries from a certain class. They showed that this problem can be
efficiently solved when the queries are described by a submodular function. One of
the technical pieces in their work is an algorithm to learn submodular functions under
a product distribution. A main building block of their technique is the algorithm we
provide in section 4.2 for learning under a product distribution, and their analysis is
inspired by ours. Their formal guarantee is incomparable to ours: it is stronger in
that they allow non-Lipschitz and nonmonotone functions, but it is weaker in that
they require access to the submodular function via a value oracle, and they guarantee
only additive error (assuming the function is appropriately normalized). Moreover,
their running time is nP°Y (1/€) whereas ours is poly (n, 1/¢). Feldman and Vondrak
further refined these results in a series of papers [28, 27].

Cheraghchi et al. [17] study the noise stability of submodular functions. As a con-
sequence they obtained an algorithm for learning a submodular function under prod-
uct distributions. Their algorithm also works for nonsubmodular and non-Lipschitz
functions and only requires access to the submodular function via statistical queries,
though the running time is nP°Y (/). Their algorithm is agnostic (meaning that
they do not assume the target function is submodular), and their performance guar-
antee proves that the Li-loss of their hypothesis is at most ¢ more than the best
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error achieved by any submodular function (assuming the function is appropriately

normalized).
Raskhodnikova and Yaroslavtsev [84] consider learnability of integer-valued, sub-
modular functions and prove that any submodular function f : {0,1}™ — {0,1,...,k}

can be represented as a pseudo-Boolean 2k-DNF formula. They use this to provide
an algorithm for learning such functions using membership queries under the uniform
distribution; the algorithm runs in time polynomial in poly(n, kO 1gk/€) 1 /¢).

Iyer, Jegelka, and Bilmes [48] show that for submodular functions with good
curvature, our general PMAC learnability results can be further improved in a target-
dependent manner.

Balcan, Vitercik, and White [6] further explored a variant of our PMAC learning
model where the goal is to learn an underlying combinatorial function up to pairwise
comparisons, from pairwise comparisons. They present several general algorithms that
can be used to learn over a variety of combinatorial function classes, including those
consisting of submodular, XOS, subadditive, coverage, and Fourier sparse functions.

Appendix A. Standard facts.
A.1. Submodular functions.

THEOREM 24. Given a finite universe U, let S1,S3,...,S, be subsets of U. De-
fine f:2M 5 R, by
f(A) = |UicaSi|  for AC|[n].

Then f is monotone and submodular. More generally, for any nonnegative weight
function w : U — Ry, the function f defined by
f(A) =w(UicaSi) for AC|[n]

is monotone and submodular.

LEMMA 7. The minimizers of any submodular function are closed under union
and intersection.

Proof. Assume that J; and Jy are minimizers for f. By submodularity we have

f() + f(J2) > f(J1 N J2) + f(J1U Ja).

We also have
f(hn )+ f(J1U ) = f(J1) + f(J2),
so f(J1) = f(J2) = f(J1NJ2) = f(J1 U J2), as desired. 0

A.2. Sample complexity results. We state here several known sample com-
plexity bounds that were used for proving the results in section 4.4. See, e.g., [19, 2].

THEOREM 25. Let C be a set of functions from X to {—1,1} with finite VC-
dimension D > 1. Let D be an arbitrary but fixed probability distribution over X and
let ¢* be an arbitrary target function. For any €, 6 > 0, if we draw a sample S from

D of size
1 1 2
m(e, §,D) = — <4D log () + 2log ()) ,
€ € )

then with probability 1 — §, all hypotheses with error > € are inconsistent with the
data; i.e., uniformly for all h € C with err(h) > €, we have érr(h) > 0. Here
err(h) = Pryp [h(x) # c*(x)] is the true error of h and ért(h) = Prys [h(z) # c*(x)]
is the empirical error of h.
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THEOREM 26. Suppose that C is a set of functions from X to {—1,1} with finite
VC-dimension D > 1. For any distribution D over X, any target function (not
necessarily in C), and any €, 6 > 0, if we draw a sample from D of size

w01~ (2o (2) e (4))

then with probability at least 1 — 0, we have |err(h) — ért(h)| < e for all h € C.
Appendix B. Proofs for concentration of submodular functions.

