
Data-Driven Clustering via Parameterized Lloyd’s Families∗

Maria-Florina Balcan Travis Dick Colin White

Abstract

Algorithms for clustering points in metric spaces is a long-studied area of research. Clus-
tering has seen a multitude of work both theoretically, in understanding the approximation
guarantees possible for many objective functions such as k-median and k-means clustering, and
experimentally, in finding the fastest algorithms and seeding procedures for Lloyd’s algorithm.
The performance of a given clustering algorithm depends on the specific application at hand,
and this may not be known up front. For example, a “typical instance” may vary depending on
the application, and different clustering heuristics perform differently depending on the instance.

In this paper, we define an infinite family of algorithms generalizing Lloyd’s algorithm, with
one parameter controlling the initialization procedure, and another parameter controlling the
local search procedure. This family of algorithms includes the celebrated k-means++ algorithm,
as well as the classic farthest-first traversal algorithm. We design efficient learning algorithms
which receive samples from an application-specific distribution over clustering instances and
learn a near-optimal clustering algorithm from the class with respect to that distribution with
provable sample complexity guarantees. We show the best parameters vary significantly across
application domains such as MNIST, CIFAR, and mixtures of Gaussians. Our learned algorithms
never perform worse than k-means++, and in some application domains we see significant
improvements.

1 Introduction

Clustering is a fundamental problem in machine learning with applications in many areas including
text analysis, transportation networks, social networks, and so on. The high-level goal of clustering
is to divide a dataset into natural subgroups. For example, in text analysis we may want to divide
documents based on topic, and in social networks we might want to find communities. A common
approach to clustering is to set up an objective function and then approximately find the optimal
solution according to the objective. There has been a wealth of both theoretical and empirical
research in clustering using this approach [19, 12, 7, 6, 24, 35, 11, 2].

The most popular method in practice for clustering is local search, where we start with k
centers and iteratively make incremental improvements until a local optimum is reached. For
example, Lloyd’s method (sometimes called k-means) [30] and k-medoids [17, 13] are two popular
local search algorithms. There are multiple decisions an algorithm designer must make when using a
local search algorithm. First, the algorithm designer must decide how to seed local search, e.g., how
the algorithm chooses the k initial centers. There is a large body of work on seeding algorithms,
since the initial choice of centers can have a large effect on both the quality of the outputted
clustering and the time it takes for the algorithm to converge [21, 37, 3]. The best seeding method
often depends on the specific application at hand. For example, a “typical problem instance” in
one setting may have significantly different properties from that in another, causing some seeding

∗Authors’ addresses: {ninamf,tdick,crwhite}@cs.cmu.edu.

1

ar
X

iv
:1

80
9.

06
98

7v
3

 [
cs

.D
S]

 2
4

M
ay

 2
01

9

methods to perform better than others. Second, the algorithm designer must decide on an objective
function for the local search phase (k-means, k-median, etc.) For some applications, there is an
obvious choice. For instance, if the application is Wi-Fi hotspot location, then the explicit goal
is to minimize the k-center objective function. For many other applications such as clustering
communities in a social network, the goal is to find clusters which are close to an unknown target
clustering, and we may use an objective function for local search in the hopes that approximately
minimizing the chosen objective will produce clusterings which are close to matching the target
clustering (in terms of the number of misclassified points). As before, the best objective function
for local search may depend on the specific application.

In this paper, we show positive theoretical and empirical results for learning the best initial-
ization and local search procedures over a large family of algorithms. We take a transfer learning
approach where we assume there is an unknown distribution D over problem instances correspond-
ing to our application, and the goal is to use experience from the early instances to perform well on
the later instances. For example, if our application is clustering facilities in a city, we would look
at a sample of cities with existing optimally-placed facilities, and use this information to find the
empirically best seeding/local search pair from an infinite family, and we use this pair to cluster
facilities in new cities.

(α, β)-Lloyds++. We define an infinite family of algorithms generalizing Lloyd’s method, with
two parameters α and β. Our algorithms have two phases, a seeding phase to find k initial centers
(parameterized by α), and a local search phase which uses Lloyd’s method to converge to a local
optimum (parameterized by β). In the seeding phase, each point v is sampled with probability pro-
portional to dmin(v, C)α, where C is the set of centers chosen so far and dmin(v, C) = minc∈C d(v, c).
Then Lloyd’s method is used to converge to a local minima for the `β objective. By ranging
α ∈ [0,∞) ∪ {∞} and β ∈ [1,∞) ∪ {∞}, we define our infinite family of algorithms which we call
(α, β)-Lloyds++. Setting α = β = 2 corresponds to the k-means++ algorithm [6]. The seeding
phase is a spectrum between random seeding (α = 0), and farthest-first traversal [19, 14] (α =∞),
and the Lloyd’s step is able to optimize over common objectives including k-median (β = 1),
k-means (β = 2), and k-center (β = ∞). We design efficient learning algorithms which receive
samples from an application-specific distribution over clustering instances and learn a near-optimal
clustering algorithm from our family.

Theoretical analysis. In Section 4 we study both the sample and computational complexity of
learning the parameters for (α, β)-Lloyds++ that have the lowest expected cost on the application-
specific distribution D. The expected cost is over two sources of randomness: the distribution D and
the algorithmic randomness during the seeding phase of (α, β)-Lloyds++. To aid in our analysis,
we define an associated deterministic version of (α, β)-Lloyds++ that takes as input a clustering
instance V and a vector ~Z = (z1, . . . , zk) ∈ [0, 1]k, where the value zi is used to deterministically
choose the ith center during the seeding phase. When ~Z is sampled uniformly from [0, 1]k, the
distribution over outputs of the deterministic algorithm run with ~Z is identical to the randomized
version of (α, β)-Lloyds++. Our learning procedure receives a sample (V1, ~Z1), . . . , (Vm, ~Zm) drawn
i.i.d. from D × Uniform([0, 1]k) and returns the parameters α̂ and β̂ so that the deterministic
algorithm has the lowest average cost on the sample. First, we show that when the sample size m
is sufficiently large, these parameters have approximately optimal cost in expectation over both D
and the internal randomness of (α, β)-Lloyds++. We also give efficient algorithms for finding the
empirically optimal parameters.

We prove that when the sample size is m = Õ(k/ε2), where k is the number of clusters and Õ(·)
suppresses logarithmic terms, the empirically optimal parameters (α̂, β̂) have expected cost at most

2

ε higher than the optimal parameters (α∗, β∗) over the distribution, with high probability over the
random sample. The key challenge is that for any clustering instance V and vector ~Z ∈ [0, 1]k,
the cost of the outputted clustering is not even a continuous function of α or β since a slight
tweak in the parameters may lead to a completely different run of the algorithm. In fact, we show
that for any clustering instance V and vector ~Z, the cost is a piecewise constant function of the
parameters α and β. The key step in our sample complexity guarantees is to bound the number
of discontinuities of the cost function. This requires a delicate reasoning about the structure of
“decision points”, which are parameter values where the algorithm output changes, each introducing
a discontinuity in the cost function. Our key technical contribution is to leverage the randomness
over ~Z ∼ Uniform([0, 1]k) to prove polynomial bounds on the expected number of decision points
for the α parameter. By contrast, if we ignored the distribution of ~Z and applied the techniques
exploited by prior work, we would only get exponential bounds on the number of decision points.

Next, we complement our sample complexity result with a computational efficiency result.
Specifically, we give a novel meta-algorithm which efficiently finds a near-optimal value α̂ with high
probability. The high-level idea of our algorithm is to run depth-first-search over the “execution
tree” of the algorithm, where a node in the tree represents a state of the algorithm, and edges
represent decision points. A key step in our meta-algorithm is to iteratively solve for the decision
points of the algorithm, which itself is nontrivial since the equations governing the decision points
do not have closed-form solutions. We show the equations have a certain structure which allows us
to binary search through the range of parameters to find the decision points.

Experiments. We give a thorough experimental analysis of our family of algorithms by evaluating
their performance on a number of different real-world and synthetic application domains including
MNIST, Cifar10, CNAE-9, and mixtures of Gaussians. In each case, we create clustering instances
by choosing subsets of the labels. For example, we look at an instance of MNIST with digits
{0, 1, 2, 3, 4}, and also an instance with digits {5, 6, 7, 8, 9}. We show the optimal parameters
transfer from one instance to the other. Among domains, there is no single parameter setting that is
nearly optimal, and for some domains, the best algorithm from the (α, β)-Lloyds++ family performs
significantly better than known algorithms such as k-means++ and farthest-first traversal.

2 Related Work

Clustering. The iterative local search method for clustering, known as Lloyd’s algorithm or
sometimes called k-means, is one of the most popular algorithms for k-means clustering [30], and
improvements are still being found [34, 32, 15, 36, 23, 24]. The worst-case runtime of Lloyd’s
method is exponential [5] even in R2 [44], however, it converges very quickly in practice [20],
and the smoothed complexity is polynomial [4]. Many different initialization approaches have been
proposed [21, 37, 3]. When using d2-sampling to find the initial k centers, the algorithm is known as
k-means++, and the approximation guarantee is provably O(log k) [6]. If the data satisfies a natural
stability condition, k-means++ returns a near-optimal clustering [35]. The farthest-first traversal
algorithm is an iterative method to find k centers, and it was shown to give a 2-approximation
algorithm for k-center [19], and an 8-approximation for hierarchical k-center [14].

Transfer learning for unsupervised settings. Balcan et al. shows provable guarantees for
learning over a different family of algorithms, linkage-based clustering with dynamic pruning, in
the same distribution as the current work, however, they provide no experimental guarantees [9].
There are several related models for learning the best representation and transfer learning for

3

clustering. For example, Ashtiani and Ben-David analyze the problem of learning a near-optimal
data embedding function from a given family of embeddings for the k-means objective [8].

There are a few models for the question of finding the best clustering algorithm to use on a single
instance, given a small amount of expert advice. Ackerman et al. (building off of the celebrated
clustering impossibility result of [25]) study the problem of taxonomizing clustering algorithmic
paradigms, by using a list of abstract properties of clustering functions [1]. In their work, the goal
is for a user to choose a clustering algorithm based on the specific properties which are important
for her application.

Another related area is the problem of unsupervised domain adaption. In this problem, the
machine learning algorithm has access to a labeled training dataset, and an unlabeled target dataset
over a different distribution. The goal is to find an accurate classifier over the target dataset, while
only training on the training distribution [40, 18, 43].

There has been more research on related questions for transfer learning on unlabeled data and
unsupervised tasks. Raina et al. study transfer learning using unlabeled data, to a supervised
learning task [39]. Jiang and Chung, and Yang et al. study transfer learning for clustering, in
which a clustering algorithm has access to unlabeled data, and uses it to better cluster a related
problem instance [45, 22]. This setting is a bit different from ours, since we assume we have access
to the target clustering for each training instance, but we tackle the harder question of finding the
best clustering objective.

3 Preliminaries

Clustering. A clustering instance V consists of a point set V of size n, a distance metric d
(such as Euclidean distance in Rd), and a desired number of clusters 1 ≤ k ≤ n. A clustering
C = {C1, . . . , Ck} is a k-partitioning of V . Often in practice, clustering is carried out by approxi-
mately minimizing an objective function (which maps each clustering to a nonzero value). Common
objective functions such as k-median and k-means come from the `p family, where each cluster Ci

is assigned a center ci and cost(C) =
(∑

i

∑
v∈Ci d(v, ci)

p
) 1
p (k-median and k-means correspond

to p = 1 and p = 2, respectively). There are two distinct goals for clustering depending on the
application. For some applications such as computing facility locations, the algorithm designer’s
only goal is to find the best centers, and the actual partition {C1, . . . , Ck} is not needed. For many
other applications such as clustering documents by subject, clustering proteins by function, or dis-
covering underlying communities in a social network, there exists an unknown “target” clustering
C∗ = {C∗1 , . . . , C∗k}, and the goal is to output a clustering C which is close to C∗. Formally, we define

C and C′ to be ε-close if there exists a permutation σ such that
∑k

i=1 |Ci \ C ′σ(i)| ≤ εn. For these
applications, the algorithm designer chooses an objective function while hoping that minimizing
the objective function will lead to a clustering that is close to the target clustering. In this paper,
we will focus on the cost function set to the distance to the target clustering, however, our analysis
holds for an abstract cost function cost which can be set to an objective function or any other
well-defined measure of cost.

Algorithm Configuration. In this work, we assume that there exists an unknown, application-
specific distribution D over a set of clustering instances such that for each instance V, |V | ≤ n.
We suppose there is a cost function that measures the quality of a clustering of each instance. As
discussed in the previous paragraph, we can set the cost function to be the expected Hamming
distance of the returned clustering to the target clustering, the cost of an `p objective, or any other
function. The learner’s goal is to find the parameters α and β that approximately minimize the

4

expected cost with respect to the distribution D. Our main technical results bound the intrinsic
complexity of the class of (α, β)-Lloyds++ clustering algorithms, which leads to generalization
guarantees through standard Rademacher complexity [10, 27]. This implies that the empirically
optimal parameters are also nearly optimal in expectation.

4 (α, β)-Lloyds++

In this section, we define an infinite family of algorithms generalizing Lloyd’s algorithm, with one
parameter controlling the initialization procedure, and another parameter controlling the local
search procedure. Our main results bound the intrinsic complexity of this family of algorithms
(Theorems 4 and 5) and lead to sample complexity results guaranteeing the empirically optimal
parameters over a sample are close to the optimal parameters over the unknown distribution. We
measure optimality in terms of agreement with the target clustering. We also show theoretically
that no parameters are optimal over all clustering applications (Theorem 2). Finally, we give an
efficient algorithm for learning the best initialization parameter (Theorem 8).

Our family of algorithms is parameterized by choices of α ∈ [0,∞)∪{∞} and β ∈ [1,∞)∪{∞}.
Each choice of (α, β) corresponds to one local search algorithm. A summary of the algorithm is as
follows. The algorithm has two phases. The goal of the first phase is to output k initial centers.
Each center is iteratively chosen by picking a point with probability proportional to the minimum
distance to all centers picked so far, raised to the power of α. The second phase is an iterative two
step procedure similar to Lloyd’s method, where the first step is to create a Voronoi partitioning of
the points induced by the initial set of centers, and then a new set of centers is chosen by computing
the `β mean of the points in each Voronoi tile.

Our goal is to find parameters that return clusterings close to the ground-truth in expectation.
Setting α = β = 2 corresponds to the k-means++ algorithm. The seeding phase is a spectrum
between random seeding (α = 0), and farthest-first traversal (α = ∞), and the Lloyd’s algorithm
can optimize for common clustering objectives including k-median (β = 1), k-means (β = 2), and
k-center (β =∞).

On the way to proving our main results, we analyze a deterministic version of (α, β)-Lloyds++
that takes as input both a clustering instance V and a vector ~Z = (z1, . . . , zk) ∈ [0, 1]k. The
deterministic algorithm uses the value zt when choosing the tth center in the first phase of the
algorithm. More specifically, the algorithm chooses the tth center as follows: for each point vi ∈ V
we determine the dα-sampling probability of choosing vi as the next center. Then, we construct
a partition of [0, 1] into |V | intervals, where each point vi is associated with exactly one interval,
and the width of the interval is equal to the dα-sampling probability of choosing vi. Finally, the
algorithm chooses the next center to be the point vi whose interval contains the value zt. When zt
is drawn uniformly at random from [0, 1], the probability of choosing the point vi to be the next
center is the width of its corresponding interval, which is the dα-sampling probability. Therefore, for
any fixed clustering instance V, sampling the vector ~Z uniformly at random from the cube [0, 1]k

and running this algorithm on V and ~Z has the same output distribution as (α, β)-Lloyds++.
Pseudocode for the deterministic version of (α, β)-Lloyds++ is given in Algorithm 1.

