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Abstract

Exceptions and first-class continuations are the most powerful forms of control in program-
ming languages. While both are a form of non-local jumping, there is a fundamental difference
between them. We formalize this difference by proving a contextual equivalence that holds in
the presence of exceptions, but not continuations; and conversely, we prove an equivalence that
holds in the presence of continuations, but not exceptions. By the same technique, we show
that exceptions and continuations together do not give rise to state, and that exceptions and
state do not give rise to continuations.

1 Introduction

Practically all programming languages contain constructs for manipulating the control flow by
jumping. The most powerful of these control constructs are exceptions and continuations. Excep-
tions are very widespread and are part of many modern languages, like ML [15, 13], Java [6] and
C++ [23]. Continuations in the form of the call/cc-operator are part of the standard of only
a single language, Scheme [9], and they also appear in the New Jersey dialect of Standard ML.
Despite their relative scarcity as a programming language feature, however, continuations are of
interest as one of the fundamental notions of programming languages [21, 22].

Control operators comparable to exception arose in Mac Lisp in the form of the catch and
throw operations [20]. As early Lisp used dynamic scope, their semantics was naturally dynamic
too. (Such an archaic, entirely dynamic, Lisp may now be most accessible to most readers in the
form of Emacs Lisp.) When dynamic scope was replaced by static scope in Common Lisp, the
dynamic semantics of catch/throw was retained. Similarly, ML, while otherwise strongly based
on static scoping and typing, has dynamic control in the form of exceptions. The reason for this
dynamic semantics is pragmatic: the main application of dynamic control is error handling, and
errors are best handled dynamically when they occur.

Continuations, by contrast, are from the outset strongly associated with static binding, arising
as the denotations of labels. Control operators for first-class continuations are even older than the
abstract concept of continuation. When Landin explicated the semantics of procedures by way of
closures in the SECD machine, it was natural to introduce control by way of a special form of
closure, giving a statically scoped form of control, namely Landin’s J-operator [11].
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In some cases, exceptions and continuations can be used more or less interchangeably. For
example, textbooks (such as Felleisen and Friedman’s “Seasoned Schemer” [5]) usually introduce
continuations with simple idioms that could equally well be programmed with exceptions (see [24]
for a discussion). This should not be taken to mean that exceptions and continuations are the
same: in more advanced examples the difference between them manifest themselves.

There are some subtle pitfalls in understanding exceptions and continuations, which can lead
one to confuse them. In fact, examples of such confusion, namely wrong encodings of exceptions in
terms of continuations, have appeared in the literature. Concretely, if one is not already familiar
with both exceptions and continuations, then one or both of the following two assertions may sound
reasonable, even obvious:

• For exceptions: consider M handle e => N in ML, or (catch ‘e M) in Lisp. Then e is
bound in M .

• For continuations: consider callcc (λk.M). Then the continuation bound by the callcc(λk. . . .)
can never escape from the scope of the λ.

As the astute reader may have noticed, both assertions are in fact glaringly false, mainly due
to a confusion of scope and extent. But interestingly, they are false in a complementary fashion
that illustrates the difference between the constructs. Confusing handlers with binders ascribes
to exceptions a continuation-like semantics; whereas limiting the extent of the continuation to the
scope of the variable k would confine continuations to a more exception-like behaviour.

More generally, one of the central points of this paper is that the contrast between exceptions
and continuations elucidates both constructs. The dynamic nature of exceptions becomes clearer
when contrasted with the static one of continuations. Conversely, the more advanced usages of
upward continuations and backtracking are those that are beyond the capabilities of exceptions.

Our criterion for the difference between exceptions and continuations can be explained quite
intuitively. It was in fact already mentioned informally by Landin [11, 12] in the same paper that
introduced the J-operator, a forebear of call/cc. Landin had eliminated many programming
language features as inessential “syntactic sugar”. For example, local variable binding, as with let
in Scheme or ML, is syntactic sugar for λ-abstraction followed by application. Some constructs
however are not eliminable this way: state and control. For state, Landin argued that assignment
breaks the equivalence

(cons (car M) (cdr M)) ∼= M

In a purely functional language without state, the evaluation of M always produces the same result.
If state is added, the equivalence can be broken. Therefore, the addition of state makes the language
strictly more powerful. This notion of “expressive power” was later formalized by Felleisen [4]. At
the very least, the increase in expressive power shows that one cannot write assignment as a macro;
but it could also be argued that it does more than that, as it elucidates how assignment alters the
character of the language and how one can reason about it. Another parallel to this early work
by Landin is that the equivalences we use in the stateless setting are of the same flavour as the
above one, in that they depend on whether evaluating the same expression once or twice makes a
difference.

The main results can be summarized in terms of equivalences as follows:

Contextual equivalence holds in the presence of
(λf.(f T ; f F ))M ∼= (λfg.(f T ; g F ))MM exceptions but not continuations

(λf.M)(λx.O) ∼= (λf.M)(λf.((λf.M)(λx.O);O)) continuations but not exceptions
M ∼= (M ;M) exceptions and continuations
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Here T , F and O are meant to be arbitrary values. In particular, T and F can be values that we
want to regard as distinct, such as T = 1 and F = 0. In a pure λ-calculus setting, one could also
choose T = λxy.x and F = λxy.y.

In an earlier (conference) version of some of this work, a big-step semantics was used to show
the equivalence for exceptions, while a CPS transform was used for continuations [17]. The latter
technique restricted the generality of the result. Here we try to use the most direct technique to
prove the contextual equivalence. A small-step operational semantics is used for all constructs, and
a simulation relation is constructed. Our interest here is not in proof technique for operational
semantics as such, but rather in the impact of control (exceptions, continuations, or both) on what
kind of reasoning is possible.

The callcc -operator gives the programmer direct access to what in semantics or implementa-
tion terms is called a continuation. We will abuse terminology somewhat by using the word “con-
tinuation” mainly in this sense, that is, first-class control objects introduced by calls of callcc .
When we say that first-class continuations cannot express exceptions (in the absence of state),
this is meant in the sense that callcc cannot express them. That should not be taken to imply
that there can be no continuation semantics of exceptions; rather, it merely states that such a
semantics does not factor over that of callcc . In fact, a continuation semantics for exceptions can
easily be defined by passing two continuations, the current one and one for the current exception
handler [2, 27]

1.1 Related work

While the literature on continuations is large, the semantics of exceptions has received less attention.
An early example of a comparison of continuations and exceptions is Lillibridge [14]. Contextual
equivalence as a tool for comparing programming languages goes back at least to Landin [11], and
was later formalized by Felleisen [4]. Sitaram and Felleisen [18] used a contextual equivalence for
showing the added power of control delimiters over call/cc. The continuations folklore knows an
implementation of exceptions in terms of continuations and references (see [16]); hence there can
be no equivalence broken by the former but not the latter, although the folklore implementation
fails to be a macro-encoding [10].

The present paper is part of a broader study of control operators using category theory [24],
classical logic [27] and linear typing [2]; it largely supersedes the earlier papers based on equiva-
lences [17, 25, 26]. We have strengthened the results from [17], generalising to an untyped setting,
removing a restriction to closed expressions, and making the proofs more uniform by using small-
step semantics throughout.

1.2 Organization of the paper

To set the stage, we recall some of the basics of exceptions and continuations in Section 2. We then
consider exceptions and continuations if each is added to a base language without state: exceptions
cannot express continuations (Section 3); conversely, continuations in the absence of state cannot
express exceptions (Section 4). If exceptions and continuations are combined in the same language,
they cannot express state (Section 5). Exceptions and state cannot express continuations (Section 6)
Section 7 concludes. Some technical lemmas are included as an appendix.