B.1. Proof of Theorem 6.

THEOREM 6. Let f : 2"l — R be a nonnegative, monotone, submodular, 1-
Lipschitz function. Let the random variable X C [n] have a product distribution. For
any b,t >0,

Pr[f(X)gb—t\/l;}-Pr[f(X)zb} < exp(—12/4).

Proof. We begin by observing that the theorem is much easier to prove in the
special case that f is integer-valued. Together with our other hypotheses on f, this
implies that f must actually be a matroid rank function. Whenever f(S) is large,
this fact can “certified” by any maximal independent subset of S. The theorem then
follows easily from a version of Talagrand’s inequality which leverages this certification
property; see, e.g., [1, section 7.7] or [74, section 10.1].

We now prove the theorem in its full generality. We may assume that ¢ < v/b;
otherwise the theorem is trivial, since f(X) is nonnegative. Talagrand’s inequality
states that for any A C {0,1}" and y € {0,1}" drawn from a product distribution,

(B.1) Priye A]-Prp(Ay) >t] < exp(—t*/4),

where p is a distance function defined by

plAy) = sup min > o

1 i Zi
llofl,=1 Vi

We apply this inequality to the set A C 2" defined by A = {X : f(X) < b—tVb}.
CLAIM 7. For every Y CV, f(Y) > b implies p(A,Y) > t.

Proof. Suppose to the contrary that p(A,Y) < t. By relabeling, we can write Y
asY ={1,...,k}. Fori €{0,...,k}, let E; ={1,...,i}. Define

o {f(Ei)f(Ei—l) (ifieY),

0 (otherwise).

Since f is monotone and 1-Lipschitz, we have 0 < o; < 1. Thus |laf, < />, o <

v/ [(Y), by nonnegativity of f.
The definition of p and our supposition p(A,Y") <t imply that there exists Z € A
with

(B.2) Yo @i < p(AY)-lall, < tVFY).

i€(Y\Z)U(Z\Y)
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We may assume that Z C Y, since Z NY also satisfies the desired conditions. This
follows since monotonicity of f implies that o > 0 and that A is downward-closed.

We will obtain a contradiction by showing that f(Y) — f(Z) < ¢+/f(Y). First
let us order Y\ Z as (¢(1),...,¢(m)), where ¢(i) < ¢(j) iff i« < j. Next, define
Fi=ZU{¢(1),...,¢(i)} €Y. Note that E; C F4-1(;); this follows from our choice
of ¢, since Z C Fy-1(;) but we might have Z Z E;. Therefore

fY) = 1(2)

m

= Z (f(F) — f(Fi-1))

=1
= Y (f(Fsr) = F(Fpmr()-1)
jev\z

Z (f(E)) — f(Ej-1)) (since Ej C Fy-1(;) and f is submodular)
jeY\Z

= Y o

JEY\Z

< VYY) (by (B.2).

So f(Z) > f(Y) —t/f(Y) > b—tVb, since f(Y) > b and t < v/b. This contradicts

IN

Zec A 0
This claim implies Pr[ f(Y) > b] < Pr[p(A,Y) > t], so the theorem follows from
(B.1). ]

B.2. Proof of Corollary 1.

COROLLARY 1. Let f : 2"l — R, be a nonnegative, monotone, submodular,
1-Lipschitz function. Let the random variable X C [n] have a product distribution.
For any 0 <a <1,

Pr[f(X) =E[f(X)]] > aE[f(X)]] < dexp(-o’E[f(X)]/422).

Proof. Let Y = f(X) and let M be a median of Y. The idea of the proof is
simple: Theorem 6 shows tight concentration of Y around M. Since Y is so tightly
concentrated, we must have E[Y | &~ M. This allows us to show tight concentration
around E [Y']. The remainder of the proof is simply a matter of detailed calculations.
Similar arguments can be found in [49, section 2.5] and [74, section 20.2].

CLAIM 8.