Notation. Before presenting our results, we introduce some convenient notation. We define
cost functions for both the randomized and deterministic versions of (α, β)-Lloyds++. Given a
clustering instance V and a vector ~Z ∈ [0, 1]k, we let clusα,β(V, ~Z) be the cost of the clustering

output by Algorithm 1 (i.e., the distance to the ground-truth clustering for V) when run on (V, ~Z)
with parameters α and β. Since the algorithm is deterministic, this is a well-defined function.
Next, we also define clusα,β(V) = E~Z [clusα,β(V, ~Z)] to denote the expected cost of (randomized)

5

(α, β)-Lloyds++ run on instance V, where the expectation is taken over the randomness of the
algorithm (i.e., over the draw of the vector ~Z ∼ Uniform([0, 1]k)). To facilitate our analysis of
phase 2 of Algorithm 1, we let lloydsβ(V, C, T) denote the cost of the clustering obtained by
running Lloyd’s algorithm with parameter β starting from initial centers C for at most T iterations
on the instance V.

Algorithm 1 Deterministic (α, β)-Lloyds++ Clustering

Input: Instance V = (V, d, k), vector ~Z = (z1, . . . , zk) ∈ [0, 1]k, parameters α and β.
Phase 1: Choosing initial centers with dα-sampling

1. Initialize C = ∅.
2. For each t = 1, . . . , k:

(a) Partition [0, 1] into n intervals, where there is an interval Ivi for each vi with size equal to
the probability of choosing vi during dα-sampling in round t (see Figure 2).

(b) Denote ct as the point such that zt ∈ Ict , and add ct to C.

Phase 2: Lloyd’s algorithm

5. Set C ′ = ∅. Let {C1, . . . , Ck} denote the Voronoi tiling of V induced by centers C.

6. Compute argminx∈V
∑

v∈Ci d(x, v)β for all 1 ≤ i ≤ k, and add it to C ′.

7. If C ′ 6= C, set C = C ′ and goto 5.

Output: Centers C and clustering induced by C.

When analyzing phase 1 of Algorithm 1, we let seedα(V, ~Z) denote the vector of centers output
by phase 1 when run on a clustering instance V with vector ~Z. For a given set of centers C, we let
di denote the distance from point vi to the set C; that is, di = minc∈C d(vi, c). For each point index
i, we define Di(α) =

∑i
j=1 d

α
j , so that the probability of choosing point i as the next center under

dα-sampling is equal to dαi /Dn(α), and the probability that the chosen index belongs to {1, . . . , i}
is Di(α)/Dn(α). When we use this notation, the set of centers C will always be clear from context.
Finally, for a point set V , we let R = max{d(x, x′)/d(y, y′) | x, x′, y, y′ ∈ V, d(y, y′) 6= 0} denote
the maximum ratio between any pair of non-zero distances in the point set. The notation used
throughout the paper is summarized in Appendix A.

We start with two structural results about the family of (α, β)-Lloyds++ clustering algorithms.
The first shows that for sufficiently large α, phase 1 of Algorithm 1 is equivalent to farthest-first
traversal. This means that it is sufficient to consider α parameters in a bounded range.

Farthest-first traversal [19] starts by choosing a random center, and then iteratively choosing the
point farthest to all centers chosen so far, until there are k centers. We assume that ties are broken
uniformly at random. Farthest-first traversal is equivalent to the first phase of Algorithm 1 when
run with α = ∞. The following result guarantees that when α is sufficiently large, Algorithm 1
chooses the same initial centers as farthest-first traversal with high probability.

Lemma 1. For any clustering instance V = (V, d, k) and δ > 0, if α > log
(
nk
δ

)
/ log s, where s de-

notes the minimum ratio d1/d2 between two distances d1 > d2 in the point set, then P~Z(seedα(V, ~Z) =

seed∞(V, ~Z)) ≥ 1− δ.

For some datasets, 1/ log s might be very large. In Section 5, we empirically observe that for

6

all datasets we tried, (α, β)-Lloyds++ behaves the same as farthest-first traversal for α > 20. 1

Next, to motivate learning the best parameters, we show that for any pair of parameters (α∗, β∗),
there exists a clustering instance such that (α∗, β∗)-Lloyds++ outperforms all other values of α, β.
This implies that dβ-sampling is not always the best choice of seeding for the `β objective.

Theorem 2. For α∗ ∈ [.01,∞)∪ {∞} and β∗ ∈ [1,∞)∪ {∞}, there exists a clustering instance V
whose target clustering is the optimal `β∗ clustering, such that clusα∗,β∗(V) < clusα,β(V) for all
(α, β) 6= (α∗, β∗).

Proof sketch. Consider α∗, β∗ ∈ [0,∞) ∪ {∞}. The clustering instance consists of 6 clusters,
C1, . . . , C6. These 6 clusters are both the target clustering for the instance, and they are opti-
mal for the `β∗ objective. The proof consists of three sections. First, we construct C1, . . . , C4 so
that dα

∗
sampling has the best chance of putting exactly one point into each optimal cluster. Then

we add “local minima traps” to each cluster, so that if any cluster received two centers in the
sampling phase, Lloyd’s method will not be able to move the centers to a different cluster. Finally,
we construct C5 and C6 so that if seeding put one point in each cluster, then β∗-Lloyd’s method
will outperform any other β 6= β∗.

We construct the instance in an abstract metric space where we can define pairwise distances
to take any values, provided that they still satisfy the triangle inequality. We refer to a collection
of points as a clique if all pairwise distances within the collection are equal.

Figure 1: Optimal instance for dα
∗
-sampling

Step 1: we define C1 and C2 to be two different cliques, and we define a third clique whose
points are equal to C3 ∪C4. See Figure 1. We space these cliques arbitrarily far apart so that with
high probability, the first three sampled centers will each be in a different clique. Now the idea is
to define the distances and sizes of the cliques so that α∗ is the value of α with the greatest chance
of putting the last center into the third clique. If we set the distances in cliques 1,2,3 to d1 = 2,
d2 = 1/2, and d3 = 1, and set |C1| = 22α∗ |C2|, then the probability of sampling a 4th center in the
third clique for α = α∗ + δ is equal to

|C3 ∪ C4|
|C3 ∪ C4|+ (2α∗+δ + 2α∗−δ)|C2|

.

This is maximized when δ = 0.
1 In Appendix B, we show that if the dataset satisfies a stability assumption called separability [26, 38], then

(α, β)-Lloyds++ outputs the same clustering as farthest-first traversal with high probability when α > logn.

7

Now we add local minima traps for Lloyd’s method as follows. In the first two cliques, we add
three centers so that the 2-clustering cost is only slightly better than the 1-clustering cost. In the
third clique, which consists of C3 ∪C4, add centers so that the 2-clustering cost is much lower than
the 1-clustering cost. We also show that since all cliques are far apart, it is not possible for a center
to move between clusters during Lloyd’s method.

Finally, we add three centers c5, b5, b
′
5 to the last cluster C5. We set the rest of the points so

that c5 minimizes the `β∗ objective, while b5 and b′5 favor β = β∗ ± ε. Therefore, (α∗, β∗) performs
the best out of all pairs (α, β).

Sample efficiency. Now we give sample complexity bounds for learning the best algorithm from
the class of (α, β)-Lloyds++ algorithms. We analyze the phases of Algorithm 1 separately. For
the first phase, our main structural result is to show that for a given clustering instance, with high
probability over the draw of ~Z ∼ Uniform([0, 1]k), the number of discontinuities of the function α 7→
seedα(V, ~Z) as we vary α ∈ [α`, αh] is O

(
nk log(n) log(αh/α`)

)
. Our analysis crucially harnesses

the randomness of ~Z to achieve this bound. For instance, if we ignore the distribution of ~Z and use
a purely combinatorial approach as in prior algorithm configuration work, we would only achieve
a bound of nO(k), which is the total number of sets of k centers. For completeness, we give a
combinatorial proof of O(nk+3) discontinuities in Appendix B (Theorem 15). Similarly, for the
second phase of the algorithm, we show that for any clustering instance V, initial set of centers
C, and any maximum number of iterations T , the function β 7→ lloydsβ(V, C, T) has at most

O(min(n3T , nk+3)) discontinuities.
We begin by analyzing the number of discontinuities of the function α 7→ seedα(V, ~Z). Before

proving the O
(
nk log(n) log(αh/α`)

)
upper bound, we define a few concepts used in the proof.

Assume we start to run Algorithm 1 without a specific setting of α, but rather a range [α`, αh],
for some instance V and vector ~Z. In some round t, if Algorithm 1 would choose the same center
ct for every setting of α ∈ [α`, αh], then we continue normally. However, if the algorithm would
choose a different center depending on the specific value of α used from the interval [α`, αh], then
we fork the algorithm, making one copy for each possible next center. In particular, we partition
[α`, αh] into a finite number of sub-intervals such that the next center is constant on each interval.
The boundaries between these intervals are “breakpoints”, since as α crosses those values, the next
center chosen by the algorithm changes. Our goal is to bound the total number of breakpoints over
all k rounds in phase 1 of Algorithm 1, which bounds the number of discontinuities of the function
α 7→ seedα(V, ~Z).

A crucial step in the above approach is determining where the breakpoints are located. Recall
that in round t of Algorithm 1, each datapoint vi is assigned an interval in [0, 1] of size dαi /Dn(α),
where di is the minimum distance from vi to the current set of centers, and Dj(α) = dα1 + · · ·+ dαj .

The interval for point vi is
[Di−1(α)
Dn(α) ,

Di(α)
Dn(α)

)
(see Figure 2). WLOG, we assume that the algorithm

sorts the points on each round so that d1 ≥ · · · ≥ dn. We prove the following nice structure about
these intervals.

Lemma 3. Assume that v1, . . . , vn are sorted in decreasing distance from a set C of centers. Then
for each i = 1, . . . , n, the function α 7→ Di(α)

Dn(α) is monotone increasing and continuous along [0,∞).

Furthermore, for all 1 ≤ i < j ≤ n and α ∈ [0,∞), we have Di(α)
Dn(α) ≤

Dj(α)
Dn(α) .

This lemma guarantees two crucial properties. First, we know that for every (ordered) set C of
t ≤ k centers chosen by phase 1 of Algorithm 1 up to round t, there is a single interval (as opposed
to a more complicated set) of α-parameters that would give rise to C. Second, for an interval

8

Figure 2: The algorithm chooses v3 as a center (left). In the interval [α`, α`+1], the algorithm may
choose v4, v3, v2, or v1 as a center, based on the value of α (right).

[α`, αh], the set of possible next centers is exactly vi` , vi`+1, . . . , vih , where i` and ih are the centers
sampled when α is α` and αh, respectively (see Figure 2).

Now we are ready to prove our main structural result, which bounds the number of disconti-
nuities of the function α 7→ seedα(V, ~Z) in expectation over ~Z ∼ Uniform([0, 1]k). We prove two
versions of the result: one that holds over parameter intervals [α`, αh] with α` > 0, and a version
that holds when α` = 0, but that depends on the largest ratio of any pairwise distances in the
dataset.

Theorem 4. Fix any clustering instance V and let ~Z ∼ Uniform([0, 1]k). Then:

1. For any parameter interval [α`, αh] with α` > 0, the expected number of discontinuities of the
function α 7→ seedα(V, ~Z) on [α`, αh] is at most O(nk log(n) log(αh/α`)).

2. For any parameter interval [0, αh], the expected number of discontinuities of the function
α 7→ seedα(V, ~Z) on [0, αh] is at most O

(
nk log(n) log(αh log(R))

)
, where R is the largest

ratio between any pair of non-zero distances in V.

Proof sketch. Consider round t in the run of phase 1 in Algorithm 1 on instance V with vector
~Z. Suppose at the beginning of round t, there are L possible states of the algorithm; that is, L
α-intervals such that within each interval, the choice of the first t− 1 centers is fixed. By Lemma
3, we can write these sets as [α0, α1], . . . , [αL−1, αL], where 0 = α0 < · · · < αL = αh. Given one
interval, [α`, α`+1], we claim the expected number of new breakpoints, denoted by #It,`, introduced
by choosing a center in round t starting from the state for interval ` is bounded by

min {2n log(R)(α`+1 − α`), n− t− 1, 4n log(n)(logα`+1 − logα`)} .

Note that #It,` + 1 is the number of possible choices for the next center in round t using α in
[α`, α`+1].

The claim gives three different upper bounds on the expected number of new breakpoints, where
the expectation is only over zt ∼ Uniform([0, 1]), and the bounds hold for any given configuration
of d1 ≥ · · · ≥ dn (i.e., it does not depend on the centers that have been chosen on prior rounds).
To prove the first statement in Theorem 4, we only need the last of the three bounds, and to prove
the second statement, we need all three bounds.

First we show how to prove the first part of the theorem assuming the claim, and later we
will prove the claim. We prove the first statement as follows. Let #I denote the total number of
discontinuities of α 7→ seedα(V, ~Z) for α ∈ [α`, αh]. Then we have

9

E~Z [#I] ≤ E~Z

[
k∑
t=1

L−1∑
`=1

(#It,`)

]

=

k∑
t=1

L−1∑
`=0

E~Z [#It,`]

≤
k∑
t=1

L−1∑
`=0

4n log(n) (logα`+1 − logα`)

=
k∑
t=1

4n log(n) (logαh − logα`)

= O

(
nk log n log

αh
α`

)
Now we prove the second part of the theorem. Let `∗ denote the largest value such that

α`∗ <
1

logR . Such an `∗ must exist because α0 = 0. Then we have α`∗ <
1

logR ≤ α`∗+1. We use three
upper bounds for three different cases of alpha intervals: the first `∗ intervals, interval [α`∗ , α`∗+1],
and intervals `∗ + 2 to L. Let #I denote the total number of discontinuities of α 7→ seedα(V, ~Z)
for α ∈ [0, αh].

E~Z [#I] ≤ E~Z

[
k∑
t=1

L−1∑
`=1

(#It,`)

]

=

k∑
t=1

L−1∑
`=0

E~Z [#It,`]

=
k∑
t=1

(
`∗−1∑
`=0

E~Z [#It,`] + E~Z [#It,`∗] +
L−1∑

`=`∗+1

E~Z [#It,`]

)

≤
k∑
t=1

(
`∗−1∑
`=0

(2n logR(α`+1 − α`)) + (n− t− 1) +

L−1∑
`=`∗+1

(4n log n(logα`+1 − logα`))

)

≤
k∑
t=1

(2n logR · α`∗ + n+ 4n log n (logαh − logα`∗))

≤
k∑
t=1

(
2n log(R) · 1

logR
+ n+ 4n log(n)

(
logαh − log

(
1

logR

)))
= O (nk log(n)(log(αh log(R)))

Now we will prove the claim. Given zt ∈ [0, 1], let x and y denote the minimum indices s.t.
Dx(α`)
Dn(α`)

> zt and
Dy(α`+1)
Dn(α`+1) > zt, respectively. Then from Lemma 3, the number of breakpoints for

α ∈ [α`, α`+1] is exactly #It,` = x− y (see Figure 3). Therefore, our goal is to compute Ezt [x− y].
One method is to sum up the expected number of breakpoints for each interval Iv by bounding the
maximum possible number of breakpoints given that zt lands in Iv. However, this will sometimes
lead to a bound that is too coarse. For example, if α`+1−α` = ε ≈ 0, then for each bucket Ivj , the
maximum number of breakpoints is 1, but we want to show the expected number of breakpoints is

10

proportional to ε. To tighten up this analysis, we will show that for each bucket, the probability
(over zt) of achieving the maximum number of breakpoints is low.