3



2 Exceptions and first-class continuations

We will need different programming language fragments with exceptions, continuations and state
in various combinations. The syntax we use most closely resembles Standard ML of New Jersey, as
this is the main language having both exceptions and continuations, as well as state. The language
is equipped with an operational semantics that uses evaluation contexts to represent control, a style
of semantics that was developed by Friedman, Felleisen and others, and which has become quite
standard for reasoning with continuations. The reader familiar with such semantics may wish to
skim this section.

We adopt some notational conventions: uppercase letters M , N , P , Q, . . . range over expres-
sions, lowercase letters x, y, . . . range over variables. The substitution of x in M by N is written
as M [x 7→ N ]. As is usual, we assume bound and free variables to be distinct, so that substitution
does not lead to name-capture.

The dichotomy between exceptions and continuations becomes apparent if control is combined
with functional features, so that the minimum setting we need for our results is λ-calculus. The
functional core of the language is essentially call-by-value λ-calculus, with the following grammar:

M ::= x |MM | λx.M

Because we assume call-by-value semantics, sequencing becomes syntactic sugar in terms of λ-
abstraction. We write “M ;N” for an expression that evaluates M , discards the result, and then
proceeds with N , and define it as follows:

(M ;N) ≡ (λx.N)M where x is not free in N

To make the language a little more concrete , we add also some basic arithmetic, conditional,
and recursion, extending the grammar thus:

M ::= . . . | n | succM | predM | if0M then N else L

| rec f(x). M

We then add control to the functional core. For continuations, the operations are callcc and
throw, as in Standard ML of New Jersey. The grammar is extended as follows:

M ::= . . . | callccM | throwM N

The operator callcc seizes the current continuation, makes it into a first-class value, and passes
this “reified” continuation to its argument. The argument being typically a λ-abstraction, one can
read the idiom

callcc (λk.M)

as “bind the current continuation to k in M”. The operator throw invokes a continuation with an
argument; throw k 42 is a jump to k, much like a goto in more traditional languages. In Scheme,
the operation call/cc not only reifies the current continuation, but also wraps it into a procedure,
so that it can be invoked by ordinary application. It is easy to translate from the notation used
here to Scheme: one simply omits throw.

Definition 2.1 (λV +cont) Let λV +cont be the language defined by the operational semantics
in Figure 1.
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Figure 1: Operational semantics of λV +cont

V ::= x | n | λx.M | #E
E ::= [ ] | (E M) | (V E) | (succ E) | (pred E) | (if0 E thenM elseM)

| (throw E M) | (throw V E)

E[(λx. P ) V ] → E[P [x 7→ V ]]
E[succ n] → E[n+ 1]
E[pred 0] → E[0]
E[pred (n+ 1)] → E[n]
E[if0 0 thenM else N ] → E[M ]
E[if0 (n+ 1) thenM else N ] → E[N ]
E[rec f(x). M ] → E[λx.M [f 7→ rec f(x). M ]]
E[callccM ] → E[M(#E)]
E[throw (#E′) V ] → E′[V ]

Figure 2: Operational semantics of λV +exn

V ::= x | n | λx.M | e
E ::= [ ] | (E M) | (V E) | (succ E) | (pred E) | (if0 E thenM elseM)

| (raise E M | (raise V E) | (handle e E N) | (handle e V E)

E[(λx. P ) V ] → E[P [x 7→ V ]]
E[succ n] → E[n+ 1]
E[pred 0] → E[0]
E[pred (n+ 1)] → E[n]
E[if0 0 thenM else N ] → E[M ]
E[if0 (n+ 1) thenM else N ] → E[N ]
E[rec f(x). M ] → E[λx.M [f 7→ rec f(x). M ]]
E[handle e Vh Ee[raise e V ]] → E[VhV ] Ee 6= E1[handle e Vh2 E2]
E[handle e Vh V ] → E[V ]
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In the semantics of callcc that we use here, the continuations are represented as evaluation
contexts E. To avoid inconsistencies, however, it is necessary to add some notation that specifies
how far a reified continuation extends from the hole. We write #E for the continuation that
consists of the reified evaluation context E. Note that # acts a sort of binder for the hole in
the continuation: the operation of plugging the hole in an evaluation context does not affect the
holes under # in any reified continuations. An alternative notation would plug the hole with a
variable, and then use a binder for the variable [17], writing γx.E[x] instead of #E. Felleisen
writes continuations as λx.A(E[x]), where the A is an operator that discards the context of the
continuations upon invocation.

As an example of how reified evaluation contexts must be annotated with #, consider the
following reduction which yields a continuation as a first-class value:

callcc (λk.throw (callcc (λh.throw k h)) 42)
� #(throw [ ] 42)

This result is a perfectly respectable continuation for a continuation, of type int cont cont,
waiting for a continuation to be plugged into the hole, so that 42 can be thrown to it. But if we did
not take care with the #, we might confuse #(throw [ ] 42) with (throw (#[ ]) 42), which reduces
42.

For exceptions, the operations are a simplified form of handling and raising, as in ML:

M ::= . . . | handle e M N | raiseM N

The operation raise e V raises the exception e with some value V ; such an exception can then be
caught and handled. The syntax for this is handle e M N , where M will act as the handler for
raising of e in the evaluation of N .

To formalize the operational semantics of exceptions, we need to refine the notion of evaluation
context a little. Let Ee range over evaluation contexts that do not handle E, that is, Ee is not
of the form E1[handle e Vh2 E2]. Then the reduction for a raise inside a dynamically enclosing
handle is this:

E[handle e Vh Ee[raise e V ]] → E[VhV ]

If the term inside a handler evaluates to a value, then the handler in discarded:

E[handle e Vh V ] → E[V ]

An uncaught exception raise e V without a dynamically enclosing handler admits no reduction.

Definition 2.2 (λV +exn) Let λV +exn be defined by the operational semantics rules in Figure 2.

This version of exceptions (based on the “simple exceptions” of Gunter, Rémy and Riecke [8]) differs
from those in ML in that exceptions are not constructors. The fact that exceptions in Standard
ML [15] are constructors is relevant chiefly if one does not want to raise them, using exn only as
a universal type. For our purposes, there is no real difference, up to an occasional η-expansion.
Furthermore, we only consider global exceptions, as in CAML [13]. Although the local declaration
of exceptions as found in Standard ML adds expressive power [26], it does so in a way that is not
relevant for control as such, namely by the generation of new exception names.
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It is worth emphasizing in what sense exceptions are and are not first-class. Note that an
exception name e can be passed around like any other value:

(λx.handle e (λx.x) (raise x 1)) e
→ handle e (λx.x) (raise e 1)
→ (λx.x) 1
→ 1

However, while the exception name (which is little more than an atomic constant), can be passed
around, the exception handler (which is an evaluation context) cannot be made into a value.

While the language for exceptions used here most closely resembles ML, we do not rely on
typing, so that everything is also applicable to the catch/throw construct in LISP [20, 19], since
the latter is essentially a spartan exception mechanism without handlers.

A language combining exceptions and continuations can be defined by simply merging the
operational semantics for exceptions and that for continuations:

Definition 2.3 (λV +cont+exn) Let λV +cont+exn be the language defined by the union of the
reduction rules of λV +cont and λV +exn.

When exceptions and continuation are combined in this way, seizing a continuation also includes
the exception handler that is in force in that continuation; throwing to the continuation later thus
re-installs the exception handler. Concretely, in the reduction rule for callcc , the exception
handler, being part of the evaluation context, becomes part of the reified continuation, as in this
reduction step:

E1[handle e V Ee[callccM ]]→ E1[handle e V Ee[M (#E1[handle e V Ee])]]

Arguably, this conforms to the intended meaning of continuation constructs in the presence of
exception handlers, and to the semantics of callcc in Standard ML of New Jersey. It would also
be possible to combine callcc with exceptions in such a way that capturing a continuation does
not encompass the exception handler associated with it, and that throwing leaves the exception
handler at the point of throw in force, rather than installing one associated with the continuation.
We will return to this distinction in Section 5; the results there reinforce the view that the first
semantics mentioned here is the natural one for the combination of both forms of control, exceptions
and continuations.