4e=N/8M (0< X< M),

Pri|y — M| >A] < {26”8 a

Also,
Prl|Y — M| >A] < 4eM/2M (0 < )\ <5M).

Proof. First, apply Theorem 6 with b = M and t = A/v/M. Since Pr[Y >b] <
1/2, we get

(B.3) Pr[Y <M — )] < 2exp(—t*/4M).
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Next, apply Theorem 6 with b= M + X and ¢t = A/v/M + A. Since

Pr|Y<b-tvb] = Prly <M] < %
we get
(B.4) Pr(Y >M+A] < 2exp(—t2/4(M + N)).
Combining (B.3) and (B.4) proves the claim. |

CLamM 9. |[E[Y] — M| < 15\/E[Y ] + 16. Consequently, if E[Y] > 256, then
[E[Y]- M| <16/E[Y].

Proof. This is a standard calculation; see, e.g., [49, section 2.5]. Using Claim 8,
[E[Y]-M| < E[]Y —M|]
= / Pr[|Y — M| > \] dX\
0

M 5 [e’s)
:/ 4o /8Md)\+/ 2e M8 d\
0 M

4V2r M + 16e~M/8,
Since Y > 0 we have 0 < M < 2E[Y] (by Markov’s inequality), so
E[Y]- M| < 15/E[Y] + 16.

This quantity is at most 164/E[Y ] if E[Y | > 256. d
Case 1: E[Y'] > 584/a?. Then

IN

Pr{|Y—E[Y]| > (V2 + 16) E[Y]}

IA

Pr{|Y—M|2(\/§t+16)\/m—|E[Y]—M|
Pr [|Y M| > t\/m} (by Claim 9)
Pr[|y_M|zt\/M} (since E[Y'] > M/2)
dexp(—t2/24)  (if t < 5VM)

INIA

IN

(B.5)

by Claim 8. Set t = (ay/E[Y] — 16)/v/2. One may check that

(B.6) 2 _ (ayE[Y]-16? _ o’E[Y]
' 24 224 - 422
since we assume E[Y'] > 584/a?. Furthermore,

E[Y] < VM+|E[Y]- M|

< VM +4E[Y]Y*  (by Claim 9)

< VM +0.82/E[Y],

since E[Y']'/* > 5841/ > 4/0.82. Rearranging, 0.18 - \/E[Y] < /M. Therefore we

havi
e t < VE[Y]/V2 < 4-018-\/E[Y] < 4V M,
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so we may apply (B.5) with this value of ¢.

Pr[[Y —E[Y]| > aE[Y]] = Pr[|Y—E[Y}|2(ﬁt+16) E[Y]}
< dexp(—t%/24)
< dexp(—a?E[Y] /422),

by (B.6).
Case 2: E[Y] < 584/a?. Then o?E[Y] /422 < In(4), so

dexp(—a?E[Y]/422) > 1,
and the claimed inequality is trivial. |
Appendix C. Additional proofs for learning submodular functions.

C.1. Learning Boolean submodular functions.

THEOREM 27. The class of monotone, Boolean-valued, submodular functions is
efficiently PMAC-learnable with approzimation factor 1.

Proof. Let f : 2"l — {0,1} be an arbitrary monotone, Boolean, submodular
function. We claim that f is either constant or a monotone disjunction. If f() = 1,
then this is trivial, so assume f(0) = 0.

Since submodularity is equivalent to the property of decreasing marginal values,
and since f(0) = 0, we get

fru{a}) = f(T) < f({z}) VT Clnl,ze[n]\T.

If f({z}) = 0, then this together with monotonicity implies that f(T"U {z}) = f(T)
for all T. On the other hand, if f({z}) = 1, then monotonicity implies that f(T) =1
for all T" such that € T. Thus we have argued that f is a disjunction:

1 HSNX#0),
18) = {0 (otherwise),

where X ={ x : f({z}) =1 }. This proves the claim.
It is well known that the class of disjunctions is easy to learn in the supervised
learning setting [58, 93]. O

Nonmonotone, Boolean, submodular functions need not be disjunctions. For ex-
ample, consider the function f where f(S) =01if S € {0, [n]} and f(S) = 1 otherwise;
it is submodular, but not a disjunction. However, it turns out that any submodular
Boolean function is a 2-DNF. This was already known [23], and it can be proven
by case analysis as in Proposition 27. It is well known that 2-DNFs are efficiently
PAC-learnable. We summarize this discussion as follows.