Assuming that zt lands in a bucket Ivj , we further break into cases as follows. Let i denote

the minimum index such that
Di(α`+1)
Dn(α`+1) >

Dj(α`)
Dn(α`)

. Note that i is a function of j, α`, and α`+1,

but it does not depend on zt. If zt is less than
Di(α`+1)
Dn(α`+1) , then we have the maximum number of

breakpoints possible, since the algorithm chooses center vi−1 when α = α`+1 and it chooses center
vj when α = α`. The number of breakpoints is therefore j − i + 1, by Lemma 3. We denote this

event by Et,j , i.e., Et,j is the event that in round t, zt lands in Ivj and is less than
Di(α`+1)
Dn(α`+1) . If zt is

instead greater than
Di(α`+1)
Dn(α`+1) , then the algorithm chooses center vi when α = α`+1, so the number

of breakpoints is ≤ j − i. We denote this event by E′t,j (see Figure 3). Note that Et,j and E′t,j are
disjoint and Et,j ∪ E′t,j is the event that zt ∈ Ivj .

Within an interval Ivj , the expected number of breakpoints is

P (Et,j) · (j − i+ 1) + P (E′t,j) · (j − i) = P (Et,j ∪ E′t,j) · (j − i) + P (Et,j).

We will bound j − i and P (Et,j) separately.

Figure 3: Definition of Et,j and E′t,j , and details for bounding j − i (left). Intuition for bounding
P (Et,j), where the blue regions represent Et,j (right).

First we upper bound P (Et,j). Recall this is the probability that zt is in between
Dj(α`)
Dn(α`)

and
Di(α`+1)
Dn(α`+1) , which is

Di(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
≤ Dj(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
.

Therefore, we can bound this quantity by bounding the derivative
∣∣∣ ∂∂α (Dj(α)

Dn(α)

)∣∣∣, which we show is

at most min
{

2
α log n, log (R)

}
in Appendix B.

Now we upper bound j− i. Recall that j− i represents the number of intervals between Di(α`)
Dn(α`)

and
Dj(α`)
Dn(α`)

(see Figure 3). Note that the smallest interval in this range has width
d
α`
j

Dn(α`)
, and

Dj(α`)

Dn(α`)
− Di(α`)

Dn(α`)
≤ Di(α`+1)

Dn(α`+1)
− Di(α`)

Dn(α`)
.

Again, we can use the derivative of Di(α)
Dn(α) to bound

Di(α`+1)
Dn(α`+1) −

Di(α`)
Dn(α`)

. To finish off the proof of the

claim, we have

11

E[#It,`] ≤
∑
j

(
P (E′t,j) · (j − i) + P (Et,j) · (j − i+ 1)

)
=
∑
j

(
P (E′t,j ∪ Et,j) · (j − i) + P (Et,j)

)
=
∑
j

P (zt ∈ Ivj) · (j − i) +
∑
j

P (Et,j)

≤
∑
j

(
dα`j

Dn(α`)

)(
Dn(α`)

dα`j
· Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)
+
∑
j

(
Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)

≤ 2n

(
Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)
≤ 2nmin (2 log n(logα`+1 − logα`), logD(α`+1 − α`))

This accounts for two of the three upper bounds in our claim. To complete the proof, we note
that E[#It,`] ≤ n− t−1 simply because there are only n− t centers available to be chosen in round
t of the algorithm (and therefore, n− t− 1 breakpoints).

Now we analyze phase 2 of Algorithm 1. Since phase 2 does not have randomness, we use
combinatorial techniques. Recall that lloydsβ(V, C, T) denotes the cost of the outputted clustering
from phase 2 of Algorithm 1 on instance V with initial centers C, and a maximum of T iterations.

Theorem 5. Given T ∈ N, a clustering instance V, and a fixed set C of initial centers, the number
of discontinuities of lloydsβ(V, C, T) as a function of β on instance V is O(min(n3T , nk+3)).

Proof sketch. Given V and a set of initial centers C, we bound the number of discontinuities
introduced in the Lloyd’s step of Algorithm 1. First, we give a bound of nk+3 which holds for
any value of T . Recall that Lloyd’s algorithm is a two-step procedure, and note that the Voronoi
partitioning step is independent of β. Let {C1, . . . , Ck} denote the Voronoi partition of V induced by
C. Given one of these clusters Ci, the next center is computed by minc∈Ci

∑
v∈Ci d(c, v)β. Given any

c1, c2 ∈ Ci, the decision for whether c1 is a better center than c2 is governed by
∑

v∈Ci d(c1, v)β <∑
v∈Ci d(c2, v)β. By a consequence of Rolle’s theorem, this equation has at most 2n+ 1 roots. This

equation depends on the set C of centers, and the two points c1 and c2, therefore, there are
(
n
k

)
·
(
n
2

)
equations each with 2n + 1 roots. We conclude that there are nk+3 total intervals of β such that
the outcome of Lloyd’s method is fixed.

Next we give a different analysis which bounds the number of discontinuities by n3T , where T is
the maximum number of Lloyd’s iterations. By the same analysis as the previous paragraph, if we
only consider one round, then the total number of equations which govern the output of a Lloyd’s
iteration is

(
n
2

)
, since the set of centers C is fixed. These equations have 2n+ 1 roots, so the total

number of intervals in one round is O(n3). Therefore, over T rounds, the number of intervals is
O(n3T).

By combining Theorem 4 with Theorem 5, and using standard learning theory results, we
can bound the sample complexity needed to learn near-optimal parameters α, β for an unknown
distribution D over clustering instances. Recall that clusα,β(V) denotes the expected cost of the
clustering outputted by (α, β)-Lloyds++, with respect to the target clustering, taken over both the
random draw of a new instance and the algorithm randomness. Let H denote an upper bound on
clusα,β(V).

12

Theorem 6. Let D be a distribution over clustering instances with k clusters and at most n points,
and let S =

{
(V(i), ~Z(i)

}m
i=1

be an i.i.d. sample from D×Uniform([0, 1]k). For any parameters α, β,

let LS(α, β) = 1
m

∑m
i=1 clusα,β(V(i), ~Z(i)) denote the sample loss, and LD(α, β) = E[clusα,β(V, ~Z)]

denote the expected loss. The following statements hold:

1. For any ε > 0, δ > 0, and parameter interval [α`, αh] with α` > 0, if the sample is of size m =

O
((

H
ε

)2 (
min(T, k) log n+ log k + log 1

δ + log(log(αhα`))
))

then with probability at least 1−δ, for

all (α, β) ∈ [α`, αh]× [1,∞], we have |LS(α, β)− LD(α, β)| < ε.

2. Suppose that the maximum ratio of any non-zero distances is bounded by R for all clustering
instances in the support of D. Then for any ε > 0, δ > 0, and parameter interval [0, αh), if the

sample size is m = O
((

H
ε

)2 (
min(T, k) log n+ log k + log 1

δ + log(log(αh log(R)))
))

, then with

probability at least 1− δ, for all (α, β) ∈ [0, αh]× [1,∞], we have that |LS(α, β)−LD(α, β)| < ε.

Proof. We begin by proving the first statement, which guarantees uniform convergence for param-
eters (α, β) ∈ [α`, αh]× [1,∞].

First, we argue that with probability at least 1−δ/2, for all sample indices i ∈ [m], the number of
discontinuities of the function α 7→ seedα(V(i), ~Z(i)) for α ∈ [α`, αh] is O(mnk log(n) log(αh/α`)/δ).
By Theorem 4, we know that for any sample index i, the expected number of discontinuities of
α 7→ seedα(V(i), ~Z(i)) over the draw of Z(i) ∼ Uniform([0, 1]d) is O(nk log(n) log(αh/α`)). Applying
Markov’s inequality with failure probability δ/(2m), we have that with probability at least 1 −
δ/(2m) over ~Z(i), the function α 7→ seedα(V(i), ~Z(i)) has at most O(mnk log(n) log(αh/α`)/δ)
discontinuities. The claim follows by taking the union bound over all m functions. We assume this
high probability event holds for the rest of the proof.

Next, we construct a set of N = O(m3nk log(n) log(αh/α`) min(n3T , nk+3)/δ) parameter values
(α1, β1), . . . , (αN , βN) that exhibit all possible behaviors of the (α, β)-Lloyds++ algorithm family
on the entire sample of clustering instances. Taking the union of all O(m2nk log(n) log(αh/α`)/δ)
discontinuities of the functions α 7→ seedα(V (i), ~Z(i)) for i ∈ [m], we can partition [α`, αh] into
O(m2nk log(n) log(αh/α`)/δ) intervals such that for each interval I and any α, α′ ∈ I, we have
seedα(V(i), ~Z(i)) = seedα′(V(i), ~Z(i)) for all i ∈ [m]. In other words, on each interval and each
sample instance, the initial centers chosen by phase 1 of the algorithm is fixed. Now consider any
interval I in this partition. For each instance (V(i), ~Z(i)) and any α ∈ I, the set of initial centers
chosen by phase 1 of the algorithm is fixed. Therefore, Theorem 5 guarantees that the number of
discontinuities of the function β 7→ lloydsα,β(V(i), ~Z(i)) is at most O(min(n3T , nk+3)). By a similar

argument, it follows that we can partition the beta parameter space [1,∞] into O(mmin(n3T , nk+3))
intervals such that for each interval the output clustering is constant for all instances (when run
with any parameter α ∈ I). Combined, it follows that we can partition the joint parameter space
[α`, αh]×[1,∞] into N = O(m3nk log(n) log(αh/α`) min(n3T , nk+3)/δ) rectangles such that for each
rectangle and every instance (V(i), ~Z(i)), the clustering output by (α, β)-Lloyds++ (and therefore
the loss) is constant for all (α, β) values in the rectangle. Let (α1, β1), . . . , (αN , βN) be a collection
of parameter values obtained by taking one pair from each rectangle in the partition.

Finally, to prove the uniform convergence guarantee, we bound the empirical Rademacher com-
plexity of the family of loss functions F = {fα,β : (V, ~Z) 7→ clusα,β(V, ~Z) | α ∈ [α`, αh], β ∈ [1,∞]}
on the given sample of instances. The empirical Rademacher complexity is defined by

R̂(F ,S) =
1

m
Eσ

[
sup

fα,β∈F

m∑
i=1

σifα,β
(
V (i), ~Z(i)

)]
,

13

Algorithm 2 Dynamic algorithm configuration

Input: Instance V = (V, d, k), vector ~Z ∈ [0, 1]k, α`, αh, ε > 0

1. Initialize Q to be an empty queue, then push the root node (〈〉, [α`, αh]) onto Q.

2. While Q is non-empty

(a) Pop node (C,A) from Q with centers C and alpha interval A.

(b) For each point ui that can be chosen as the next center, compute Ai = {α ∈ A :
ui is the sampled center} up to error ε and set Ci = C ∪ {ui}.

(c) For each i, if |Ci| < k, push (Ci, Ai) onto Q. Otherwise, output (Ci, Ai).

where σ is a vector of m i.i.d. Rademacher random variables. The above arguments imply that we
can replace the supremum over all of F by a supremum only over the loss functions with parameters
in the finite set {(αj , βj)}Nj=1:

R̂(F ,S) =
1

m
Eσ

[
sup
j∈[N]

m∑
i=1

σifαj ,βj
(
V (i), ~Z(i)

)]
.

Define the vector a(j) =
(
fαj ,βj (V(1), ~Z(1)), . . . , fαj ,βj (V(m), ~Z(m))

)
∈ [0, H]m for all j ∈ [N] and let

A = {a(j) | j ∈ [N]}. We have that ‖aj‖2 ≤ H
√
m for all j ∈ [N]. Applying Massart’s Lemma [33]

gives

R̂(F ,S) =
1

m
Eσ

[
sup
a∈A

m∑
i=1

σiai

]
≤ H

√
2 log(N)/m.

From this, the final sample complexity guarantee follows from standard Rademacher complexity
bounds [10] using the remaining δ/2 failure probability.

The proof of the second statement follows a nearly identical argument. The only step that
needs to be modified is the partitioning of the α parameter space. In this case, we use the
second statement from Theorem 4, which guarantees that for each index i ∈ [m], the expected
number of discontinuities of the function α 7→ seedα(V(i), ~Z(i)) for α ∈ [0, αh] (over the draw of
~Z ∼ Uniform([0, 1]k)) is O(nk log(n) log(αh log(R))). Applying Markov’s inequality and the union
bound, we have that with probability at least 1 − δ/2, for all i ∈ [m], the number of discontinu-
ities of α 7→ seedα(V(i), ~Z(i)) is O(mnk log(n) log(αh log(R))/δ). Now the rest of the argument is
identical to the proof for the first statement, except the number of rectangles in the partition is
N = O(m3nk log(n) log(αh log(R)) min(n3T , nk+3)/δ), which replaces 1/α` by log(R).

Computational efficiency In this section, we present an algorithm for tuning α whose running
time scales with the true number of discontinuities over the sample. Combined with Theorem 4,
this gives a bound on the expected running time of tuning α.

The high-level idea of our algorithm is to directly enumerate the set of centers that can possibly
be output by dα-sampling for a given clustering instance V and pre-sampled randomness ~Z. We
know from the previous section how to count the number of new breakpoints at any given state
in the algorithm, however, efficiently solving for the breakpoints poses a new challenge. From the
previous section, we know the breakpoints in α occur when Di(α)

Dn(α) = zt. This is an exponential

14

equation with n terms, and there is no closed-form solution for α. Although an arbitrary equation
of this form may have up to n solutions, our key observation is that if d1 ≥ · · · ≥ dn, then Di(α)

Dn(α)

must be monotone decreasing (from Lemma 3), therefore, it suffices to binary search over α to find
the unique solution to this equation. We cannot find the exact value of the breakpoint from binary
search (and even if there was a closed-form solution for the breakpoint, it might not be rational),
however we can find the value to within additive error ε for all ε > 0. Now we show that the cost
function clusα,β(V) is (Hnk logR)-Lipschitz in α for a constant-size interval, therefore, it suffices

to run O
(

log Hn logR
ε

)
rounds of binary search to find a solution whose expected cost is within ε

of the optimal cost. This motivates Algorithm 2.

Lemma 7. Given any clustering instance V with maximum non-zero distance ratio R, ε > 0, and
α ∈ (0,∞) ∪ {∞}, P~Z(seedα(V, ~Z) 6= seedα+ε(V, ~Z)) ≤ min

(
2nk log n log

(
α+ε
α

)
, εnk logR

)
.

Proof. Given a clustering instance V, ε > 0, we will show that, over the draw of ~Z ∼ Uniform([0, 1]k),
there is low probability that seedα(V, ~Z) outputs a different set of centers than seedα+ε(V, ~Z). As-
sume in round t of dα-sampling and dα+ε-sampling, both algorithms have C as the current list of
centers. Given we draw zt ∼ [0, 1], we will show there is only a small chance that the algorithms
choose different centers in this round. Let I1, . . . , In be the intervals such that the next center chosen
by the algorithm with parameter α is vi whenever zt ∈ Ii and I ′1, . . . , I

′
n be the intervals for the algo-

rithm with parameter α+ε. First we will show that P~Z(seedα(V, ~Z) 6= seedα+ε(V, ~Z)) ≤ εnk logR.
Since the algorithms have an identical set of current centers, the distances d(v, C) are the same, but

the breakpoints of the intervals,
∑i
j=1 d(vj ,C)α∑n
j=1 d(vj ,C)α

differ slightly. If zt ∼ [0, 1] lands in Ii∩ I ′i, the dα and

dα+ε will both choose vi as the next center. Thus, we need to bound the size of
∑n

i=1(Ii\I ′i)∪(I ′i\Ii).
Recall the endpoint of interval i is Di(α)

Dn(α) , where Di =
∑i

j=1 d(vj , C)α. Thus, we want to bound∣∣∣ Di(α)
Dn(α) −

Di(α+ε)
Dn(α+ε)

∣∣∣, and we can use Lemma 16, which bounds the derivative of Di(α)
Dn(α) by logR, to

show
∣∣∣ Di(α)
Dn(α) −

Di(α+ε)
Dn(α+ε)

∣∣∣ ≤ ε logR.