By adding various flavours of control to a purely functional language, we defined languages that
are stateless, lacking assignment and even weaker forms of state such as gensym; our next extension
adds assignment in the form of ML-style references [15] . The grammar is extended by the following
clauses:

M ::= refM |M :=M | !M
The intended meaning is that refM creates a new assignable reference whose initial value is that
of M . An assignement expression M1 :=M2 evaluates M1 and assigns the value of M2 to it. A
reference M can be dereferenced by writing and !M , which fetches its value.

To give meaning to assignments, we add stores to the operational semantics. A store is a finite
function from addresses to values. If s is a store, we write dom(s) for its domain of definition (that
is, the addresses having a definite value in this store). We write s + {a 7→ V } for the store that
holds the value V at address a, and whose content is otherwise that of s:

(s+ {a 7→ V })(b) =
{
V if b = a
s(b) otherwise
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Figure 3: Operational semantics of state

V ::= . . . | a
E ::= . . . | (refE) | (!E) | (E:=M) | (V :=E)

s,E[refV ] → s+ {a 7→ V }, E[a] where a /∈ dom(s)
s,E[! a] → s,E[s(a)]
s,E[a:=V ] → s+ {a 7→ V }, E[V ]

Here the address a may or may not be already in dom(s), that is, we could either be updating the
store or allocating a new address.

For an expression M , let Addr(M) be the set of addresses occurring in M . The operational
semantics for state works on pairs (s, P ) of stores s and programs P ; we usually omit the parentheses
around such pairs, so that the reduction rules have the form s, P → s1, Q, where s is the old, and
s1 the new state.

To avoid listing rules that do not affect the store, we adapt the State Convention in the Definition
of Standard ML: whenever there is a reduction rule P → Q in a language without state, we read
this as shorthand for the rule s, P → s,Q which does not change the state.

We define a language with exceptions and state, as well as one with continuations and state:

Definition 2.4 (λV +cont+state) Let λV +cont+state be the language defined by the opera-
tional semantics in Figure 1, subject to the state convention, together with the reductions in
Figure 3.

Definition 2.5 (λV +exn+state) Let λV +exn+state be the language defined by the operational
semantics in Figure 2, subject to the state convention, together with the reductions in Figure 3.

In the body of this paper, we will use an untyped language. However, the results restrict to
a typed subset: the operational semantics is of the type-erasure variety in that types do not have
effects at run time. The typing of all language constructs, following ML, is given in Figure 4. For
the typing of exceptions, it is assumed that for all exception names e there is an associated type σe
that this exception may carry. This is comparable to the situation in CAML, where all exceptions
are declared at the top level.

Definition 2.6 For the languages λV +exn, λV +cont, λV +cont+exn, λV +cont+state and
λV +exn+state, let their typed subset be the language obtained by restricting them to expres-
sions typeable according to Figure 4.

Having defined the reduction relation → for the different programming language fragments, we
need some definitions that build on →.

Definition 2.7 We use the following notation for reductions:

• The reflexive, transitive closure of → is written as �.

• We write P 9 if there is no Q such that P → Q.
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Figure 4: Typing rules

Γ, x : τ,Γ′ ` x : τ
Γ `M : int Γ ` Ni : τ

Γ ` (if0M then N1 else N2) : τ

Γ `M : int
Γ ` (predM) : int

Γ `M : int
Γ ` (succM) : int

Γ, x : σ1 `M : σ2

Γ ` (λx. M) : (σ1 → σ2)
Γ, f : (σ1 → σ2), x : σ1 `M : σ2

Γ ` (rec f(x). M) : (σ1 → σ2)

Γ `M : (σ cont→ σ)
Γ ` (callccM) : σ

Γ `M : (σ cont) Γ ` N : σ
Γ ` (throwM N) : τ

Γ ` e : (exn σe)
Γ ` e : (exn σ) Γ ` N : (σ → τ) Γ ` P : τ

Γ ` (handle e N P ) : τ

Γ `M : (exn σ) Γ ` N : σ
Γ ` (raiseM N) : τ

Γ `M : τ
Γ ` (refM) : τ ref

Γ `M : τ ref
Γ ` !M : τ

Γ `M : τ ref Γ ` N : τ
Γ `M :=N : τ

• We say P is stuck if P 9, but P it is neither a value nor an uncaught exception Ee[raise e V ].

• We write P �Q iff P � Q and Q9. We write P � if P �Q for some Q.

• We write P ↑ iff there is no Q such that P �Q; we say P diverges.

• For an expression M and an evaluation context E, we write M � E if there is no value V
such that M � E[V ]. If C is a set of evaluation contexts, we write M � C if M � E for all
E ∈ C.

Notice that P � is not the same as successful termination, as it also includes stopping with an
uncaught exception, and “going wrong” due to a run-time type error. The relation � is related to the
big-step semantics for exceptions used in the Definition of Standard ML [15] and in the predecessor
paper [17] in that P � Ee[raise e V ] iff P � raise e V . The stripping-off of evaluation contexts is
implicit in the derivation rules of the big-step semantics (due to the exception convention), while
the small-step semantics does this in the reduction of handle.

We will use the relation �, which specifies that a program never invokes a given continuation, in
reasoning about first-class continuations. Note that, if M ↑, then E[M ] � E. In a typed language
without control, the converse holds as well (assuming that the typing rules out that M gets stuck).
But in the presence of exceptions, it could also be the case that M � Ee[raise e V ]. In a language
with first-class continuation, it could be the case that M � throw #E′ V for some different
E′ 6= E; but then it could still happen that M � throw #E V , so it may be quite difficult to
decide whether M � E holds or not.

Definition 2.8 For a finite reduction of the form

P0 → P1 → · · · → Pn
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let its length be n and its size be the sum of the sizes of P0, P1, . . . ,Pn.

Definition 2.9 (Contextual equivalence) Two terms P and P ′ are contextually equivalent iff
for all contexts C such that both C[P ] and C[P ′] are closed, we have: C[P ] � n for some integer
n iff C[P ′]� n.

One could also define contextual equivalence by observing only termination, that is, by stipulating
that C[P ] � iff C[P ′]�. Observing integers rather than termination has the advantage that our
results restrict even to the simply typed subset without recursion, where everything terminates.

In all cases where we show that some contextual equivalence does not hold in the presence of
some constructs, we will actually show something stronger than contextual non-equivalence.

Definition 2.10 (Separation) Two terms P and P ′ can be separated iff there is a context C such
that: C[P ]� n for some integer n, and C[P ′]� n′ with n 6= n′.

Separability is a stronger notion than contextual in-equivalence: not only do we get an observation
in one case, and possibly no observation (due to divergence) in the other; rather, we can observe
the difference. Once we have a separation context, it is a matter of straightforward evaluation to
verify the separation. Moreover, this can be machine-verified, so to speak, by simply feeding the
resulting expression to Scheme or ML. So to show separation we will in some cases feel free just to
display the required ML code.

What we regard as the essence of exceptions is that they are a form of jumps whose target is
determined dynamically. This fundamental feature is shared by exceptions in the sense of ML [15]
or Java [6], and also by dynamic control in the sense of most Lisps, such as catch and throw in
Common Lisp [19] and Emacs Lisp. (Oddly, EuLisp calls such a construct letcc, as if it were the
binding-form analogue of call/cc in Scheme, which it is not.)

One could even have used the greatly simplified dynamic control from [27], which involves an
operator go that jumps to the nearest dynamically enclosing here. In operational semantics, we
would write this as:

E[hereEh[goV ]] → E[V ] Eh 6= E1[hereE2]

By contrast, we do not view the typing of exceptions by way of a universal type in Standard ML
as particularly relevant (although it can be seen as evidence that a typing as elegant and canonical
as that for continuations [3] is out of reach for exceptions).