THEOREM 28. The class of Boolean-valued, submodular functions is efficiently
PMAC-learnable with approximation factor 1.

C.2. Learning under product distributions.

LEMMA 2. Let f : 2" — R be a nonnegative, monotone, submodular, 1-
Lipschitz function. Suppose that Sy,...,S; are drawn from a product distribution
D over 2", Let y the empirical average p = Zle £(S:) /¢, which is our estimate
for Es.p [ f*(S)]. Let€,6 < 1/5. We have the following:
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(1) IfE[f*(S)] > Hlog(1/€) and ¢ > 161log(1/6), then
Pru> Mlog(1/e)] > 1—6/4.
(2) IFE[f*(S)] > Llog(1/e) and £ > 16log(1/5), then
Pr2E[f*(S)]<p<3E[f(9)]] = 1-6/4
(3) IfE[f*(S)] < Hlog(1/e), then
Pr[f*(S) < Klog(l/e)] > 1—e.
(4) IFE[f*(S)] < Llog(1/e) and £ > 16log(1/5), then

Prip< Mlog(l/e)] > 1-46/4.

Proof. (1) Let f : 2"¥1 5 R be defined by

¢
f(S1,.,80) = D 1Sy
i=1
It is easy to check that f is also nonnegative, monotone, submodular, and 1-Lipschitz.
We will apply Corollary 1 to f with @ = 1/10. Then
Prip < Mlog(1/e)]

- [ELH®<meM]
Pr||f() - B[ £(X H>E[ X)]/10]  (since M < 0.9 H)
dexp (—E { (X )} /42200)

dexp (—£/4) (since H > 10550)
46% < §/4.

IN

ININ IA

(C.1)
(2) Let f and X be as above. Then
Pr[2E[f ()] < p<4E[f(S)]]
< Pr[[u—BIf ()] > E[£(5)]/10]
Pr[17) B [f0)]| > B[j0)] /10]
< d/4,

as in (C.1), since L > 10550.

(3) Set b = Klog(1/e) and t = 4y/log(1/e). Since K — 4v/K > 2H we have
b—tvb > 2H log(1/e) > 2E [ f*(S)], and so Pr[ f*(S) <b— t\/B] > 1/2 by Markov’s
inequality. By Theorem 6, we have Pr[f*(S) > b] < 2exp(—t?/4) < e since € < 1/2.

(4) Set b = Mlog(1/€)¢ and t = 4+/log(1/)). Then

b—tvVb = Mlog(1/e)l — 4y/log(1/8)\/M log(1/e)l
> (M — VM)log(1/e)t
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since 44/log(1/6)¢ < ¢ and € < 1/5. Then, by Markov’s inequality,

E| Y 5 (S)

l *
br {Zizlf (8:) < b= t\/ﬂ =1 (M — /M) log(1/e)t
< Llog(1/e)¢
T (M —V/M)log(1/e)t
> 1/20

since L/ (M —+/M) < 0.95. Applying Theorem 6 to the submodular function f(Sl, e
Sp) = S0 5(S), we have Pr[Y0_, f*(Si) > b] < 20exp(—t2/4) <20-§* < 6/4. O

C.3. Learning lower bounds.

THEOREM 9. Let ALG be an arbitrary learning algorithm that uses only a
polynomial number of training examples, which can be either drawn i.i.d. from the
underlying distribution or value queries. There exists a distribution D and a submod-
ular target function f* such that, with probability at least 1/4 (over the draw of the
training samples), the hypothesis function output by ALG does not approrimate f*
within an o(n'/3 /logn) factor on at least a 1/4 fraction of the ezamples under D.
This holds even for the subclass of matroid rank functions.