Therefore, we have

n∑
i=1

(Ii \ I ′i) ∪ (I ′i \ Ii) ≤
n∑
i=1

∣∣∣∣Di(α)

Dn(α)
− Di(α+ ε)

Dn(α+ ε)

∣∣∣∣
≤

n∑
i=1

ε · logR

≤ εn logR

Therefore, assuming dα-sampling and dα+ε-sampling have chosen the same centers so far, the
probability that they choose different centers in round t is ≤ εn logR. Over all rounds, the proba-
bility the outputted set of centers is not identical, is ≤ εnk logR.

Now we will show that P~Z(seedα(V, ~Z) 6= seedα+ε(V, ~Z)) ≤ 2nk log n log
(
α+ε
α

)
. We will bound∣∣∣ Di(α)

Dn(α) −
Di(α+ε)
Dn(α+ε)

∣∣∣ a different way, again using Lemma 16. We have that

Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

≤ 2 log n

∫ α`+1

α`

1

α
dα ≤ 2 log n (logα) |α`+1

α` = 2 log n(logα`+1 − logα`).

Using this inequality and following the same steps as above, we have

n∑
i=1

(Ii \ I ′i) ∪ (I ′i \ Ii) ≤
n∑
i=1

∣∣∣∣Di(α)

Dn(α)
− Di(α+ ε)

Dn(α+ ε)

∣∣∣∣
15

≤
n∑
i=1

2 log n(logα`+1 − logα`)

≤ 2n log n log

(
α+ ε

α

)
Over all rounds, the probability the outputted set of centers is not identical, is ≤ nk log n log

(
α+ε
α

)
.

This completes the proof.

In order to analyze the runtime of Algorithm 2, we consider the execution tree of dα-sampling
run on a clustering instance V with randomness ~Z. This is a tree where each node is labeled by a
state (i.e., a sequence C of up to k centers chosen so far by the algorithm) and the interval A of α
values that would result in the algorithm choosing this sequence of centers. The children of a node
correspond to the states that are reachable in a single step (i.e., choosing the next center) for some
value of α ∈ A. The tree has depth k, and there is one leaf for each possible sequence of k centers
that dα-sampling will output when run on V with randomness ~Z. Our algorithm enumerates these
leaves up to an error ε in the α values, by performing a depth-first traversal of the tree.

Theorem 8. Let D be a distribution over clustering instances with k clusters and at most n points
and let S = {(V(i), ~Z(i))}mi=1 be an i.i.d. sample from D × Uniform([0, 1]k). Fix any ε > 0, δ > 0,
a parameter β ∈ [1,∞], and a parameter interval [α`, αh], and run Algorithm 2 on each sample
instance and collect the breakpoints (boundaries between the intervals Ai). Let α be the lowest cost
breakpoint across all instances. Then the following statements hold:

1. If α` > 0 and the sample is of size m = O
((

H
ε

)2 (
log(nkδ) + log(log(αhα`))

))
, then with probability

at least 1− δ we have |clusᾱ,β(S)−minα`≤α≤αh clusα,β(S)| < ε and the total running time of

finding the best breakpoint is O
(
mn2k2 log

(
α`
αh

)
log
(
nH log

(
α`
αh

)
/ε
))

.

2. If α` = 0 but the maximum ratio of any non-zero distances for all instances in the support of D is

bounded by R and the sample is of size m = O
((

H
ε

)2 (
log(nkδ) + log(log(αh log(R)))

))
, then with

probability at least 1− δ we have |clusᾱ,β(S)−min0≤α≤αh clusα,β(S)| < ε and the total running
time of finding the best breakpoint is O

(
mn2k2(log(αh log(R)) log (nH log (log(αh logR)) /ε)

)
.

Proof. We argue that one of the breakpoints outputted by Algorithm 2 on the sample is approx-
imately optimal over all α ∈ [α`, αh]. Formally, denote α̂ as the value with the lowest empirical
cost over the sample, and ᾱ as the value with the lowest empirical cost over the sample, among
the set of breakpoints returned by the algorithm. We define α∗ as the value with the minimum
true cost over the distribution. We also claim that for all breakpoints α, there exists a breakpoint
α̂ outputted by Algorithm 2 such that |α − α̂| < ε

5n2k logn log
(
αh
α`

) . We will prove this claim at the

end of the proof. Assuming the claim is correct, we denote α′ as a breakpoint outputted by the
algorithm such that |α̂− α′| < ε

5n2k logn log
(
αh
α`

) .

For the rest of the proof, denote E
V∼D

[clusα,β (V)] = true(α) and 1
m

∑m
i=1 clusα,β

(
V(i), ~Z(i)

)
=

sample(α) since beta, the distribution, and the sample are all fixed.
By construction, we have sample(α̂) ≤ sample(α∗) and sample(ᾱ) ≤ sample(α′). By The-

orem 6, with probability > 1 − δ, for all α (in particular, for ᾱ, α̂, α∗, and α′), we have
|sample(α)− true(α)| < ε/5. Finally, by Lemma 7, we have

|α̂− α′| < ε

5n2k log n log
(
αh
α`

) =⇒
∣∣true(α̂)− true(α′)

∣∣ < ε/5.

16

Using these five inequalities for α′, α̂, ᾱ, and α∗, we can show the desired outcome as follows.

true(ᾱ)− true(α∗) ≤ (true(ᾱ)− sample(ᾱ)) + sample(ᾱ)− (true(α∗)− sample(α∗))− sample(α∗)

≤ ε/5 + sample(α′) + ε/5− sample(α̂)

≤
(
sample(α′)− true(α′)

)
+
(
true(α′)− true(α̂)

)
+ (true(α̂)− sample(α̂)) +

2ε

5
≤ ε.

Now we will prove the claim that for all breakpoints α, there exists a breakpoint α̂ outputted
by Algorithm 2 such that |α − α̂| < ε

5n2k logn log
(
αh
α`

) . Denote ε′ = ε

5n2k logn log
(
αh
α`

) . We give an

inductive proof. Recall that the algorithm may only find the values of breakpoints up to additive
error ε′, since the true breakpoints may be irrational and/or transcendental. Let T̂t denote the
execution tree of the algorithm after round t, and let Tt denote the true execution tree on the
sample. That is, Tt is the execution tree as defined earlier this section, T̂t is the execution tree
with the algorithm’s ε′ imprecision on the values of alpha. Note that if a node in Tt represents an
α-interval of size smaller than ε′, it is possible that T̂t does not contain the node. Furthermore, T̂t
might contain spurious nodes with alpha-intervals of size smaller than ε′.

Our inductive hypothesis has two parts. The first part is that for each breakpoint α in Tt,
there exists a breakpoint h(α) in T̂t such that |α− h(α)| < ε′. For the second part of our inductive
hypothesis, we define Bt =

⋃
α breakpoint ([α, h(α)] ∪ [h(α), α]), the set of “bad” intervals. Note that

for each α, one of [α, h(α)] and [h(α), α] is empty. Then define Gt = [α`, αh] \Bt, the set of “good”
intervals. The second part of our inductive hypothesis is that the set of centers for α in Tt is the
same as in T̂t, as long as α ∈ Gt. That is, if we look at the leaf in Tt and the leaf in T̂t whose
alpha-intervals contain α, the set of centers for both leaves are identical. Now we will prove the
inductive hypothesis is true for round t+1, assuming it holds for round t. Given Tt and T̂t, consider
a breakpoint α from Tt+1 introduced in round t+ 1.

Case 1: α ∈ Gt. Then the algorithm will recognize there exists a breakpoint, and use binary
search to output a value h(α) such that |α− h(α)| < ε′. The interval [α, h(α)] ∪ [h(α), α] is added
to Bt+1, but the good intervals to the left and right of this interval still have the correct centers.

Case 2: α ∈ Bt. Then there exists an interval [α′, h(α′)]∪[h(α′), α] containing α. By assumption,
this interval is size < ε′, therefore, we set h(α′) = h(α), so there is a breakpoint within ε′ of α.

Therefore, for each breakpoint α in Tt+1, there exists a breakpoint α̂ in T̂t+1 such that |α− α̂| <
ε′. Furthermore, for all α ∈ Gt+1, the set of centers for α in Tt+1 is the same as in T̂t+1. This
concludes the inductive proof.

Now we analyze the runtime of Algorithm 2. Let (C,A) be any node in the algorithm, with
centers C and alpha interval A = [α`, αh]. Sorting the points in V according to their distance to
C has complexity O(n log n). Finding the points sampled by dα-sampling with α set to α` and
αh costs O(n) time. Finally, computing the alpha interval Ai for each child node of (C,A) costs

O(n log
nH log

(
αh
α`

)
ε) time, since we need to perform log

nkH log
(
αh
α`

)
ε iterations of binary search on

α 7→ Di(α)
Dn(α) and each evaluation of the function costs O(n) time. We charge this O(n log

nH log
(
αh
α`

)
ε)

time to the corresponding child node. If there are N nodes in the execution tree, summing this

cost over all nodes gives a total running time of O(N · n log
nH log

(
αh
α`

)
ε)). If we let #I denote the

total number of α-intervals for V, then each layer of the execution tree has at most #I nodes, and

the depth is k, giving a total running time of O(#I · kn log
nH log

(
αh
α`

)
ε).

For the case when α` > 0, Theorem 4 guarantees that we have E[#I] ≤ 8nk log(n) log
(
αh
α`

)
.

17

Therefore, the expected runtime of Algorithm 2 is O

(
n2k2 log

(
αh
α`

)(
log

nH log
(
αh
α`

)
ε

))
. The case

where α` = 0 but there is a bound on the maximum ratio between any nonzero pair of distances is
similar, except we use the appropriate statements from Theorem 4 and Lemma 7.

Since we showed that dα-sampling is Lipschitz as a function of α in Lemma 7, it is also possi-
ble to find the best α parameter with sub-optimality at most ε by finding the best point from
a discretization of [0, αh] with step-size s = ε/(Hn2k logR). The running time of this algo-
rithm is O(n3k2H logR/ε), which is significantly slower than the efficient algorithm presented
in this section. Intuitively, Algorithm 2 is able to binary search to find each breakpoint in
time O(log nkH logR

ε), whereas a discretization-based algorithm must check all values of alpha uni-
formly, so the runtime of the discretization-based algorithm increases by a multiplicative factor of

O

(
nH logR

ε ·
(

log nH logR
ε

)−1
)

.

Generalized families Theorems 4 and 8 are not just true specifically for (α, β)-Lloyds++; they
can be made much more general. In this section, we show these theorems are true for any family
of randomized initialization procedures which satisfies a few simple properties. First we formally
define a parameterized family of randomized initialization procedures.

Definition 9. Given a clustering instance C = (V, d) and a function p : V × 2V 7→ [0, 1], a p-
randomized initialization method is an iterative method such that C is initialized as empty and
one new center is added in each round, and in round t, each point v is chosen as a center with
probability p(v, C). Note that for all C ⊆ V such that |C| ≤ k, we must have

∑
v∈V p(v, C) = 1.

An α-parameterized family is a set of p-randomized initialization methods pα : V × 2V 7→ [0, 1].

We will show how to prove general upper bounds on α-parameterized families of p-randomized
initialization methods as long as the functions pα satisfy a few simple properties.

Just as with (α, β)-Lloyds++, we specify precisely how we execute the randomized steps of the
algorithm. We assume the algorithm draws a vector ~Z = {z1, . . . , zk} from [0, 1]k uniformly at
random. Then in round t, the algorithm partitions [0, 1] into n intervals, where there is an interval
Ivi for each vi with size equal to the probability pα(vi, C) of choosing vi in round t where C is the
set of centers at the start of round t. Then the algorithm chooses the point vi as a center, where
zt ∈ Ivi .

Now we will show how to upper bound the number of discontinuities of the output as a function
of α, which will lead to sample-efficient and computationally-efficient meta-algorithms. We start
with a few definitions. Without loss of generality, we assume that in each round we rename the
points so that they satisfy pα`(v1, C) ≥ · · · ≥ pα`(vn, C). For a given C and vi, we define the partial
sums Si,C(α) =

∑i
j=1 pα(vi, C). Let the set of permissible values of α be the interval [α`, αh]. Let

seedα(V, ~Z, p) denote the sequence of centers returned with randomness ~Z ∈ [0, 1]k and parameter

α. Let Dp = maxi,C,v,α

(
∂Si,C(α)

∂α

)
.

Theorem 10. Given an α-parameterized family such that (1) for all 1 ≤ i ≤ k and C ⊆ V such
that |C| ≤ k, each Si,C(α) is monotone increasing and continuous as a function of α, and (2) for
all 1 ≤ i ≤ j ≤ n and α ∈ (α`, αh), Si,C(α) ≤ Sj,C(α), then the expected number of discontinuities

of seedα(V, ~Z, p) as a function of α is O (nkDp(αh − α`)).

Note this theorem is a generalization of Theorem 4, since (α, β)-Lloyds++ is an α-parameterized
property with the properties (due to Lemma 3) and Dp = 4 log n. We give the proof of Theorem 10

18

in Appendix B, since it is similar to the proof of Theorem 4. Intuitively, a key part of the argument
is bounding the expected number of discontinuities in an arbitrary interval [α`, α`+1] for a current
set of centers C. If the algorithm chooses vj as a center at α` and vi at α`, then the only possible
centers are vi, . . . , vj . We show this key fact follows for any partial sum of probability functions as
long as they are monotone, continuous, and non-crossing. Furthermore, j − i is bounded by the
maximum derivative of the partial sums over [α`, α`+1], so the final upper bound scales with Dp.
We can also achieve a generalized version of Theorem 8.

Theorem 11. Given parameters 0 ≤ α` < αh, ε > 0, a sample S of size

m = O

((
H

ε

)2

log

(
αhnDp

δ

))

from
(
D × [0, 1]k

)m
, and an α-parameterized family satisfying properties (1) and (2) from The-

orem 10, run Algorithm 2 on each sample and collect all breakpoints (i.e., boundaries of the in-
tervals Ai). With probability at least 1 − δ, the breakpoint ᾱ with lowest empirical cost satisfies
|clusᾱ,β(S) − min0≤α≤αh clusα,β(S)| < ε. The total running time to find the best breakpoint is
O
(
mn2k2αhDp log

(
nH
ε

)
log n

)
.

5 Experiments

In this section, we empirically evaluate the effect of the α and β parameters on clustering cost for
real-world and synthetic clustering domains. We find that the optimal α and β parameters vary
significantly from domain to domain. We also find that the number of possible initial centers chosen
by dα-sampling scales linearly with n and k, suggesting our Theorem 4 is tight up to logarithmic
factors. Finally, we show the empirical distribution of α-interval boundaries.

Experiment Setup. Our experiments evaluate the (α, β)-Lloyds++ family of algorithms on
several distributions over clustering instances. Our clustering instance distributions are derived
from classification datasets. For each classification dataset, we sample a clustering instance by
choosing a random subset of k labels, sampling N examples belonging to each of the k chosen
labels. The clustering instance then consists of the kN points, and the target clustering is given
by the ground-truth labels. This sampling distribution covers many related clustering tasks (i.e.,
clustering different subsets of the same labels). We evaluate clustering performance in terms of
the Hamming distance to the optimal clustering, or the fraction of points assigned to different
clusters by the algorithm and the target clustering. Formally, the Hamming distance between
the outputted clustering {C1, . . . , Ck} and the optimal clustering {C∗1 , . . . , C∗k} is measured by

minσ
1
n

∑k
i=1Ci \C∗σ(i), where the minimum is taken over all permutations σ of the cluster indices.

In all cases, we limit the algorithm to performing 3 iterations of β-Lloyds. We use the following
datasets:

MNIST: We use the raw pixel representations of the subset of MNIST [31]. For MNIST we set
k = 5, N = 100, so each instance consists of n = 500 points.