Lillibridge has observed that due to this universal type, one can encode recursion in a simply-
typed fragment of ML without recursive functions, something that is not possible with continuation
operations, as they do not involve new recursive types. In that sense, exceptions were found to be
“more powerful than call/cc” [14]. If the language already has recursion, or is untyped, thereby
opening the door for Y-combinators, this argument is of course inapplicable. One should also be
aware that the typing of exceptions in ML “is totally independent of the facility which allows us to
raise and handle these wrapped-up objects or packets”, as was pointed out by its designers [1].

3 Exceptions cannot express continuations

We prove contextual equivalences by establishing a simulation relation. This relation must be such
that the two expressions we want to show equivalent, if slotted into any context, yield related
programs. Moreover, only observable-s must be related to observable-s. One then shows that the
relation is preserved by the operational semantics.
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In all such proofs, there is a certain amount of housekeeping, as multiple copies of the two
expressions may be propagated throughout the programs. In addition, the proof becomes more
difficult if effects of indefinite extent are added to the language, as we need to keep track of these.

Exceptions are relatively easy to deal with. The extent of a handler is not indefinite, and is in
fact contained inside a sub-derivation of the big-step semantics. Housekeeping aside, the heart of
the proof is an straightforward argument by cases: either an expression yields a value, M � V , or
it raises an exception, M � Ee[raise e V ].

Consider these two expressions:
(λf.(f T ; f F ))M

and
(λfg.(f T ; g F ))MM

For a language with exceptions, we can argue by cases. Either M raises an exception, in which case
both expressions raise an exception; or M returns a value V . In the absence of state, both copies
of M in the second expression must evaluate to the same V . So both expression will behave like
(V T ;V F ).

Lemma 3.1 Let M be an expression and E an evaluation context of λV +exn. If M � Q, then
E[M ]� E[Q], where the latter reduction is no smaller than the former.

Note that this only hold for �, but not for �, as E may catch exceptions raised in M .

Lemma 3.2 If E[M ]�, then M�.

Lemma 3.3 Let M be an expression and E an evaluation context of λV +exn. If M is stuck, then
E[M ] is stuck.

Our proof technique relates expressions by a simulation relation, written as M ∼ M ′. Since
the operational semantics for exceptions factors out an evaluation context, we also need to relate
evaluation contexts. This relation is also written as E ≈ E′. The relation between evaluation
contexts depends on that for expressions: for instance, 42 ≈ 42, hence also [ ] 42 ≈ [ ] 42: the
evaluation context that applies something to 42 is equivalent to itself.

Definition 3.4 Let the relations ≈ between expressions, respectively between evaluation contexts,
of λV +exn be defined as in Figures 5 and 6.

Lemma 3.5 Let M be an expression and C a context of λV +exn such that C[(λf.(f T ; f ;F ))M ]
is closed. Then

C[(λf.(f T ; f ;F ))M ] ≈ C[(λfg.(f T ; g F ))MM ]

In particular, Lemma A.3 implies that ≈ relates values to values.
The proof of contextual equivalence for the language with exceptions is reasonably straightfor-

ward. We reason about the behaviour of a program P in terms of a reduction of the form P � Q
where Q 9. Because exceptions, unlike continuations, do not have indefinite extent, all control
behaviour of a terminating program P is contained in a reduction of limited length.

Lemma 3.6 (One-step simulation) Let P and P ′ be closed expressions of λV +exn such that
P ≈ P ′. Then at least one of the following is the case:

11



Figure 5: Simulation relation on expressions

M ≈M ′
raise e M ≈ raise e M

M ≈M ′ N ≈ N ′
handle e M N ≈ handle e M ′ N ′

M ≈M ′ N ≈ N ′
MN ≈M ′N ′ e ≈ e

M ≈M ′ N ≈ N ′ L ≈ L′
if0M then N else L ≈ if0M ′ then N ′ else L′ n ≈ n

M ≈M ′
λx.M ≈ λx.M ′

M ≈M ′
rec f(x). M ≈ rec f(x). M ′

M ≈M ′
predM ≈ predM ′

M ≈M ′
succM ≈ succM ′

M ≈M ′
(λf.(f T ; f F ))M ≈ (λfg.(f T ; g F ))M ′M ′ x ≈ x

Figure 6: Simulation relation on evaluation contexts

E ≈ E′ N ≈ N ′
EN ≈ E′N ′

V ≈ V ′ E ≈ E′
V E ≈ V ′E′

E ≈ E′ N ≈ N ′ L ≈ L′
if0 E then N else L ≈ if0 E′ then N ′ else L′ [ ] ≈ [ ]

E ≈ E′ N ≈ N ′
raise E N ≈ raise E′ N ′

V ≈ V ′ E ≈ E′
raise V E ≈ raise V ′ E′

E ≈ E′ M ≈M ′
handle e E M ≈ handle e E′ M ′

E ≈ E′
succ E ≈ succ E′

V ≈ V ′ E ≈ E′
handle e V E ≈ handle e V ′ E′

E ≈ E′
pred E ≈ pred E′

12



1. P and P ′ are both values.

2. P and P ′ are both stuck.

3. P → P1 and P ′ → P ′1 such that P1 ≈ P ′1.

4. P = Ee[raise e V ] and P ′ = E′e[raise e V
′] with V ≈ V ′.

5. P = E[(λf.(fT ; fF ))M ] and P ′ = E′[(λfg.(f T ; g F ))M ′M ′].

Lemma 3.7 (Simulation) Let P and P ′ be closed expressions of λV +exn such that P ≈ P ′.
Then:

• If P � Q, then P ′ � Q′ for some Q′. Furthermore, if Q is a value, then Q ≈ Q′; if Q is an
uncaught exception Q = Ee[raise e V ], then Q′ = E′e[raise e V

′] with V ≈ V ′.

• Symmetrically, if P ′ �Q′, then P �Q for some Q. Furthermore, if Q′ is a value, then Q ≈ Q′;
if Q′ is an uncaught exception Q′ = E′e[raise e V

′], then Q = Ee[raise e V ] with V ≈ V ′.

Proof We deal only with the first statement, as the other is symmetric. The proof is by induction
on the size of the reduction. We assume P � Q, and that the statement of the lemma is true for
reductions of smaller size. The cases that we need to consider are given by Lemma 3.6. The most
important case is this:

P = E[(λf.(f T ; f F ))M ]
P ′ = E′[(λfg.(f T ; g F ))M ′M ′]

with E ≈ E′ and M ≈M ′.
By Lemma 3.2, P � implies that M �N for some N . We proceed by cases on what N is: a value,

an uncaught exception or stuck.

1. M � V for some value V . Then we have by Lemma 3.1 (applied to M and the evaluation
context E[(λf.(f T ; f F ))[ ]]):

P � E[(λf.(f T ; f F ))M ]
� E[(λf.f T ; f F )V ]
→ E[V T ;V F ]

As M ≈M ′, and M �N by a smaller reduction, we can apply the induction hypothesis; hence
M ′ �V ′ for some value V ′ such that V ≈ V ′. Therefore, for P ′ we have by Lemma 3.1 (applied
to M ′ with the the evaluation contexts E′[(λfg.(f T ; g F ))[ ]M ′] and E[(λg.(V ′ T ; g F ))[ ]]):

E′[(λfg.(f T ; g F ))M ′M ′]
� E′[(λfg.(f T ; g F ))V ′M ′] (by Lemma 3.1)
→ E′[(λg.(V ′ T ; g F ))M ′]
� E′[(λg.(V ′ T ; g F ))V ′] (by Lemma 3.1)
→ E′[V ′ T ;V ′ F ]

Because E ≈ E′ and V ≈ V ′, E[V T ;V F ] ≈ E′[V ′ T ;V ′ F ]. Moreover, E[V T ;V F ] � Q
by a reduction smaller than the one for P � Q. So by the induction hypothesis, we have
E′[V ′ T ;V ′ F ] �Q′, where Q′ fulfills the additional conditions.