Proof. First, consider a fully deterministic learning algorithm ALG, i.e., an al-
gorithm that doesn’t even sample from D, though it knows D and can use it in
deterministically choosing queries. Say this algorithm makes ¢ < n¢ queries (which
could be chosen adaptively). Each query has at most n possible answers, since the
minimum rank of any set is zero and the maximum rank is at most n. So the total
number of possible sequences of answers is at most n?.

Now, since the algorithm is deterministic, the hypothesis it outputs at the end
is uniquely determined by this sequence of answers. To be specific, its choice of the
second query is uniquely determined by the answer given to the first query, its choice
of the third query is uniquely determined by the answers given to the first two queries,
and by induction, its choice of the ith query g; is uniquely determined by the answers
given to all queries ¢y, ...,q;—1 so far. Its final hypothesis is uniquely determined by
all ¢ answers. This then implies that ALG can output at most n? different hypotheses.

We will apply Theorem 1 with k = 2!, where ¢t = clog(n) + log(Inn) + 14 (so
k =n¢-In(n) -2 > 10000 - ¢ - In(n)). Let A and M be the families constructed by
Theorem 1. Let the underlying distribution D on 2/ be the uniform distribution on
A. (Note that D is not a product distribution.) Choose a matroid Mg € M uniformly
at random and let the target function be f* = ranknp,. Let us fix a hypotheses h
that ALG might output. By Hoeffding bounds, we have

P Pr[F(A) ¢ [h(A), 57 h(A)] < 049]] < 7OV = o7t = g,

i.e., with probability at least 1 — n~29, h has high approximation error on over 49%
of the examples.

By a union bound over all over all the n? hypotheses h that ALG might output, we
obtain that with probability at least 1/4 (over the draw of the training samples) the
hypothesis function output by ALG does not approximate f* within a o(n'/?/logn)
factor on at least 1/4 fraction of the examples under D.
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The above argument is a fixed randomized strategy for the adversary that works
against any deterministic ALG making at most n¢ queries. By Yao’s minimax prin-
ciple, this means that, for any randomized algorithm making at most n® queries,
there exists Mg which the algorithm does not learn well, even with arbitrary value
queries. 0

COROLLARY 2. Suppose one-way functions exist. For any constant € > 0, no
algorithm can PMAC-learn the class of nonnegative, monotone, submodular functions
with approximation factor O(n1/3’6), even if the functions are given by polynomial-
time algorithms computing their value on the support of the distribution.

Proof of Corollary 2. The argument follows Kearns and Valiant [57]. We will
apply Theorem 1 with k = 2!, where t = n¢. There exists a family of pseudoran-
dom Boolean functions H; = {h, : y € {0,1}"}, where each function is of the form
hy : {0,1}" — {0,1}. Choose an arbitrary bijection between {0,1}" and A. Then
each h, € H; corresponds to some subfamily B C A and hence to a matroid rank
function rankpg,,. Suppose there is a PMAC-learning algorithm for this family of func-
tions which achieves an approximation ratio better than n'/3 /16t on a set of measure
1/2 +1/poly(n). Then this algorithm must be predicting the function h, on a set of
size 1/2 4+ 1/ poly(n) = 1/2 + 1/ poly(t). This is impossible, since the family H; is
pseudorandom. O

Appendix D. Expander construction.

THEOREM 5. Let G = (UUV, E) be a random multigraph where |[U| = k, |V | = n,
and every u € U has exactly d incident edges, each of which has an endpoint chosen
uniformly and independently from all nodes in V. Suppose that k > 4, d > log(k)/e,
and n > 16Ld/e. Then, with probability at least 1 — 2/k,

(D.1) O > (1= -d-lJ|  VICU|J <L

If it is desired that |T'({u})| = d for all w € U, then this can be achieved by replacing
any parallel edges incident on u by new edges with distinct endpoints. This cannot
decrease [I'(J)| for any J, and so (D.1) remains satisfied.

The proof is an variant of the argument in Vadhan’s survey [91, Theorem 4.4].