CIFAR-10: The CIFAR-10 dataset [28] is an image dataset with 10 classes. Following [29] we
include 50 randomly rotated and cropped copies of each example. We extract the features from
the Google Inception network [41] using layer in4d. For CIFAR10 we set k = 5, N = 100, so each
instance consists of n = 500 points.

19

1 4 7 10
0
2
4
6
8

10
12
14
16
18
20

0.44

0.45

0.46

0.47

0.48

0.49

0.50

(a) MNIST

1 4 7 10
0
2
4
6
8

10
12
14
16
18
20

0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570

(b) CIFAR-10

1 4 7 10
0
2
4
6
8

10
12
14
16
18
20

0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

(c) CNAE-9

1 4 7 10
0
2
4
6
8

10
12
14
16
18
20

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

(d) Gaussian Grid

Figure 4: Average Hamming error of (α, β)-Lloyds++ as a function of α and β.

CNAE-9: The CNAE-9 [16] dataset consists of 1080 documents describing Brazilian companies
categorized into 9 categories. Each example is represented by an 875-dimensional vector, where
each entry is the frequency of a specific word. For CNAE-9 we set k = 4 and N = 100, so each
clustering instance has n = 400 points.

Gaussian Grid: We also use a synthetic 2-dimensional clustering instance where points are sampled
from a mixture of 9 standard Gaussians arranged in a 3 × 3 grid with a grid stride of 5. For the
Gaussian Grid dataset, we set k = 4 and N = 120, so each clustering instance has n = 500 points.

Parameter Study. Our first experiment explores the effect of the α and β parameters. For
each dataset, we sampled m = 50, 000 sample clustering instances and run (α, β)-Lloyds++ for
all combinations of 50 values of α evenly spaced in [0, 20] and 25 values of β evenly spaced in
[1, 10]. Figure 4 shows the average Hamming error on each dataset as a function of α and β. The
optimal parameters vary significantly across the datasets. On MNIST and the Gaussian grid, it is
best to set α to be large, while on the remaining datasets the optimal value is low. Neither the
k-means++ algorithm nor farthest-first traversal have good performance across all datasets. On
the Gaussian grid example, k-means++ has Hamming error 6.8% while the best parameter setting
only has Hamming error 1.3%.

Next, we use Algorithm 2 to tune α without discretization. In these experiments we set β = 2
and modify step 6 of Algorithm 1 to compute the mean of each cluster, rather than the point in
the dataset minimizing the sum of squared distances to points in that cluster (as is usually done
in Lloyd’s method). This modification improves running time and also the Hamming cost of the
resulting clusterings. For each dataset, we sample m = 50, 000 sample clustering instances and
divide them evenly into testing and training sets (for MNIST we set m = 250, 000 instead). We
plot the average Hamming cost as a function of α on both the training and testing sets. The
optimal value of α varies between the different datasets, showing that tuning the parameters leads
to improved performance. Interestingly, for MNIST the value of α with lowest Hamming error is
α = 4.1 which does not correspond to any standard algorithm. Moreover, in each case the difference
between the training and testing error plots is small, supporting our generalization claims.

Number of α-Intervals. Next we report the number of α-intervals in the above experiments.
On average, MNIST had 826.1 intervals per instance, CIFAR-10 had 994.5 intervals per instance,
CNAE-9 had 855.9 intervals per instance, and the Gaussian grid had 953.4 intervals per instance.

In Figure 6 we evaluate how the number of α intervals grows with the clustering instance size
n. For n ∈ {50, 100, 150, . . . , 1000}, we modify the above distributions by setting N = n/k and plot

20

0 5 10 15 20
0.390

0.395

0.400

0.405

0.410
Ha

m
m

in
g

Co
st

test
train

(a) MNIST

0 5 10 15 20
0.48

0.49

0.50

0.51

0.52

Ha
m

m
in

g
Co

st

test
train

(b) CIFAR-10

0 5 10 15 20
0.4

0.5

0.6

0.7

Ha
m

m
in

g
Co

st

test
train

(c) CNAE-9

0 5 10 15 20
0.00

0.05

0.10

0.15

Ha
m

m
in

g
Co

st

test
train

(d) Gaussian Grid

Figure 5: Average Hamming error of (α, β)-Lloyds++ as a function of α for β = 2.

200 400 600 800 1000
Number of points

0

500

1000

1500

2000

Nu
m

be
r o

f a
lp

ha
 in

te
rv

al
s MNIST

CIFAR10
CNAE-9
Gaussian Grid

Figure 6: The number of α-intervals as a function of clustering instance size.

the average number of α-intervals on m = 5000 samples. For all four datasets, the average number
of intervals grows nearly linearly with n.

Distribution of α-decision Points. Finally, for each dataset, Figure 7 shows a histogram of
the distribution of the α-interval boundaries.

6 Conclusion

We define an infinite family of algorithms generalizing Lloyd’s method, with one parameter con-
trolling the initialization procedure, and another parameter controlling the local search procedure.
This family of algorithms includes the celebrated k-means++ algorithm, as well as the classic

0 10 20
0

50

100

-b
ou

nd
ar

y
co

un
t

(a) MNIST

0 10 20
0

20

40

-b
ou

nd
ar

y
co

un
t

(b) CIFAR-10

0 10 20
0

50

100

-b
ou

nd
ar

y
co

un
t

(c) CNAE-9

0 10 20
0

100

200

300

-b
ou

nd
ar

y
co

un
t

(d) Gaussian Grid

Figure 7: Distribution of α-decision points.

21

farthest-first traversal algorithm. We provide a sample efficient and computationally efficient algo-
rithm to learn a near-optimal parameter over an unknown distribution of clustering instances, by
developing techniques to bound the expected number of discontinuities in the cost as a function
of the parameter. We give a thorough empirical analysis, showing that the value of the optimal
parameters transfer to related clustering instances. We show the optimal parameters vary among
different application domains, and the optimal parameters often significantly improve the error
compared to existing algorithms such as k-means++ and farthest-first traversal.

7 Acknowledgments

This work was supported in part by NSF grants CCF-1535967, IIS-1618714, an Amazon Research
Award, a Microsoft Research Faculty Fellowship, a National Defense Science & Engineering Grad-
uate (NDSEG) fellowship, and by the generosity of Eric and Wendy Schmidt by recommendation
of the Schmidt Futures program.

References

[1] Margareta Ackerman, Shai Ben-David, and David Loker. Towards property-based classification
of clustering paradigms. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 10–18, 2010.

[2] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees
for k-means and euclidean k-median by primal-dual algorithms. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS), 2017.

[3] Kohei Arai and Ali Ridho Barakbah. Hierarchical k-means: an algorithm for centroids initial-
ization for k-means. Reports of the Faculty of Science and Engineering, 36(1):25–31, 2007.

[4] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.
Journal of the ACM (JACM), 58(5):19, 2011.

[5] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings of
the twenty-second annual symposium on Computational geometry, pages 144–153. ACM, 2006.

[6] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the Annual Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

[7] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004.

[8] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: a statistical
framework. In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence,
pages 82–91, 2015.

[9] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems. In
Proceedings of the Annual Conference on Learning Theory (COLT), pages 213–274, 2017.

[10] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

22

[11] Jaros law Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization. In
Proceedings of the Annual Symposium on Discrete Algorithms (SODA), pages 737–756, 2015.

[12] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approx-
imation algorithm for the k-median problem. In Proceedings of the Annual Symposium on
Theory of Computing (STOC), pages 1–10, 1999.

[13] Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the Annual Symposium on Theory of Computing
(STOC), pages 9–21. ACM, 2016.

[14] Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering.
Journal of Computer and System Sciences, 70(4):555–569, 2005.

[15] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society, pages 1–38, 1977.

[16] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, NY, USA:, 2001.

[18] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In Proceedings of the International Conference on Machine Learning (ICML), 2015.

[19] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

[20] Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? Algorithmica, 41(3):185–
202, 2005.

[21] Richard E Higgs, Kerry G Bemis, Ian A Watson, and James H Wikel. Experimental designs
for selecting molecules from large chemical databases. Journal of chemical information and
computer sciences, 37(5):861–870, 1997.

[22] Wenhao Jiang and Fu-lai Chung. Transfer spectral clustering. In Proceedings of the Annual
Conference on Knowledge Discovery and Data Mining (KDD), pages 789–803, 2012.

[23] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[24] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster
analysis, volume 344. John Wiley & Sons, 2009.

[25] Jon M Kleinberg. An impossibility theorem for clustering. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS), pages 463–470, 2003.

[26] Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. An online
hierarchical algorithm for extreme clustering. In Proceedings of the Annual Conference on
Knowledge Discovery and Data Mining (KDD), 2017.

23

[27] Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Trans-
actions on Information Theory, 47(5):1902–1914, 2001.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 1097–1105, 2012.

[30] Stuart Lloyd. Least squares quantization in pcm. transactions on information theory,
28(2):129–137, 1982.

[31] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines
using selective sampling. Large scale kernel machines, pages 301–320, 2007.

[32] James MacQueen et al. Some methods for classification and analysis of multivariate obser-
vations. In symposium on mathematical statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA, 1967.

[33] Pascal Massart. Some applications of concentration inequalities to statistics. In Annales-
Faculte des Sciences Toulouse Mathematiques, volume 9, pages 245–303. Université Paul
Sabatier, 2000.

[34] Joel Max. Quantizing for minimum distortion. IRE Transactions on Information Theory,
6(1):7–12, 1960.

[35] Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness
of lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

[36] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric rea-
soning. In Proceedings of the Annual Conference on Knowledge Discovery and Data Mining
(KDD), pages 277–281, 1999.

[37] José M Pena, Jose Antonio Lozano, and Pedro Larranaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern recognition letters, 20(10):1027–1040,
1999.

[38] Kim D Pruitt, Tatiana Tatusova, Garth R Brown, and Donna R Maglott. Ncbi reference
sequences (refseq): current status, new features and genome annotation policy. Nucleic acids
research, 40(D1):D130–D135, 2011.

[39] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught
learning: transfer learning from unlabeled data. In Proceedings of the International Conference
on Machine Learning (ICML), pages 759–766, 2007.

[40] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning transferrable
representations for unsupervised domain adaptation. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), pages 2110–2118, 2016.

[41] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

24

[42] Timo Tossavainen. On the zeros of finite sums of exponential functions. Australian Mathe-
matical Society Gazette, 33(1):47–50, 2006.

[43] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[44] Andrea Vattani. K-means requires exponentially many iterations even in the plane. Discrete
& Computational Geometry, 45(4):596–616, 2011.

[45] Qiang Yang, Yuqiang Chen, Gui-Rong Xue, Wenyuan Dai, and Yong Yu. Heterogeneous
transfer learning for image clustering via the social web. In Proceedings of the Conference on
Natural Language Processing, pages 1–9, 2009.

25

Table 1: Notation table

Symbol Description

V = (V, d, k) Clustering instance of points V with distance metric d, number of clusters k

n n = |V |, the size of the point set

k k=number of clusters in V
C∗ = {C∗1 , . . . , C∗k} Optimal clusters according to an objective such as k-means

(α, β)-Lloyds++ Clustering algorithm with parameters α ∈ [0,∞) and β ∈ [1,∞)
~Z ~Z = {z1, . . . , zk} ∈ [0, 1]k is the random seed for the (α, β)-Lloyds++ algorithm

clusα,β

(
V, ~Z

)
Cost of the clustering outputted by (α, β)-Lloyds++

with randomness ~Z ∈ [0, 1]k

clusα,β(V) clusα,β(V) = E~Z∼[0,1]k

[
clusα,β

(
V, ~Z

)]
seedα(V, ~Z) the output centers of phase 1 of Algorithm 1 run on V with vector ~Z

lloydsβ(V, C, T) cost of the outputted clustering from phase 2 of Algorithm 1

on instance V with initial centers C, and a maximum of T iterations.

H H= maximum loss for any clustering instance V
s s= the minimum ratio d1

d2
between two distances d1 > d2 in the point set

dj dj = d(c, j) only when the center c is clear from context

R R = maxu,v,x,y∈V
d(u,v)
d(x,y) (the ratio of the largest to smallest distances)

Di(α) Di(α) =
∑i

j=1 d
α
j

#I The number of breakpoints of (α, β)-Lloyds++

(the number of discontinuities in clusα,β

(
V, ~Z

)
)

#It,` The number of breakpoints in round t and interval [α`, α`+1] (the number
of times the choice of t’th center changes as we vary α along [α`, α`+1])

Et,j the event that
Dj(α`)
Dn(α`)

< zt <
Di(α`+1)
Dn(α`+1)

(we achieve the maximum number of breakpoints given vi is the t’th center)

E′t,j the event that
Di(α`+1)
Dn(α`+1) < zt <

Dj+1(α`)
Dn(α`)

(we do not achieve the max number of breakpoints given vi is the t’th center)

A Table of Notation

B Details from Section 4

In this section, we give details and proofs from Section 4.

Lemma 1. For any clustering instance V = (V, d, k) and δ > 0, if α > log
(
nk
δ

)
/ log s, where s de-

notes the minimum ratio d1/d2 between two distances d1 > d2 in the point set, then P~Z(seedα(V, ~Z) =

seed∞(V, ~Z)) ≥ 1− δ.

Proof. Given such a clustering instance V = (V, d, k) and α, first we note that farthest-first traversal
(i.e. d∞-sampling) and dα-sampling both start by picking a center uniformly at random from
V . Assume both algorithms have chosen initial center v1, and let C = {v1} denote the set of
current centers. In rounds 2 to n, farthest-first traversal deterministically chooses the center u

26

which maximizes dmin(u,C) (breaking ties uniformly at random). We will show that with high
probability, in every round, dα-sampling will also choose the center maximizing dmin(u,C) or break
ties at random. In round t, let dt = maxu∈V dmin(u,C) (assuming C are the first t−1 centers chosen
by farthest-first traversal). Let d′t denote the largest distance smaller than dt, so by assumption,
dt > s · d′t. Assume there are x points whose minimum distance to C is dt. Then the probability
that dα-sampling will fail to choose one of these points is at most

(n− x)d′αt
(n− x)d′αt + x(sd′t)

α
≤ n− x
n− x+ x · sα

≤ n

sα

Over all k rounds of the algorithm, the probability that dα-sampling will deviate from farthest-
first traversal (assuming they start with the same first choice of a center and break ties at random
in the same way) is at most nk

sα , and if we set this probability smaller than δ and solve for α, we
obtain

α >
log
(
nk
δ

)
log s

.

Now we define a common stability assumption called separability [26, 38], which states that
there exists a value r such that all points in the same cluster have distance less than r and all
points in different clusters have distance greater than r.

Definition 12. A clustering instance satisfies (1 + c)-separation if (1 + c) maxi|u,v∈Ci d(u, v) <
minj 6=j′|u∈Cj ,v∈Cj′ d(u, v).

Now we show that under (1 + c)-separation, dα-sampling will give the same output as farthest-
first traversal with high probability if α > log n, even for c = .1.

Lemma 13. Given a clustering instance V satisfying (1 + c)-separation, and 0 < δ, then if α >
1
c ·
(
log n+ log 1

δ

)
, with probability > 1 − δ, dα-sampling with Lloyd’s algorithm will output the

optimal clustering.

Proof. Given V satisfying (1+c)-separation, we know there exists a value r such that for all i, for all
u, v ∈ Ci, d(u, v) < r, and for all u ∈ Cj , v ∈ Cj′ 6=j , d(u, v) > (1 + c)r. WLOG, let r = 1. Consider
round t of dα-sampling and assume that each center v in the current set of centers C is from a
unique cluster in the optimal solution. Now we will bound the probability that the center chosen in
round t is not from a unique cluster in the optimal solution. Given a point u from a cluster already
represented in C, there must exist v ∈ C such that d(u, v) < 1, so dmin(u,C) < 1. Given a point
u from a new cluster, it must be the case that dmin(u,C) > (1 + c). The total number of points
in represented clusters is < n. Then the probability we pick a point from an already represented

cluster is ≤ tn
tn+cα . If we set tn

tn+cα ≤
δ
k and solve for α, we obtain α >

logn+log 1
δ

log c ≤ 1
c ·
(
log n+ log 1

δ

)
.