13



2. M raises an exception: M � Ee[raise e V ]. There are two subcases, depending on whether
this exception is caught by E or not.

(a) The exception is not caught, that is, E is of the form Ee2. Then, again by Lemma 3.1:

P � Ee2[(λf.(f T ; f F ))M ]
� Ee2[(λf.(f T ; f F ))Ee[raise e V ]] = Q

Note that the raise e V is in evaluation context position in Q. Hence Q 9. As
M �Ee[raise e V ] by a smaller reduction than that of P �Q, we can apply the induction
hypothesis to it. Thus, M ′ � E′e[raise e V

′], with V ≈ V ′. Therefore, we have for P ′:

P ′ � E′e2[(λfg.(f T ; g F ))M ′]
� E′e2[(λfg.(f T ; g F ))E′e[raise e V

′]M ′] =: Q′

For Q and Q′, we have V ≈ V ′, as required.

(b) E is of the form E = E1[handle e Vh Ee2]. Then we have for P :

P � E1[handle e Vh Ee2[(λf.(f T ; f F ))M ]]
� E1[handle e Vh Ee2[(λf.(f T ; f F ))Ee[raise e V ]]]
→ E1[Vh V ]

Applying the induction hypothesis to the smaller reductions M �Ee[raise e V ], we have
for P ′

P ′ � E′1[handle e V ′h E
′
e2[(λfg.(f T ; g F ))M ′M ′]]

� E′1[handle e V ′h E
′
e2[(λfg.(fT ; gF ))E′e[raise e V

′]M ′]]]
→ E′1[V ′h V

′]

The statement again follows by applying the induction hypothesis to the smaller reduction
E1[V2 V ] �Q.

3. M �N and N is stuck. Then

P � E[(λf.(f T ; f F ))N ]

where the latter term is also stuck. By the induction hypothesis applied to M�, we have that
M ′ �N ′ where N ′ is stuck. Hence

P ′ � E′[(λfg.f T ; g F )N ′M ′]

where the latter term is stuck.

�
With continuations, however, we can easily separate expressions like these. (Similar reductions

are also discussed in [25].)

Lemma 3.8 The expressions λf.(f T ; f F ))M and (λfg.(f T ; g F ))MM can be separated by con-
tinuations.

14



Proof Let M = callcc (λk.λx.throw k (λy.x)) and C = [ ] Then

(λf.(fT ; fF ))M � T

(λfg.(f T ; g F ))MM � F

It is worth to see in a little more detail how (λf.(fT ; fF ))M manages to return T :

(λf.(f T ; f F )) (callcc (λk.λx.throw k (λy.x)))
� (λf.(f T ; f F )) (λx.throw (#((λf.(f T ; f F )) [ ]) (λy.x))
→ (λx.throw (#((λf.(f T ; f F )) [ ]) (λy.x))T ;

(λx.throw (#((λf.(f T ; f F )) [ ]) (λy.x))F
→ throw (#((λf.(f T ; f F )) [ ]) (λy.T ));

(λx.throw (#((λf.(f T ; f F )) [ ]) (λy.x))F
→ (λf.(f T ; f F )) (λy.T )
� T

�

Theorem 3.9 There are expressions which are contextually equivalent in λV +exn, but which can
be separated in λV +cont. This result restricts to the typed subset, and holds whether or not
recursion is present.

Proof Let C be a closing context of λV +exn. Suppose that for some value V :

C[(λf.(f T ; f ;F ))M ]� V

By Lemma 3.5, we have

C[(λf.(f T ; f ;F ))M ] ≈ C[(λfg.(f T ; g F ))MM ]

which by Lemma 3.7 implies that

C[(λfg.(f T ; g F ))M, M ]� V ′

where V ≈ V ′; hence V ′ is also a value by Lemma 3.6. The converse is symmetric.
On the other hand, the two expressions can be separated with continuations by Lemma 3.8.

�
A consequence of this non-equivalence is the following:

Corollary 3.10 Exceptions cannot macro-express continuations.

Proof By Theorem 3.9 and Felleisen [4]. �
In the conference version of this paper, we used a big-step semantics for exceptions, which

was shown equivalent to the small-step one, for this proof. In a big-step semantics for exceptions,
the control behaviour is automatically confined inside a single derivation P ⇓ Q where Q = V
or Q = raise e V . While it is thus more immediately obvious how to organize the induction
for a big-step semantics, this does not mean that there is any real obstacle in using a small-step
semantics. We need only to keep the condition that Q does not do any further steps in the induction
hypothesis P n→ Q. We can confine reasoning about any exception handler to the finitely many
reduction steps that the program spend in the lifetime of the handler.
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4 Continuations without state cannot express exceptions

In this section, we will show that exceptions can break a contextual equivalence that holds in the
presence of continuations. This result holds only in the absence of state, but is still somewhat
surprising, given that first-class continuations seem so much more powerful than any other form
of control. Intuitively the reason for the difference is that exceptions can detect parts of the
dynamically enclosing evaluation context by means of handlers contained inside it. In a language
with only continuations, that is impossible: even though an evaluation context may be passed
around as a first-class continuation, the only way to tell something about it is to invoke it with
some value. Informally speaking, if a continuation is never invoked, it might as well be any other
for all we can tell about it. The proof technique is in fact largely a formalization of that ideas.

A difficulty that arises immediately is the following: how can we tell if some continuation is
ever invoked or not? For exceptions it was not so difficult to find out whether a value V would
ever be returned to E in E[M ]; we could just look at M and see whether M � V , in which case
E[M ] � E[V ]. No such simple argument works for continuations; the principle that M � V
implies E[M ]� E[V ] is of course violated by M = callcc (λk.N), in which case the value V may
depend on E, and who knows what N will do with the reified #E. The central idea in our proof
technique is that we avoid the burden of proving if a continuation is ever invoked or not. Rather,
we deal with each case separately, and since by excluded middle one or the other must be the case,
that is enough for the proof. In particular, in the case that the continuation is not invoked, we gain
a very strong assurance about the future behaviour of the expression that would be very difficult
to prove otherwise.

The following equivalence can be broken by exceptions, but not by continuations:

(λf.M)(λx.O) ∼= (λf.M)(λy.((λf.M)(λx.O);O))

where y is not free in M .
Notice that (λf.M) on the left-hand side and (λf.M) on the right hand side are given the same

argument (λx.O), so that M cannot find out any difference by looking at this argument. However,
the second M on the right will be called inside the dynamic extent of the call of the first copy of
M , which can be detected using the exception mechanism.

Continuations, by contrast, cannot detect the presence a second copy of M . Intuitively, we need
to show that (λf.M)(λx.O) can be simulated (possibly in more steps) by

(λf.M)(λy.((λf.M)(λx.O);O))

During the evaluation of the latter expression, we may be either in the first M , the caller, or in
the second M , the callee. In the evaluation of the caller, the argument is different (comprising
the callee) and the continuation the same; conversely, in the evaluation of the callee, the argument
is the same and the continuation is different (containing parts of the caller). What we need to
construct is a simulation that stays inside the caller if the callee returns to the call, but switches
to the callee if it does not.

The caller cannot pass anything to the callee because y is not free in M ; and the callee cannot
return anything to the caller because the return value is always 0. The point immediately in front
of the semicolon is the linchpin of the proof, for the argument turns on whether a value is eventually
returned to this point or not. More formally, this program point is represented as the continuation
E[[ ];O] if (λy.(λf.M)(λx.O);O) is called with return continuation E. For exceptions the question
whether the expression would return a value or raise an exception was open during the evaluation
of the expression. The continuation has indefinite extent, so the question can stay open indefinitely.