Proof. Fix j < L and consider any set J C U of size |J| = j. The sampling process
decides the neighbors I'(J) by picking a sequence of jd neighbors vq,...,va € V. An
element v; of that sequence is called a repeat if v; € {v1,...,v;_1}. Conditioned on
v1,...,0i—1, the probability that v; is a repeat is at most jd/n. The set J violates
(D.1) only if there exist more than ejd repeats. The probability of this is at most

(G )" = O (&) = o

The last inequality follows from j < L and our hypothesis n > 16Ld/e. So the
probability that there exists a J C U with j = |J| that violates (D.1) is at most

J
since d > log(k)/e. Therefore the probability that any J with |J| < L violates (D.1)

is at most '
S kT < 2/k.
i>1 a

(k’)(l/4)‘ejd < Epio—2eid _ 9—j(2ed—loghk) k_j7
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Appendix E. Special cases of the matroid construction. The matroid
constructions of Theorems 2 and 3 have several interesting special cases.

E.1. Partition matroids. Suppose we are given disjoint sets Ay, ..., Ay and
values by,...,b;. We claim that the matroid Z defined in Theorem 2 is a partition
matroid. To see this, note that g(J) = ZjeJ b;, since the A;’s are disjoint, so g is a
modular function. Similarly, | N A(J)| is a modular function of J. Thus, whenever
|J| > 1, the constraint [INA(J)| < g(J) is redundant—it is implied by the constraints
[INA;| <b;for j € J. So we have

T = {1:[InAW)[<g(J) VJC[k]} = {I:[INA;|<b; Vjelkl},

which is the desired partition matroid.

E.2. Pairwise intersections. Suppose we are given sets Ay, ..., Ay and values
b1,...,br. We now describe the special case of the matroid construction which only
considers the pairwise intersections of the A;’s.

LEMMA 8. Let d be a nonnegative integer such that d < min; jep(bi +b; — |A; N
Ajl). Then
T =A{I:I|<dAN|INA;|<b;Vjelk]}
is the family of independent sets of a matroid.

Proof. Note that for any pair J = {4, j}, we have g(J) = b; +b; —|A; N A;|. Then

d < i bl b - Az N A = i J B
< gapberb=ldin Al = s 90
so g is (d, 2)-large. The lemma follows from Theorem 3. d

E.3. Paving matroids. A paving matroid is defined to be a matroid M = (V,7)
of rank m such that every circuit has cardinality either m or m + 1. We will show
that every paving matroid can be derived from our matroid construction (Theorem 3).
First of all, we require a structural lemma about paving matroids.

LEMMA 9. Let M = (V,Z) be a paving matroid of rank m. There exists a family
A={Ay,...,Ax} C 2V such that

(E.1a) T = {I:I|<m A |[INA;|<m—1Vi},
(E.1b) |AiNA;)l < m—2 Vi#j

Related results can be found in Theorem 5.3.5, Problem 5.3.7, and Exercise 5.3.8
of Frank’s book [30].

Proof. It is easy to see that there exists A satisfying (E.la), since we may simply
take A to be the family of circuits which have size m. So let us choose a family A
that satisfies (E.la) and minimizes |A|. We will show that this family must satisfy
(E.1b). Suppose otherwise, i.e., there exist i # j such that |[4; N A;] > m — 1.

Case 1: 7(A;UA;) <m—1. Then A\ {A4;,A;} U{A; UA,} also satisfies (E.la),
contradicting minimality of |.A|.

Case 2: 7(A;UA;) = m. Observe that 7(A;NA;) > m—1since |[A;NA;| >m—1
and every set of size m — 1 is independent. So we have

r(A; UA;)+r(A4NA4) > m+(m—-1) > (m—1)+(m—1) > r(4;) +r(4;).

This contradicts submodularity of the rank function. 0
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For any paving matroid, Lemma 9 implies that its independent sets can be written
in the form

T =AT:1I<m A |[INA]<m-1Vi},

where |A; N Aj| < m — 2 for each i # j. This is a special case of Theorem (3) since
we may apply Lemma 8 with each b; = m — 1 and d = m, since

miﬁ](bi +b; — A, NA4;) > 2(m—1)—(m—2) = m.
ijE
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