Since this is true for an arbitrary round t, and there are k rounds in total, we may union bound
over all rounds to show the probability dα-sampling outputting one center per optimal clustering
is > 1− δ. Then, using (1 + c)-separation, the Voronoi tiling of these centers must be the optimal
clustering, so Lloyd’s algorithm converges to the optimal solution in one step.

27

Next, we give the formal proof of Theorem 2.

Theorem 2 (restated). For α∗ ∈ [.01,∞) ∪ {∞} and β∗ ∈ [1,∞) ∪ {∞}, there exists a
clustering instance V whose target clustering is the optimal `β∗ clustering, such that clusα∗,β∗(V) <
clusα,β(V) for all (α, β) 6= (α∗, β∗).

Proof. Consider α∗, β∗ ∈ [0,∞) ∪ {∞}. The clustering instance consists of 6 clusters, C1, . . . , C6.
The target clustering will be the optimal `β∗ objective. The basic idea of the proof is as follows.

First, we show that for all β and α 6= α∗, clusα∗,β(V) < clusα,β(V). We use clusters C1, . . . , C4

to accomplish this. We set up the distances so that dα
∗

sampling is more likely to sample one point
per cluster than any other value of α. If the sampling does not sample one point per cluster, then
it will fall into a high-error local minima trap that β-Lloyd’s method cannot escape, for any value
of β. Therefore, dα

∗
sampling is more effective than any other value of α.

Next, we use clusters C5 and C6 to show that if we start with one center in C5 and one in
C6, then β∗-Lloyd’s method will strictly outperform any other value of β. We accomplish this by
adding three choices of centers for C5. Running β∗-Lloyd’s method will return the correct center,
but any other value of β will return suboptimal centers which incur error on C5 and C6. Also, we
show that Lloyd’s method returns the same centers on C1, . . . , C4, independent of β.

For the first part of the proof, we define three cliques (see Figure 1). The first two cliques are C1

and C2, and the third clique is C3 ∪ C4. C1 contains w1 points at distance x > 1, and C2 contains
w2 points at distance 1

x . We set w2 = x2α∗w1. The last clique contains w points at distance 1.
Since the cliques are very far apart, the first three sampled centers will each be in a different clique,
with high probability (for α > .01). The probability of sampling a 4th center x4 in the third clique,
for α = α∗ + δ is equal to

w

w + (xα∗+δ + xα∗−δ)w2
.

Since xα
∗+δ + xα

∗−δ is minimized when δ = 0, this probability is maximized when α = α∗.
Now we show that the error will be much larger when x4 is not in the third clique. We add center
c1 which is distance x − ε to all points in C1. We also add centers b1 and b′1 which are distance
x− 2ε to B1 and B′1 such that B1 and B′1 form a partition of C1. Similarly, we add centers c2, b2,
and b′2 at distance 1

x − ε and 1
x − 2ε to C2, B2, and B′2, respectively, such that B2 and B′2 form a

partition of C2. Finally, we add c3 and c4 which are distance .5 to C3 and C4, respectively, and we
add b3 which is distance 1− ε to C3 ∪C4. Then the optimal centers for any β must be c1, c2, c3, c4,
and this will be the solution of β-Lloyd’s method, as long as the sampling procedure returned one
point in the first two cliques, and two points in the third clique. If the sampling procedure returns
two points in the first clique or second clique, then β-Lloyd’s method will return b1, b

′
1, c2, b3 or

c1, b2, b
′
2, b3, respectively. This will incur error w/2 + w1/2 or w/2 + w2/2, since we set the target

clustering to be the optimal `β∗ objective which is equal to {C1, C2, C3, C4}. Note that we have
set up the distances so that Lloyd’s method is independent of β. Therefore, the expected error is
equal to

w

w + (xα∗+δ + xα∗−δ)w2
· (w/2 + min(w1, w2)/2).

This finishes off the first part of the proof. Next, we construct C5 and C6 so that β∗-Lloyd’s
method will return the best solution, assuming the sampling returned one point in C5 and C6.
Later we will show how adding these clusters does not affect the previous part of the proof. We
again define three cliques. The first clique is size 2

3w5 and distance .1, the second clique is size 1
3w5

and distance .1, and the third clique is size w6 and distance .1. The first two cliques are C5, and the

28

second clique is C6. The distance between the first two cliques is .2, and the distance between the
first two and the third clique is 1000. Now imagine the first two cliques are parallel to each other,
and there is a perpendicular bisector which contains possible centers for C5. I.e., we will consider
possible centers c for C5 where the `β cost of c is 2

3w5 · zβ + 1
3w5(.2− z)β for some 0 ≤ z ≤ .2, . For

β ∈ (0,∞), the β which minimizes the expression must be in [0, .2]. We set c5 corresponding to the
z which minimizes the expression for β∗, call it z∗. Therefore, β∗-Lloyd’s method will output c5.
We also set centers b5 and b′5 corresponding to z∗− ε and z∗+ ε. Therefore, any value of β slightly
above or below β∗ will return a different center. We add a center C6 at distance .1− ε to the third
clique. This is the only point we add, so it will always be chosen by β-Lloyd’s method for all β.
Finally, we add two points p1 and p2 in between the second and third cliques. We set the distances
as follows. d(c5, p1) = d(c6, p2) = 500 − ε, d(c5, p2) = d(c6, p1) = 500, d(b5, p1) = 500 + ε, and
d(b′5, p2) = 500 − 2ε. Since the weight of these two points are very small compared to the cliques,
these points will have no effect on the prior sampling and Lloyd’s method analyses. The optimal
clustering for the `β∗ objective is to add p1 to C5 and p2 to C6. However, running β-Lloyd’s method
for β smaller or larger than β∗ will return center b5 or b′5 and incur error 1 by mislabeling p1 or p2.

Since all cliques from both parts of the proof are 1000 apart, with high probability, the first 5
sampled points will be in cliques C1, C2, C3∪C4, C5, and C6. Since the cliques from the second part
of the proof are distance .2, while in the first part they were > 1

x apart, we can set the variables
x,w1, w2, w, w5, w6 so that with high probability, the sixth sampled point will not be in C5 or C6.
Therefore, the constructions in the second part do not affect the first part. This concludes the
proof.

Now we upper bound the number of discontinuities of seedα(V, ~Z). Recall that seedα(V, ~Z)
denotes the outputted centers from phase 1 of Algorithm 1 on instance V with randomness ~Z. For
the first phase, our main structural result is to show that for a given clustering instance and value
of β, with high probability over the randomness in Algorithm 1, the number of discontinuities of

the cost function clusα,β

(
V, ~Z

)
as we vary α ∈ [0, αh] is O(nk(log n)αh). Our analysis crucially

harnesses the randomness in the algorithm to achieve this bound. In contrast, a combinatorial
approach would only achieve a bound of nO(k), which is the total number of sets of k centers. For
completeness, we start with a combinatorial proof of O(nk+3) discontinuities. Although Theorem
15 is exponential as opposed to Theorem 4, it holds with probability 1 and has no dependence on
αh. First, we need to state a consequence of Rolle’s Theorem.

Theorem 14 (ex. [42]). Let f be a polynomial-exponential sum of the form f(x) =
∑N

i=1 aib
x
i ,

where bi > 0, ai ∈ R, and at least one ai is non-zero. The number of roots of f is upper bounded
by N .

Now we are ready to prove the combinatorial upper bound.

Theorem 15. Given a clustering instance V and vector ~Z ∈ [0, 1]k, the number of discontinuities
of seedα(V, ~Z) as a function of α over [0,∞) ∪ {∞} is O

(
min

(
nk+3, n22n

))
.

Proof. Given a clustering instance V and a vector ~Z, consider round t of the dα seeding algorithm.
Recall that the algorithm decides on the next center based on zt ∈ [0, 1], α, and the distance from
each point to the set of current centers. The idea of this proof will be to count the number of α
intervals such that within one interval, all possible decisions the algorithm makes are fixed. In round
t, there are

(
n
t−1

)
choices for the set of current centers C. We denote the points V = {v1, . . . , vn}

and WLOG assume the algorithm orders the intervals Iv1 , Iv2 , . . . , Ivn . Given a point vi ∈ V , it will

29

be chosen as the next center if and only if zt lands in its interval, formally,∑i−1
j=1 dmin(vj , C)α∑n
j=1 dmin(vj , C)α

< zt <

∑i
j=1 dmin(vj , C)α∑n
j=1 dmin(vj , C)α

By Theorem 14, these two equations have at most n + 1 roots each. Therefore, in the n + 2
intervals of α between each root, the decision whether or not to choose vi as a center in round t
is fixed. Note that the center set C, the point vi, and the number zt fixed the coefficients of the
equation. Since in round t, there are

(
n
t

)
choices of centers, then there are

∑k
t=1

(
n
k

)
· n · 2 total

equations which determine the outcome of the algorithm. Each equation has at most n+ 1 roots,
so it follows there are 1 +

∑k
t=1

(
n
k

)
·n · 2(n+ 1) ∈ O(n3 ·nk) total intervals of α along [0,∞)∪{∞}

such that within each interval, the entire outcome of the algorithm, seedα(V, ~Z), is fixed. Note
that we used k ·nk to bound the total number of choices for the set of current centers. We can also
bound this quantity by 2n, since each point is either a center or not a center. This results in a final
bound of O

(
min

(
nk+3, n22n

))
.

Lemma 3 (restated). Assume that v1, . . . , vn are sorted in decreasing distance from a set C of

centers. Then for each i = 1, . . . , n, the function α 7→ Di(α)
Dn(α) is monotone increasing and continuous

along [0,∞). Furthermore, for all 1 ≤ i ≤ j ≤ n and α ∈ [0,∞), we have Di(α)
Dn(α) ≤

Dj(α)
Dn(α) .

Proof. Recall that Di(α) =
∑i

j=1 dmin(v(i), C)α, where v1, . . . , vn are the points sorted in decreasing
order of distance to the set of centers C.

First we show that for each i, the function α 7→ Di(α)/Dn(α) is monotone increasing. Given
α1 < α2, we must show that for each i,

Di(α1)

Dn(α1)
≤ Di(α2)

Dn(α2)
.

This is equivalent to showing

Di(α1)Dn(α2) ≤ Di(α2)Dn(α1).

Using the shorthand notation dj = d(vj , C), we have

Di(α1)Dn(α2) =

 i∑
j=1

dα1
j

 n∑
j=1

dα2
j


=

 i∑
j=1

dα1
j

 i∑
j=1

dα2
j

+

 i∑
j=1

dα1
j

 n∑
j=i+1

dα2
j


=

 i∑
j=1

dα1
j

 i∑
j=1

dα2
j

+

i∑
j=1

n∑
k=i+1

dα1
j d

α2
k

≤

 i∑
j=1

dα1
j

 i∑
j=1

dα2
j

+

i∑
j=1

n∑
k=i+1

dα1
j d

α2
k

(
dj
dk

)α2−α1

=

 i∑
j=1

dα1
j

 i∑
j=1

dα2
j

+
i∑

j=1

n∑
k=i+1

dα2
j d

α1
k

30

=

 i∑
j=1

dα2
j

 n∑
j=1

dα1
j


=Di(α2)Dn(α1),

as required.
Next we show that α 7→ Di(α)/Dn(α) is continuous along [0,∞). Di(α) and Dn(α) are both

sums of simple exponential functions, so they are continuous. Dn(α) is always at least n along
[0,∞), therefore, Di(α)/Dn(α) is continuous.

Finally, we show that for all 1 ≤ i ≤ j ≤ n, we have Di(α)
Dn(α) ≤

Dj(α)
Dn(α) . Given 1 ≤ i ≤ j ≤ n, then

Dj(α)

Dn(α)
− Di(α)

Dn(α)
=
dαi+1 + · · ·+ dαj

Dn(α)
≥ 0

This completes the proof.

Now to work up to the proof of Theorem 4, we bound the derivative of Di(α)
Dn(α) .

Lemma 16. Given distances d1 ≥ · · · ≥ dn, for any index i and α > 0, we have∣∣∣∣ ∂∂α
(
Di(α)

Dn(α)

)∣∣∣∣ ≤ min

{
2

α
log n, log

d1

dn

}
.

Proof. For any i ∈ [n], the derivative of Di(α) is given by D′i(α) =
∑i

j=1 d
α
j log dj . With this,

∂

∂α

(
Di(α)

Dn(α)

)
=
D′i(α)Dn(α)−D′n(α)Di(α)

(Dn(α))2

=

(∑i
x=1 d

α
x log dx

)(∑n
y=1 d

α
y

)
−
(∑i

x=1 d
α
x

)(∑n
y=1 d

α
y log dy

)
∑n

x=1

∑n
y=1 d

α
xd

α
y

=

∑i
x=1

∑n
y=1

(
dαxd

α
y log dx

)
−
∑i

x=1

∑n
y=1

(
dαxd

α
y log dy

)∑n
x=1

∑n
y=1 d

α
xd

α
y

=

∑i
x=1

∑n
y=i+1

(
dαxd

α
y log dx

)
−
∑i

x=1

∑n
y=i+1

(
dαxd

α
y log dy

)∑n
x=1

∑n
y=1 d

α
xd

α
y

=

∑i
x=1

∑n
y=i+1

(
dαxd

α
y log

(
dx
dy

))
∑n

x=1

∑n
y=1 d

α
xd

α
y

(1)

At this point, because d1 ≥ · · · ≥ dn ≥ 0, we achieve our second bound as follows.∑i
x=1

∑n
y=i+1

(
dαxd

α
y log

(
dx
dy

))
∑n

x=1

∑n
y=1 d

α
xd

α
y

≤
∑i

x=1

∑n
y=i+1 d

α
xd

α
y∑n

x=1

∑n
y=1 d

α
xd

α
y

· log
d1

dn
≤ log

d1

dn
. (2)

Recall our goal is to bound the derivative by a minimum of two quantities. Equation 2 gives us the
second bound. To achieve the first bound, we bound Equation 1 a different way, as follows.∑i

x=1

∑n
y=i+1

(
dαxd

α
y log

(
dx
dy

))
∑n

x=1

∑n
y=1 d

α
xd

α
y

≤ 1

α
·

∑i
x=1 d

α
x

(∑n
y=i+1 d

α
y log

(
dαx
dαy

))
∑n

x=1

∑n
y=1 d

α
xd

α
y

(3)

To upper bound (3), we will show that
∑n

y=i+1 d
α
y log

(
dα1
dαy

)
≤ 2 log n

∑n
y=1 d

α
y . We bound each term

of the sum in one of two cases:

31

Case 1: If y is such that dαy ≥
dα1
n2 , then dαy log

(
dα1
dαy

)
≤ 2dαy log n.

Case 2: If y is usch that dαy <
dα1
n2 , then dαy log

(
dα1
dαy

)
≤ dα1

(
dαy
dα1

log
dα1
dαy

)
≤ 1

n · d
α
1 , where the last

inequality follows because 1
x log x ≤ 1

n for all x > n2.

Let C1 = {y ≥ i+ 1 | dαy ≥
dα1
n2 } and C2 = {y ≥ i+ 1 | dαy <

dα1
n2 } be the values of y corresponding

to Cases 1 and 2, respectively. Then we have

n∑
y=i+1

dαy · log
dαx
dαy

=
∑
y∈C1

dαy · log
dαx
dαy

+
∑
y∈C2

dαy · log
dαx
dαy
≤ 2 log(n)

n∑
y=2

dαy + dα1 ≤ 2 log(n)
n∑
y=1

dαy .