16



Figure 7: Pre-simulation relations on expressions

M ≈AC M ′ N ≈AC N ′
MN ≈AC M ′N ′

M ≈AC M ′ N ≈AC N ′
throwM N ≈AC throwM ′ N ′

M ≈AC M ′ N ≈AC N ′ L ≈AC L′
if0M then N else L ≈AC if0M ′ then N ′ else L′ n ≈AC n

M ≈AC M ′
λx.M ≈AC λx.M ′

M ≈AC M ′
callccM ≈AC callccM ′

M ≈AC M ′
rec f(x). M ≈AC rec f(x). M ′

E ∼AC E′
#E ≈AC #E′

M ≈AC M ′
predM ≈AC predM ′

M ≈AC M ′
succM ≈AC succM ′

M ′ ∈ A
(λx.0) ≈AC (λy.((λf.M ′)(λx.O);O)) x ≈AC x

M ≈AC M ′
(λf.M)(λx.O) ≈AC (λf.M ′)(λy.((λf.M ′)(λx.O);O))

M ≈AC M ′ E′ ∈ C
E[M ] ∼AC E′[M ′]

M ≈AC M ′
M ∼AC M ′

The equivalence is true even in the presence of upward continuations, that is M could seize the
current continuation and pass it to the outside, as in M = callcc (λk.throw h k).

Then definition of a suitable simulation relation involves some relatively complex induction.
Because we have first-class continuations in the language, evaluation contexts can become part
of expressions, which may themselves become part of other evaluation contexts. We first define
relations that we call pre-simulations because they do not entail observational equivalence without
some further assumptions.

Definition 4.1 (Pre-simulation relations) Let C be a set of closed evaluation contexts and A
a set of closed expressions of λV +cont. We define relations ∼AC and ≈AC both between expression
and evaluation contexts, by mutual recursion as given in Figures 7 and 8.

Roughly speaking, these definitions mean that if P ≈AC P ′, then positions in P and P ′ may
differ in functions (provided they appear in A) and in reified continuations (provided they appear
in C). If P ∼AC P ′, then the two terms may also differ in a prefix of the current, not reified,
continuation (provided it appears in C). The definitions for evaluation contexts are analogous to
those for expressions.

The point of the relation ∼AC is the following lemma, a stepping-stone towards a simulation:

Lemma 4.2 (One-step simulation) Let P and P ′ be closed expressions of λV +cont with P ∼AC
P ′. Then at least one of the following is the case:

1. P 9 and P ′ 9.

2. P → P1 and P ′ → P ′1 with P1 ∼AC P ′1.
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Figure 8: Pre-simulation relations on evaluation contexts

E ≈AC E′ N ≈AC N ′
EN ≈AC E′N ′

V ≈AC V ′ E ≈AC E′
V E ≈AC V ′E′

E ≈AC E′ N ≈AC N ′
throw E N ≈AC throw E′ N ′

V ≈AC V ′ E ≈AC E′
throw V E ≈AC throw V ′ E′

E ≈AC E′ N ≈AC N ′ L ≈AC L′
if0 E then N else L ≈AC if0 E′ then N ′ else L′ [ ] ≈AC [ ]

E ≈AC E′
pred E ≈AC pred E′

E ≈AC E′
succ E ≈AC succ E′

E ≈AC E′
E ∼AC E′

E ≈AC E′ E′1 ∈ C
E1[E] ∼AC E′1[E′]

3. P = E0[(λf.N)(λx.O)] and P ′ = E′0[(λf.N ′)(λy.((λf.N ′)(λx.O);O))] with N ≈AC N ′ and
E0 ∼AC E′0.

4. P = E0[(λx.O)V ] and P ′ = E′0[(λy.((λf.N ′)(λx.O);O))V ′] with N ′ ∈ A and E0 ∼AC E′0.

5. P = E0[V ] and P ′ = E′[V ′] with E′ ∈ C.

Lemma 4.2 establishes that expressions related by ∼AC behave the same as long as they do not touch
those positions in which they differ, in the way spelled out by the last three cases.

We refine our pre-simulation relation into a proper simulation relation by requiring that expres-
sions may only differ in continuations that will never be invoked or in functions that always return.
Expressions related by �∼ will then be shown to be indistinguishable.

Definition 4.3 (Simulation relation) Let the relation �∼ between expressions of λV +exn be
defined as follows: P �∼ P ′ iff P ∼AC P ′ for some A and C, and moreover:

• for all E ∈ C, P ′ 6� E[V ] for any value V , and

• for all M ′ ∈ A, if
P ′ � E[(λf.M ′)(λx.O)]

for some evaluation context E, then there is a value V such that

E[(λf.M ′)(λx.O)]� E[V ]

These additional assumptions about reductions are enough to guarantee that expressions related
by �∼ behave the same.

Tracking continuations along the reduction could mean a forbidding amount of extra book-
keeping. We use classical logic by appealing to the excluded middle in order to avoid backtracking
in the proof. While in principle there need not be anything non-constructive about the proof,
classical logic internalizes backtracking in the sense that proof by contradiction is the manifestation
of backtracking at the meta-level.
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Lemma 4.4 (Simulation) Let P and P ′ be closed expressions of λV +cont with P
�∼ P ′. If

P → Q, then there is a Q′ such that P ′ +→ Q′ and Q
�∼ Q′. If on the other hand P 9, then P ′ 9.

Proof Assume P �∼ P ′. Hence P ∼AC P ′ for some A and C. By Lemma 4.2, we need only consider
the following cases.

1. P 9 and P ′ 9. We are done immediately.

2. P → P1, P ′ → P ′1 with P1 ∼AC P ′1. Again we are done.

3. Now suppose that

P = E0[(λf.M)(λx.O)]
P ′ = E′0[(λf.M ′)(λy.((λf.M ′)(λx.O);O))]

with E0 ∼AC E′0 and M ≈AC M ′. Both sides begin to evaluate the call:

P → Q := E0[M [f 7→ λx.O]]
P ′ → P ′1 := E′0[M ′[f 7→ (λy.((λf.M ′)(λx.O);O))]]

Depending on the future behaviour of P ′1, there are two possible cases:

(a) Whenever P ′1 � E′[(λf.M ′)(λx.O)] for some E′, then E′[(λf.M ′)(λx.O)]� E′[V ′].

By definition (λx.O) ≈A∪{M
′}

C (λy.((λf.M ′)(λx.O);O)).

M ≈AC M ′

M ≈A∪{M
′}

C M ′ by Lemma A.6
M [f 7→ λx.O] ≈A∪{M

′}
C M ′[f 7→ (λy.((λf.M ′)(λx.O);O))] by Lemma A.5

E0[M [f 7→ λx.O]] ∼A∪{M
′}

C E′0[M ′[f 7→ (λy.((λf.M ′)(λx.O);O))]] by Lemma A.4

Note that the conditions for �∼ are met for all elements in A and C, and also for M ′.
Letting Q′ = P ′1, we have P ′ → Q′ with Q

�∼ Q′, as required.

(b) The implication from the previous case does not hold: that is, there is an E′ such that

P ′1 � E′[(λf.M ′)(λx.O)]

while there is no value V ′ such that E′[(λf.M ′)(λx.O)] � E′[V ′]. In this case, we
choose as our Q′ with P ′

+→ Q′ not P ′1 itself, but the expression E′[M ′[f 7→ λx.O]] that
P ′1 reduces to by virtue of:

P ′1 � E′[(λf.M ′)(λx.O)]
→ E′[M ′[f 7→ λx.O]]
=: Q′

Rather than letting P ′ simulate P step by step, we have, in a sense, jumped ahead in the
simulation. We need to show that we actually stay in the simulation relation with this

19



choice ofQ′, that is, Q ∼AC Q′. First, by definition E0 ∼AC∪{E′} E
′ and λx.O ≈AC∪{E} λx.O.

Therefore:

M ≈AC M ′

M ≈AC∪{E′} M ′ by Lemma A.6
M [f 7→ λx.O] ≈AC∪{E′} M ′[f 7→ λx.O] by Lemma A.5

E0[M [f 7→ λx.O]] ∼AC∪{E′} E′[M ′[f 7→ λx.O]] by Definition of ∼AC∪{E′}

Because we assumed it is not the case that E′[(λf.M ′)(λx.O)]� E′[V ′] for any V ′, the
condition for �∼ is met for E′ as well as for the elements of A and C, so that we have

Q = E0[M [f 7→ λx.O]] �∼ E′[M ′[f 7→ λx.O]] =: Q′

and we are done, as P → Q, P ′ +→ Q′, and Q
�∼ Q′.

4. Case P = E0[(λx.O)V ] and P ′ = E′0[(λy.((λf.M ′)(λx.O);O))V ′]. This can only be the case
if M ′ ∈ A. Now (λf.M ′)(λx.O) will be called next:

E′0[(λy.((λf.M ′)(λx.O); 0))V ′]→ E′0[(λf.M ′)(λx.O);O]

By the definition of �∼ and the fact that M ′ ∈ A, this call must return to its calling context
E′0[[ ];O]:

E′0[(λf.M ′)(λx.O);O]� E′0[V2;O]→ E′0[O]

So P → E0[O] and P ′
+→ E′0[O] with E0[O] �∼ E′0[O].

5. Case P = E0[V ] and P ′ = E′[V ′]. where E′ ∈ C. But by the definition of �∼, this is impossible,
since E′ is invoked with a value V ′, that is, P ′ � E[V ′]. So by contradiction, we are done
with this case.

�
Programs related by �∼ have essentially the same reduction behaviour, even though the right-

hand side one may perform (finitely many) more computational steps.
The simulation relation would not be much use if it related different observables; but is does

not:

Lemma 4.5 Let P and P ′ be expressions in λV +cont such that P �∼ P ′. Then P is a numeral iff
P ′ is the same numeral.

Starting from programs related by the simulation relation, we always obtain the same observations.

Lemma 4.6 Let P and P ′ be closed expressions in λV +cont with P
�∼ P ′. If P n→ Q, then

P ′
m→ Q′ for some m ≥ n and Q

�∼ Q′. Furthermore, if P ↑, then P ′ ↑.

Proof By induction on the length of the reduction n, and Lemma 4.4. �
The expressions that we want to show contextually equivalent are actually related by the sim-

ulation relation whenever they are plugged into the same context:

Lemma 4.7 For any closing context C in λV +cont, we have

C[(λf.M)(λx.O)] �∼ C[(λf.M)(λy.((λf.M)(λx.O);O))]
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Proof By induction on M one shows that M ≈∅∅ M . Then also

(λf.M)(λx.O) ≈∅∅ (λf.M)(λy.((λf.M)(λx.O);O))

By induction on C one shows that P ≈∅∅ P
′ implies C[P ] ≈∅∅ C[P ′]. Therefore

C[(λf.M)(λx.O)] ≈∅∅ C[(λf.M)(λy.((λf.M)(λx.O);O))]

The statement then follows, as the conditions for �∼ are trivially true for the members of the empty
set. �

From the above lemma, we conclude:

Theorem 4.8 (Equivalence) In the language with continuations, λV +cont, the expressions

(λf.M)(λx.O) and (λf.M)(λy.((λf.M)(λx.O);O))

are contextually equivalent.

Proof Let

P0 = C[(λf.M)(λx.O)]
P ′0 = C[(λf.M)(λy.((λf.M)(λx.O);O))]

By Lemma 4.7, P0
�∼ P ′0.

Let P � n for some numeral n. Then by Lemma 4.6, P ′ � Q′ where n �∼ Q′, hence Q′ = n, so
P ′ � n are required.

Conversely, let P ′ � n. Suppose P ↑: but then by Lemma 4.6, P ↑, contradiction. So P � Q.
Hence n = Q, so P � n as required. �

Lemma 4.9 Exceptions can separate (λf.M)(λx.O) and (λf.M)(λy.((λf.M)(λx.O);O)).

Proof Let M and C be defined as follows.

M = (handle e (λz.raise e 1) (f 0); raise e 0)
C = handle e (λx.x) [ ]

Then we have the following reductions:

C[(λf.M) (λx.O)]
= handle e (λx.x) (λf.(handle e (λz.raise e 1) (f 0); raise e 0))(λx.O)
� 0

C[(λf.M)(λy.((λf.M)(λx.O);O))]
= handle e (λx.x)

(λf.(handle e (λz.raise e 1) (f 0); raise e 0))
(λy.((λf.(handle e (λz.raise e 1) (f 0); raise e 0))(λx.O);O))

� 1
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�
Instead of the formulation with an arbitrary expression M , we could also phrase the equivalence

in terms of closed expressions. The two formulations are interderivable if we assume that the β-value
law preserves contextual equivalence, which is a standard result.

Corollary 4.10 The following two pure, closed, simply typed λ-terms are contextually equivalent
is λV +cont.

λf.f(λx.O) ∼= λf.f(λy.(f((λx.O);O)))

where O is an arbitrary closed term, such as λx.x.

Corollary 4.11 Exceptions cannot macro-express continuations.

Remark 4.12 It may be worth seeing why the equivalence proof for continuations fails for ex-
ceptions. What is not true for a language with exceptions is that a continuation is either in-
voked or ignored. (Or, put differently, the business end of an evaluation context is not just the
hole, but also the handlers enclosing the hole.) With exceptions, one can jump to a handler fur-
ther up inside a context. For the simulation relation �∼, this means that there can be P �∼ P ′

with P → Q and P ′ → Q′ such that Q �∼ Q′ does not hold. As an example, consider the fol-
lowing. For i = 1, 2, let Ei = handle e ((λx.0) [ ]) (λy.i). Then E1[raise e 0] �∼ E2[raise e 0],
because E1[raise e 0] ∼∅{E2} E2[raise e 0] and E2[raise e 0] 6 ∗→ E2[V ] for any value V . But

Ei[raise e 0]→ (λx.i)0 and (λx.1)0 6�∼ (λx.2)0.
If we want to relate expressions in the presence of exceptions, we need a simulation relation that

is more discriminating, in accounting for handlers. We will see such a relation in the next Section.

5 Exceptions and continuations cannot express state

The aim of this section is to show that the contextual equivalence M ∼= (M ;M) holds even if
exceptions and continuations are present in the language. This is in a sense the basic equivalence for
control constructs, variations of which could be broken by one, but not the other control construct.
Since assignment easily breaks the equivalence, we draw a line between control and state. This
turns out to be a fine line, for if a different way to combine exceptions and continuations in the
same language is used, then their combination can in fact express assignment. Furthermore, the
proof of this equivalence again uses the technique of arguing, by excluded middle, whether some
continuation will or will not be invoked in the future.

Recall that λV +cont+state is the language with both exceptions and continuations; its oper-
ational semantics is given in Figure 9.

As in the previous section, we start by defining suitable pre-simulation relations.

Definition 5.1 (Pre-simulation relations) Let C be a set of closed evaluation contexts. We
define relations ∼C and ≈C , both on expressions and evaluation contexts, by mutual recursion as
given in Figure 10, and analogously for evaluation contexts, as given in Figure 11.