Substituting this into (3), we have that

∂

∂α

Di(α)

Dn(α)
≤ 2

α
log(n) ·

∑i
x=1

∑n
y=i+1 d

α
xd

α
y∑n

x=1

∑n
y=1 d

α
xd

α
y

≤ 2

α
log n,

as required.

Theorem 4. Fix any clustering instance V and let ~Z ∼ Uniform([0, 1]k). Then:

1. For any parameter interval [α`, αh] with α` > 0, the expected number of discontinuities of the
function α 7→ seedα(V, ~Z) on [α`, αh] is at most O(nk log(n) log(αh/α`)).

2. For any parameter interval [0, αh], the expected number of discontinuities of the function
α 7→ seedα(V, ~Z) on [0, αh] is at most O

(
nk log(n) log(αh log(R))

)
, where R is the largest

ratio between any pair of non-zero distances in V.

Proof. Given V, we will show that E[#I] ≤ nk log n log αh
α`

over [α`, αh] and E[#I] ≤ 4nk log n(1 +

logαh+log logD) over [0, αh], where #I denotes the total number of discontinuities of seedα(V, ~Z)
and the expectation is over the draw of ~Z ∈ [0, 1]k. Consider round t of a run of Algorithm 1.
Suppose at the beginning of round t, there are L possible states of the algorithm, e.g., L sets of α
such that within a set, the choice of the first t−1 centers is fixed. By Lemma 3, we can write these
sets as [α0, α1], . . . , [αL−1, αL], where 0 = α0 < · · · < αL = αh. Given one interval, [α`, α`+1], we
claim the expected number of new breakpoints #It,` by choosing a center in round t is bounded by

min (2n logR(α`+1 − α`), n− t− 1, 4n log n(logα`+1 − logα`)) .

Note that #It,` + 1 is the number of possible choices for the next center in round t using α in
[α`, α`+1].

The claim gives three different upper bounds on the expected number of new breakpoints, where
the expectation is only over zt (the uniformly random draw from [0, 1] used by Algorithm 1 in round
t), and the bounds hold for any given configuration of d1 ≥ · · · ≥ dn. To prove the first statement
in Theorem 4, we only need the last of the three bounds, and to prove the second statement, we
need all three bounds. First we show how to prove these statements assuming the claim, and later
we will prove the claim. We prove the first statement as follows. Let #I denote the total number
of discontinuities of seedα(V, ~Z) along [α`, αh].

EZ∈[0,1]k [#I] ≤ EZ∈[0,1]k

[
k∑
t=1

L−1∑
`=1

(#It,`)

]

32

≤
k∑
t=1

L−1∑
`=0

EZ∈[0,1]k [#It,`]

≤
k∑
t=1

L−1∑
`=0

EZ]in[0,1]k (4n log n (logα`+1 − logα`)))

≤
k∑
t=1

(4n log (logαh − logα`)))

≤ k
(

4n log n log
αh
α`

)
≤ nk log n log

αh
α`

Now we prove the second statement of Theorem 4. Let `∗ denote the largest value such that
α`∗ <

1
logR . Such an `∗ must exist because α0 = 0. Then we have α`∗ <

1
logR ≤ α`∗+1. We use three

upper bounds for three different cases of alpha intervals: the first `∗ intervals, interval [α`∗ , α`∗+1],
and intervals `∗ + 2 to L. Let #I denote the total number of discontinuities of seedα(V, ~Z) along
[0, αh].

EZ∈[0,1]k [#I] ≤ EZ∈[0,1]k

[
k∑
t=1

L−1∑
`=1

(#It,`)

]

≤
k∑
t=1

L−1∑
`=0

EZ∈[0,1]k [#It,`]

≤
k∑
t=1

(
`∗−1∑
`=0

EZ∈[0,1]k [#It,`] + EZ∈[0,1]k [#It,`∗] +
L−1∑

`=`∗+1

EZ∈[0,1]k [#It,`]

)

≤
k∑
t=1

(
`∗−1∑
`=0

(2n logD(α`+1 − α`)) + (n− t− 1) +
L−1∑

`=`∗+1

(4n log n(logα`+1 − logα`))

)

≤
k∑
t=1

(2n logD · α`∗ + n+ 4n log n (logαh − logα`∗))

≤
k∑
t=1

(
2n logD · 1

logD
+ n+ 4n log n

(
logαh − log

(
1

logD

)))
≤ k (2n+ n+ 4n log n(logαh + log logD))

≤ 4nk log n(1 + logαh + log logD).

Now we will prove the claim. Recall that for α-sampling, each point x receives an interval
along [0, 1] of size dαx

Dn(α) , so the number of breakpoints in round t along [α`, α`+1] corresponds to
the number of times zt switches intervals as we increase α from α` to α`+1. By Lemma 3, the
endpoints of these intervals are monotone increasing, continuous, and non-crossing, so the number
of breakpoints is exactly x − y, where x and y are the minimum indices s.t. Dx(α`)

Dn(α`)
> zt and

Dy(α`+1)
Dn(α`+1) > zt, respectively (see Figure 3). We want to compute the expected value of x− y for zt

uniform in [0, 1] (here, x and y are functions of zt).

33

We take the approach of analyzing each interval individually. One method for bounding
Ezt∈[0,1][x−y] is to compute the maximum possible number of breakpoints for each interval Ivj , for

all 1 ≤ j ≤ n. Specifically, if we let i denote the minimum index such that
Dj(α`)
Dn(α`)

<
Di(α`+1)
Dn(α`+1) , then

E[#It,`] ≤
n∑
j=1

P

(
Dj(α`)

Dn(α`)
< zt <

Dj+1(α`)

Dn(α`)

)
· (j − i+ 1)

≤
n∑
j=1

dα`j
Dn(α`)

· (j − i+ 1).

In this expression, we are using the worst case number of breakpoints within each bucket, j− i+ 1.
We cannot quite use this expression to obtain our bound; for example, when α`+1 − α` is

extremely small, j − i + 1 = 1, so this expression will give us E[#It,`] ≤ 1 over [α`, α`+1], but
we need to show the expected number of breakpoints is proportional to ε to prove the claim. To
tighten up this analysis, we will show that for each bucket, the probability (over zt) of achieving
the maximum number of breakpoints is low.

Assuming that zt lands in a bucket Ivj , we further break into cases as follows. Let i denote the

minimum index such that
Di(α`+1)
Dn(α`+1) >

Dj(α`)
Dn(α`)

. Note that i is a function of j, α`, and α`+1, but it is

independent of zt. If zt is less than
Di(α`+1)
Dn(α`+1) , then we have the maximum number of breakpoints

possible, since the algorithm chooses center vi−1 when α = α`+1 and it chooses center vj when
α = α`. The number of breakpoints is therefore j − i + 1, by Lemma 3. We denote this event

by Et,j , i.e., Et,j is the event that in round t, zt lands in Ivj and is less than
Di(α`+1)
Dn(α`+1) . If zt is

instead greater than
Di(α`+1)
Dn(α`+1) , then the algorithm chooses center vi when α = α`+1, so the number

of breakpoints is ≤ j − i. We denote this event by E′t,j (see Figure 3). Note that Et,j and E′t,j are
disjoint and Et,j ∪ E′t,j is the event that zt ∈ Ivj .

Within an interval Ivj , the expected number of breakpoints is

P (Et,j)(j − i+ 1) + P (E′t,j)(j − i) = P (Et,j ∪ Et,j)(j − i) + P (E′t,j).

We will show that j − i and P (Et,j) can both be bounded using Lemma 16, which finishes off the
claim.

First we upper bound P (Et,j). Recall this is the probability that zt is in between
Dj(α`)
Dn(α`)

and
Di(α`+1)
Dn(α`+1) , which is

Di(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
≤ Dj(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
=
Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

.

Recall that Lemma 16 states that
∣∣∣ ∂∂α (Di(α)

Dn(α)

)∣∣∣ ≤ min
(

2
α log n, log

(
d1
dn

))
. If we use the second

part of the min expression (and use d1
dn
≤ R) we get

Dj(α)
Dn(α) |

α`+1
α` ≤ logD(α`+1 − α`). If we use the

first part of the min expression, we get

Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

≤ 2 log n

∫ α`+1

α`

1

α
· dα ≤ 2 log n (logα) |α`+1

α` = 2 log n(logα`+1 − logα`).

Now we upper bound j− i. Recall that j− i represents the number of intervals between Di(α`)
Dn(α`)

and
Dj(α`)
Dn(α`)

(see Figure 3). Note that the smallest interval in this range is
d
α`
j

Dn(α`)
, and

Dj(α`)

Dn(α`)
− Di(α`)

Dn(α`)
≤ Di(α`+1)

Dn(α`+1)
− Di(α`)

Dn(α`)
.

34

Therefore, the expected number of breakpoints is at most Dn(α`)

d
α`
j

·
(
Di(α`+1)
Dn(α`+1) −

Di(α`)
Dn(α`)

)
, and we can

bound the second half of this fraction by again using Lemma 16. To finish off the proof, we have

E[#It,`] ≤
∑
j

(
P (E′t,j) · (j − i) + P (Et,j) · (j − i+ 1)

)
≤
∑
j

(
P (E′t,j) · (j − i) + P (Et,j) · (j − i) + P (Et,j)

)
≤
∑
j

(
P (E′t,j ∪ Et,j) · (j − i) + P (Et,j)

)
≤
∑
j

(
P (zt ∈ Ivj) · (j − i)

)
+
∑
j

P (Et,j)

≤
∑
j

(
dα`j

Dn(α`)

)(
Dn(α`)

dα`j
· Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)
+
∑
j

(
Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)

≤ 2n

(
Dj(α)

Dn(α)

∣∣∣∣α`+1

α`

)
≤ 2nmin (2 log n(logα`+1 − logα`), logD(α`+1 − α`))

This accounts for two of the three upper bounds in our claim. To complete the proof, we note
that E[#It,`] ≤ n− t−1 simply because there are only n− t centers available to be chosen in round
t of the algorithm (and therefore, n− t− 1 breakpoints).

In fact, we can also show that the worst-case number of discontinuities is exponential.

Lemma 17. Given n, there exists a clustering instance V of size n and a vector ~Z such that the
number of discontinuities of seedα(V, ~Z) as a function of α over [0, 2] is 2Ω(n).

Proof. We construct V = (V, d, k) and ~Z = {z1, . . . , zk} such that seedα(V, ~Z) has 2k/3 different
intervals in α which give different outputs.

Here is the outline of the construction. At the start, we set z1 so that one point, v, will always
be the first center chosen. Then we add points a1, b1, . . . , ak, bk such that in round i, either ai or bi
will be chosen as centers. We carefully set the distances so that for each combinations of centers,
there is an α interval which achieves this combination of centers. Therefore, the total number of
α intervals such that the output of the sampling step is fixed, is 2k−1. Our construction also uses
points a′1, b

′
1, . . . a

′
k, b
′
k and v1, . . . , vk which are never chosen as centers, but will be crucial in the

analysis.
Next, we describe the distances between the points in our clustering instance. Almost all

distances will be set to 100, except for a few distances: for all i, d(ai, a
′
i) = d(bi, b

′
i) = ε, d(bi, vi) =

100 − oi, d(ai, bi) = 2oi, d(v, a1) = d(v, b1) = 99, and d(ai−1, ai) = d(ai−1, bi) = d(bi−1, ai) =
d(bi−1, bi) = 100− oi, for 0 ≤ ε, o1, . . . , ok ≤ 1 to be specified later. At the end, we will perturb all
other distances by a slight amount (< ε) away from 100, to break ties.

Now we set up notation to be used in the remainder of the proof. We set zi = 1
2 for all i. For

1 ≤ i ≤ k, given ~x ∈ {0, 1}i−1, let E~x denote the equation in round i which determines whether ai
or bi is chosen as the next center, in the case where for all 1 ≤ j < i, aj ∈ C if ~xj = 0, or else bj ∈ C
(and let E′ denote the single equation in round 2). Specifically, E~x is the following expression

35

100α
(
n−(i−1)

2

)
100α(n− 2(i− 1)) + (100− oi)α +

∑i−1
j=1(100− ~xjoj)α

.

Let α~x denote the solution to equation E~x = 1
2 in [1, 3], if it exists. In the rest of the proof,

we must show there exist parameters ε, o0, . . . , ok which admit an ordering to the values α~x which
ensures that each α~x falls in the correct range to split up each interval, thus achieving 2k−1 intervals.
The ordering of the α~x’s can be specified by two conditions: (1) α[~x 0] < α[~x] < α[~x 1] and (2)
α[~x 0 ~y] < α[~x 1 ~z] for all ~x, ~y, ~z ∈

⋃
i<k{0, 1}i and |y| = |z|. To prove the α~x’s follow this ordering,

we use an inductive argument. We must show the following claim: there exist 0 < o1, . . . , ok < 1
such that if we solve E~x = 1

2 for α~x for all ~x ∈ ∪i<k{0, 1}i, then the α’s satisfy α[~x 0] < α[~x] < α[~x 1]

and for all i < k, α[~x 1] < α[~y 0] for ~x, ~y ∈ {0, 1}i and x1 . . . xi < y1 . . . yi.
Given ~x ∈ {0, 1}i, for 1 ≤ i ≤ k − 1, let p(~x), n(~x) ∈ {0, 1}i denote the vectors which sit on

either side of α~x in the desired ordering, i.e., α~x is the only α~y in the range (αp(~x), αn(~x)) such that
|~y| = i. If ~x = [1 . . . 1], then set αn(~x) = 3, and if ~x = [0 . . . 0], then set αp(~x) = 1.

Given 1 ≤ i ≤ k − 2, assume there exist 0 < o1, . . . , oi < 1 such that the statement is true.
Now we will show the statement holds for i + 1. Given ~x ∈ {0, 1}i, by assumption, we have that
the solution to E~x = 1

2 is equal to α~x. First we consider E[~x 0] = 1
2 . Note there are two differences

in the equations E~x and E[~x 0]. First, the number of 100α terms in the numerator decreases by 1,
and the number of terms in the denominator decreases by 2. WLOG, at the end we set a constant
c = n

k large enough so that this effect on the root of the equation is negligible for all n. Next, the
offset in the denominator changes from (100 − oi)α to (100 − oi+1)α. Therefore, if 0 < oi+1 < oi,
then α[~x 0] < α~x. Furthermore, there exists an upper bound 0 < zi+1 < oi such that for all

0 < oi+1 < zi+1, we have α[~x 0] ∈ (αp(~x), α~x). Next we consider E[~x 1] = 1
2 . As before, the number

of 100α terms decrease, which is negligible. Note the only other change is that an 100α term is
replaced with (100 − oi+1)α. Therefore, as long as 0 < oi+1 < oi, then α~x < α[~x 1], and similar to
the previous case, there exists an upper bound 0 < z′i+1 < oi such that for all 0 < oi+1 < z′i+1,
we have α[~x 1] ∈ (α~x, αn(~x)). We conclude that there exists 0 < oi+1 < min(zi, z

′
i) < oi such that

αp(~x) < α[~x 0] < α~x < α[~x 1] < αn(~x), thus finishing the inductive proof.

Now we have shown that there are 2k
′

nonoverlapping α intervals, such that within every
interval, dα-sampling chooses a unique set of centers, for k′ = k− 1. To finish our structural claim,
we will show that after β-Lloyd’s method, the cost function clusα,β(V, ~Z) alternates 2k

′
times above

and below a value r as α increases. We add two points, a and b, so that d(v, a) = d(v, b) = 100,
d(ak, a) = d(bk, b) = 100− ε, and the distances from all other points to a and b are length 100 + ε.
Then we add many points in the same location as v, ai, and bi, so that any set c returned by
dα-sampling is a local minima for β-Lloyd’s method, for all β. Furthermore, these changes do not
affect the previous analysis, as long as we appropriately balance the terms in the numerator and
denominator of each equation E~x (and for small enough ε). Finally, we set v and a to have label 1 in
the target clustering, and all points are labeled 2. Therefore, as dα-sampling will alternate between
ak ∈ C and bk /∈ C as we increase α, a and v alternate being in the same or different clusters, so the
function seedα(V, ~Z) will alternate between different outputs 2Ω(n) times as a function of α.

Now we give the details for Theorem 5.

Theorem 5 (restated). Given T ∈ N , a clustering instance V, and a fixed set C of initial
centers, the number of discontinuities of lloydsβ(V, C, T) as a function of β on instance V is

O(min(n3T , nk+3)).

36

Proof. Given a clustering instance V and a vector ~Z, we bound the number of possible intervals
created by the Lloyd’s step, given a fixed set of initial centers. Define lloydβ(V, C) as the cost
of the clustering outputted by the β-Lloyd iteration algorithm on V using initial centers C. Note
that the Voronoi partitioning step is only dependent on C, in particular, it is independent of β.
Let {C1, . . . , Ck} denote the Voronoi partition of V induced by C. Given one of these clusters
Ci, the next center is computed by minc∈Ci

∑
v∈Ci d(c, v)β. Given any c1, c2 ∈ Ci, the decision for

whether c1 is a better center than c2 is governed by
∑

v∈Ci d(c1, v)β <
∑

v∈Ci d(c2, v)β. Again by
Theorem 14, this equation has at most 2n+1 roots. Notice that this equation depends on the set C
of centers, the choice of a cluster Ci, and the two points c1, c2 ∈ Ci. Then there are

(
n
k

)
·n ·
(
n
2

)
total

equations which fix the outcome of the Lloyd’s method, and there are
(
n
k

)
· n ·

(
n
2

)
· (2n+ 1) ≤ nk+4

total intervals of β such that the outcome of Lloyd’s method is fixed.
Next we give a different analysis which bounds the number of discontinuities by n3T , where T is

the maximum number of Lloyd’s iterations. By the same analysis as the previous paragraph, if we
only consider one round, then the total number of equations which govern the output of a Lloyd’s
iteration is

(
n
2

)
, since the set of centers C is fixed. These equations have 2n+ 1 roots, so the total

number of intervals in one round is O(n3). Therefore, over T rounds, the number of intervals is
O(n3T).

Now we give the details for the proofs of the generalized results, Theorems 10 and 11.

Theorem 10 (restated). Given an α-parameterized family such that (1) for all 1 ≤ i ≤ k and
C ⊆ V such that |C| ≤ k, each Si,C(α) is monotone increasing and continuous as a function of α,
and (2) for all 1 ≤ i ≤ j ≤ n and α ∈ (α`, αh), Si,C(α) ≤ Sj,C(α), then the expected number of

discontinuities of seedα(V, ~Z, p) as a function of α is O (nkDp(αh − α`)).

Proof. Given V and [0, αh], we will show that E[#I] ≤ nk log n · αh, where #I denotes the total
number of discontinuities of seedα(V, ~Z) and the expectation is over the randomness Z ∈ [0, 1]k of
the dα-sampling algorithm. Consider round t of a run of the algorithm. Suppose at the beginning
of round t, there are L possible states of the algorithm, e.g., L sets of α such that within a set, the
choice of the first t − 1 centers is fixed. From the monotonicity property, we can write these sets

as [α0, α1], . . . , [αL−1, αL], where 0 = α0 < · · · < αL = αh. Recall that Dp = maxi,C,v,α

(
∂Si,C(α)

∂α

)
.

Given one interval, [α`, α`+1], we claim the expected number of new breakpoints #It,` by choosing
a center in round t is bounded by nDp(α`+1 − α`). Note that #It,` + 1 is the number of possible
choices for the next center in round t using α in [α`, α`+1].

The claim gives an upper bound on the expected number of new breakpoints, where the expec-
tation is only over zt (the uniformly random draw from [0, 1] used by the initialization algorithm
in round t), and the bound holds for any set of centers and points. Assuming the claim, we can
finish off the proof by using linearity of expectation as follows.

EZ∈[0,1]k [#I] ≤ EZ∈[0,1]k

[
k∑
t=1

L∑
`=1

(#It,`)

]

≤
k∑
t=1

L∑
`=1

EZ∈[0,1]k [#It,`]

≤
k∑
t=1

L∑
`=1

nDp(α`+1 − α`)

37

Figure 3: (Repeated) Definition of Et,j and E′t,j , and details for bounding j − i (left). Intuition for
bounding P (Et,j), where the blue regions represent Et,j (right).

≤ nkDp · αh

Now we will prove the claim. Recall that for α-sampling, each point vi receives an interval
along [0, 1] of size proportional to pα(vi, C) dαx

Dn(α) , so the number of breakpoints in round t along

[α`, α`+1] corresponds to the number of times zt switches intervals as we increase α from α` to
α`+1. Note that Si,C(α) corresponds to the division boundary between the interval of vi and vi+1.
By assumption, these divisions are monotone increasing, so the number of breakpoints is exactly

x − y, where x and y are the minimum indices s.t.
Sx,C(α`)
Sn,C(α`)

> zt and
Sy,C(α`+1)
Sn,C(α`+1) > zt, respectively.

We want to compute the expected value of x−y for zt uniform in [0, 1] (here, x and y are functions
of zt).

We take the approach of analyzing each interval individually. One method for bounding
Ezt∈[0,1][x−y] is to compute the maximum possible number of breakpoints for each interval Ivj , for

all 1 ≤ j ≤ n. Specifically, if we let i denote the minimum index such that
Sj,C(α`)
Sn,C(α`)

<
Si,C(α`+1)
Sn,C(α`+1) ,

then

E[#It,`] ≤
n∑
j=1

P

(
Sj,C(α`)

Sn,C(α`)
< zt <

Sj+1,C(α`)

Sn,C(α`)

)
· (j − i+ 1)

≤
n∑
j=1

pα`(vi, C)

Sn,C(α`)
· (j − i+ 1).

In this expression, we are using the worst case number of breakpoints within each bucket, j− i+ 1.
We cannot quite use this expression to obtain our bound; for example, when α`+1 − α` is

extremely small, j − i + 1 = 1, so this expression will give us E[#It,`] ≤ 1 over [α`, α`+1], which
is not sufficient to prove the claim. Therefore, we give a more refined analysis by further breaking

into cases based on whether zt is smaller or larger than
Si,C(α`+1)
Sn,C(α`+1) . In case 1, when zt >

Si,C(α`+1)
Sn,C(α`+1) ,

the number of breakpoints is j − i, and we will show that j − i ≤ nDp(α`+1 − α`). In case 2, when

zt <
Si,C(α`+1)
Sn,C(α`+1) , the number of breakpoints is j− i+ 1, but we will show the probability of this case

is low.
For case 2, the probability that zt is in between

Sj,C(α`)
Sn,C(α`)

and
Si,C(α`+1)
Sn,C(α`+1) is

Sj,C(α`+1)
Sn,C(α`+1) −

Sj,C(α`)
Sn,C(α`)

≤
Sj,C(α`+1)
Sn,C(α`+1)−

Sj,C(α`)
Sn,C(α`)

. Therefore, we can bound this quantity by bounding the derivative
∣∣∣ ∂∂α (Sj,C(α)

Sn,C(α)

)∣∣∣,
which is at most Dp by definition.

38

For case 1, recall that j−i represents the number of intervals between
Si,C(α`)
Sn,C(α`)

and
Sj,C(α`)
Sn,C(α`)

. Note

that the smallest interval in this range is
pα` (vi,C)

Sn,C(α`)
, and

Sj,C(α`)
Sn,C(α`)

− Si,C(α`)
Sn,C(α`)

≤ Si,C(α`+1)
Sn,C(α`+1) −

Si,C(α`)
Sn,C(α`)

.

Therefore, the expected number of breakpoints is at most
Sn,C(α`)
pα` (vj ,C) ·

(
Si,C(α`+1)
Sn,C(α`+1) −

Si,C(α`)
Sn,C(α`)

)
, and we

can bound the second half of this fraction by again using the derivative of Si,C(α).
Putting case 1 and case 2 together, we have

E[#It,`] ≤
∑
j

P

(
Si,C(α`+1)

Sn,C(α`+1)
< zt <

Sj+1,C(α`)

Sn,C(α`)

)
· (j − i) +

∑
j

P

(
Sj,C(α`)

Sn,C(α`)
< zt <

Si,C(α`+1)

Sn,C(α`+1)

)
· (j − i+ 1)

≤
∑
j

P

(
Sj,C(α`)

Sn,C(α`)
< zt <

Sj+1,C(α`)

Sn,C(α`)

)
· (j − i) +

∑
j

P

(
Sj,C(α`)

Sn,C(α`)
< zt <

Si,C(α`+1)

Sn,C(α`+1)

)

≤
∑
j

pα`(vj , C)

Sn,C(α`)
·
Sn,C(α`)

pα`(vj , C)
·
(
Sj,C(α`+1)

Sn,C(α`+1)
−
Si,C(α`)

Sn,C(α`)

)
+
∑
j

P

(
Sj,C(α`)

Sn,C(α`)
< zt <

Sj,C(α`+1)

Sn,C(α`+1)

)

≤
∑
j

(
Si,C(α`+1)

Sn,C(α`+1)
−
Si,C(α`)

Sn,C(α`)

)
+
∑
j

(
Sj,C(α`+1)

Sn,C(α`+1)
−
Sj,C(α`)

Sn,C(α`)

)
≤
∑
j

Dp(α`+1 − α`) +
∑
j

Dp(α`+1 − α`)

≤ 2nDp(α`+1 − α`)

This concludes the proof.

Theorem 11 (restated). Given parameters 0 ≤ α` < αh, ε > 0, a sample S of size

m = O

((
H

ε

)2

log

(
log

αhnDp

δ

))

from
(
D × [0, 1]k

)m
, and an α-parameterized family satisfying properties (1) and (2) from Theo-

rem 10, run Algorithm 2 on each sample and collect all break-points (i.e., boundaries of the in-
tervals Ai). With probability at least 1 − δ, the break-point ᾱ with lowest empirical cost satisfies
|clusᾱ,β(S) − min0≤α≤αh clusα,β(S)| < ε. The total running time to find the best break point is
O
(
mn2k2αhDp log

(
nH
ε

)
log n

)
.

The proof is almost identical to the proof of Theorem 8.

Proof. First we argue that one of the breakpoints output by Algorithm 2 on the sample is approx-
imately optimal. Formally, denote ᾱ as the breakpoint returned by the algorithm with the lowest
empirical cost over the sample, and denote α∗ as the value with the minimum true cost over the dis-
tribution. We define α̂ as the empirically optimal value over the sample. We also claim that for all
breakpoints α, there exists a breakpoint α̂ outputted by Algorithm 2 such that |α− α̂| < ε

5n2kL logn
.

We will prove this claim at the end of the proof. Assuming the claim is correct, we denote α′ as a
breakpoint outputted by the algorithm such that |α̂− α′| < ε

5n2kL logn
.

For the rest of the proof, denote E
V∼D

[clusα,β (V)] = true(α) and 1
m

∑m
i=1 clusα,β

(
V (i), ~Z(i)

)
=

sample(α) since beta, the distribution, and the sample are all fixed.

39

By construction, we have sample(α̂) ≤ sample(α∗) and sample(ᾱ) ≤ sample(α′). By The-
orem 6, with probability > 1 − δ, for all α (in particular, for ᾱ, α̂, α∗, and α′), we have
|sample(α)− true(α)| < ε/5. Finally, by Lemma 7, we have

|α̂− α′| < ε

5n2kL log n
=⇒

∣∣true(α̂)− true(α′)
∣∣ < ε/5.

Using these five inequalities for α′, α̂, ᾱ, and α∗, we can show the desired outcome as follows.

true(ᾱ)− true(α∗) ≤ (true(ᾱ)− sample(ᾱ)) + sample(ᾱ)− (true(α∗)− sample(α∗))− sample(α∗)

≤ ε/5 + sample(α′) + ε/5− sample(α̂)

≤
(
sample(α′)− true(α′)

)
+
(
true(α′)− true(α̂)

)
+ (true(α̂)− sample(α̂)) +

2ε

5
≤ ε.

Now we will prove the claim that for all breakpoints α, there exists a breakpoint α̂ outputted
by Algorithm 2 such that |α− α̂| < ε

5n2kL logn
. Denote ε′ = ε

5n2kL logn
. We give an inductive proof.

Recall that the algorithm may only find the values of breakpoints up to additive error ε′, since the
true breakpoints may be irrational and/or transcendental. Let T̂t denote the execution tree of the
algorithm after round t, and let Tt denote the true execution tree on the sample. That is, Tt is
the execution tree as defined earlier this section, T̂t is the execution tree with the algorithm’s ε′

imprecision on the values of alpha. Note that if a node in Tt represents an alpha-interval of size
smaller than ε′, it is possible that T̂t does not contain the node. Furthermore, T̂t might contain
spurious nodes with alpha-intervals of size smaller than ε′.

Our inductive hypothesis has two parts. The first part is that for each breakpoint α in Tt,
there exists a breakpoint h(α) in T̂t such that |α− h(α)| < ε′. For the second part of our inductive
hypothesis, we define Bt =

⋃
α breakpoint ([α, h(α)] ∪ [h(α), α]), the set of “bad” intervals. Note that

for each α, one of [α, h(α)] and [h(α), α] is empty. Then define Gt = [α`, αh] \Bt, the set of “good”
intervals. The second part of our inductive hypothesis is that the set of centers for α in Tt is the
same as in T̂t, as long as α ∈ Gt. That is, if we look at the leaf in Tt and the leaf in T̂t whose
alpha-intervals contain α, the set of centers for both leaves are identical. Now we will prove the
inductive hypothesis is true for round t+1, assuming it holds for round t. Given Tt and T̂t, consider
a breakpoint α from Tt+1 introduced in round t+ 1.

Case 1: α ∈ Gt. Then the algorithm will recognize there exists a breakpoint, and use binary
search to output a value h(α) such that |α− h(α)| < ε′. The interval [α, h(α)] ∪ [h(α), α] is added
to Bt+1, but the good intervals to the left and right of this interval still have the correct centers.

Case 2: α ∈ Bt. Then there exists an interval [α′, h(α′)]∪[h(α′), α] containing α. By assumption,
this interval is size < ε′, therefore, we set h(α′) = h(α), so there is a breakpoint within ε′ of α.

Therefore, for each breakpoint α in Tt+1, there exists a breakpoint α̂ in T̂t+1 such that |α− α̂| <
ε′. Furthermore, for all α ∈ Gt+1, the set of centers for α in Tt+1 is the same as in T̂t+1. This
concludes the inductive proof.

Now we analyze the runtime of Algorithm 2. Let (C,A) be any node in the algorithm, with
centers C and alpha interval A = [α`, αh]. Sorting the points in V according to their distance to C
has complexity O(n log n). Finding the points sampled by dα-sampling with α set to α` and αh costs
O(n) time. Finally, computing the alpha interval Ai for each child node of (C,A) costs O(n log nH

ε)

time, since we need to perform log nkH logn
ε iterations of binary search on α 7→ Di(α)

Dn(α) and each

evaluation of the function costs O(n) time. We charge this O(n log nH
ε) time to the corresponding

child node. If there are N nodes in the execution tree, summing this cost over all nodes gives a

40

total running time of O(N · n log nH
ε)). If we let #I denote the total number of α-intervals for

V, then each layer of the execution tree has at most #I nodes, and the depth is k, giving a total
running time of O(#I · kn log nH

ε).
From Theorem 4, we have E[#I] ≤ 8nk log n ·αh. Therefore, the expected runtime of Algorithm

2 is O
(
n2k2αh(log n)

(
log nH

ε

))
. This completes the proof.

41

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 (alpha,beta)-Lloyds++
	5 Experiments
	6 Conclusion
	7 Acknowledgments
	A Table of Notation
	B Details from Section ??