As the next lemma shows, pre-simulation ∼C ensures that related programs behave the same,
until either M is found in the evaluation position on the left-hand side and M ′;M ′ on the right; or
a continuation from C is invoked.
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Figure 9: Semantics of λV +cont+exn

V ::= x | n | λx.M | #E | e
E ::= [ ] | (E M) | (V E) | (succ E) | (pred E) | (if0 E thenM elseM)

| (throw E M) | (throw V E)
| (raise E M) | (raise V E) | (handle e E N) | (handle e V E)

E[(λx. P ) V ] → E[P [x 7→ V ]]
E[succ n] → E[n+ 1]
E[pred 0] → E[0]
E[pred (n+ 1)] → E[n]
E[if0 0 thenM else N ] → E[M ]
E[if0 (n+ 1) thenM else N ] → E[N ]
E[rec f(x). M ] → E[λx.M [f 7→ rec f(x). M ]]
E[callccM ] → E[M(#E)]
E[throw (#E′) V ] → E′[V ]
E[handle e Vh Ee[raise e V ]] → E[VhV ] Ee 6= E1[handle e Vh2 E2]
E[handle e Vh V ] → E[V ]

Figure 10: Pre-simulation relations on expressions

M ≈C M ′ N ≈C N ′
MN ≈C M ′N ′

M ≈C M ′ N ≈C N ′
throwM N ≈C throwM ′ N ′

M ≈C M ′ N ≈C N ′ L ≈C L′
if0M then N else L ≈C if0M ′ then N ′ else L′ n ≈C n

M ≈C M ′
λx.M ≈C λx.M ′

M ≈C M ′
callccM ≈C callccM ′

M ≈C M ′
rec f(x). M ≈C rec f(x). M ′ x ≈C x

M ≈C M ′
predM ≈C predM ′

M ≈C M ′
succM ≈C succM ′

M ≈C M ′
raise e M ≈C raise e M ′

N ≈C N ′ L ≈C L′
handle e N L ≈C handle e N ′ L′

e ≈C e

M ≈C M ′
M ≈C (M ′;M ′)

E ∼C E′
#E ≈C #E′

M ≈C M ′
M ∼C M ′

E ∼C E′ N ≈C N ′ E′[[ ];M ′] ∈ C
E[N ] ∼C E′[N ′;M ′]
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Figure 11: Pre-simulation relations on evaluation contexts

E ≈C E′ N ≈C N ′
EN ≈C E′N ′

V ≈C V ′ E ≈C E′
V E ≈C V ′E′

E ≈C E′ N ≈C N ′
throw E N ≈C throw E′ N ′

V ≈C V ′ E ≈C E′
throw V E ≈C throw V ′ E′

E ≈C E′ N ≈C N ′ M ≈C M ′
if0 E then N elseM ≈C if0 E′ then N ′ elseM ′ [ ] ≈C [ ]

E ≈C E′
pred E ≈C pred E′

E ≈C E′
succ E ≈C succ E′

V ≈C V ′ E ≈C E′
raise V E ≈C raise V E′

E ≈C E′ M ≈C M ′
raise E M ≈C raise E′ M ′

E ≈C E′ M ≈C M ′
handle e E M ≈C handle e E′ M ′

V ≈C V ′ E ≈C E′
handle e V E ≈C handle e V ′ E′

E ≈C E′
E ∼AC E′

E1 ∼C E′1 E ≈C E′ E′1[[ ];M ′] ∈ C
E1[E] ∼AC E′1[E′;M ′]

Lemma 5.2 (One-step simulation) Let P ∼C P ′. Then (at least) one of the following is the
case:

1. P 9 and P ′ 9.

2. P → P1 and P ′ → P1 with P ′1 ∼C P ′1.

3. P = E[M ] and P ′ = E′[M ′;M ′] with E ∼C E′ and M ≈C M ′, but E′[[ ];M ′] /∈ C.

4. P ′ = E′[V ′] for some E′ ∈ C.

We refine our pre-simulation into a simulation by demanding that no continuation in C be ever
invoked. The last case in Lemma 5.2 is thereby ruled out.

Definition 5.3 Let P �∼ P ′ iff P ∼C P ′ for some C such that for all for all E′ ∈ C, there is no
value V ′ with P ′ � E′[V ′].

When we are faced with a situation of the form E[M ] ∼C E′[M ′;M ′], the expression M ′ could
again be of the form M ′ = E′′[M ′′;M ′′]. To avoid an infinite regress, we induct on the derivation.

Definition 5.4 Let δ(P, P ′, C) be the least number of instances of the rule

M ≈C M ′

M ≈C (M ′;M ′)

necessary to infer P ∼C P ′.

Lemma 5.5 Assume E′[[ ];M ′] /∈ C. Then

δ(E[M ], E′[M ′;M ′], C) < δ(E[M ], E′[M ′], C)

and
δ(E[M ], E′[M ′;M ′], C) < δ(E[M ], E′[M ′;M ′], C ∪ {E′[[ ];M ′]})
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Lemma 5.6 (Simulation) Let P and P ′ be closed expressions, and C a set of closed evaluation
contexts of λV +cont+exn such that P ∼C P ′ and P ′ � C. Then there is a P ′1 with P ′ � P ′1 and
moreover:

• If P 9, then P ′1 9.

• If P → Q, then there is a Q′ such that P ′1 → Q′ and Q
�∼ Q′.

Proof We induct on δ(P, P ′, C). By Lemma 5.2, we need to consider these cases:

1. P 9 and P ′ 9. Immediate, with P ′1 = P ′.

2. P → Q and P ′ → Q′ with Q ∼C Q′. Then let P ′1 = P ′. P ′ � C implies Q′ � C, so that Q �∼ Q′.

3. P = E[M ] and P ′ = E′[M ′;M ′] with E ∼C E′ and M ≈C M ′. There are two cases depending
on whether M ′ returns a value to its context E′[[ ];M ′], or not.

(a) E′[M ′;M ′]� E′[V ′;M ′] for some value V ′. Hence

E′[M ′;M ′]� E′[V ′;M ′]→ E′[M ′]

Because E ∼C E′ and M ≈C M ′, we have E[M ] ∼C E′[M ′]. As P ′ � C and P ′ � E′[M ′],
we have E′[M ′] � C. By Lemma 5.5,

δ(E[M ], E′[M ′;M ′], C) < δ(E[M ], E′[M ′], C)

so that we can apply the induction hypothesis to E[M ], E′[M ′] and C. That gives us a
P ′1 with E′[M ′]� P ′1. And this P ′1 is what we need, as

P ′ = E′[M ′;M ′]� E′[M ′]� P ′1

(b) It is not the case that E′[M ′;M ′] � E′[V ′;M ′] for any value V ′. Thus P ′ � E′[[ ];M ′],
in addition to P ′ � C, which holds by assumption. Let C′ = C ∪ {E′[[ ];M ′]}; clearly
P ′ � C′. By Lemma A.10, E ∼C E′ implies E ∼C′ E′, and M ≈C M ′ implies M ≈C′ M ′.
As E′[[ ];M ′] ∈ C′, we have E[M ] ∼C′ E′[M ′;M ′] by definition of ∼C′ . By Lemma 5.5,
we have

δ(E[M ], E′[M ′;M ′], C′) < δ(E[M ], E′[M ′;M ′], C)

so that we can apply the induction hypothesis to E[M ], E′[M ′;M ′] and C′. That gives
us a P ′1 as required.

4. P ′ = E′[V ′] for some E′ ∈ C. But that is impossible because P ′ � E′[V ′] contradicts P �∼ P ′.

�
The relation �∼ does not relate observables only to observables: for instance n �∼ (n;n), where

the right-hand side is not a value. But that is only because (n;n) still needs to do a reduction step
to catch up with the left-hand side and become n. In general, observables are only related to (the
same) observables if the right-hand side cannot do any more reductions:

Lemma 5.7 Let P and P ′ be expressions in λV +cont+exn such that P �∼ P ′ and P ′ 9. Then
P is a numeral iff P ′ is the same numeral.
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Hence we have the same observations for programs related by �∼.

Lemma 5.8 Let P and P ′ be closed expressions in λV +cont with P
�∼ P ′. If P n→ Q, then

P ′
m→ Q′ for some m ≥ n and Q

�∼ Q′. Furthermore, if P ↑, then P ′ ↑.

Lemma 5.9 Let P and P ′ be expressions in λV +cont+exn such that P �∼ P ′. Then P � n iff
P ′ � n.

When we plug M and M ;M into the same context, they are in relation �∼.

Lemma 5.10 Let M be an expression and C a context in λV +cont+exn such that C[M ] is closed.
Then C[M ] �∼ C[M ;M ].

Proof By induction on M we have M ≈∅ M . Hence M ≈∅ (M ;M). By induction on C, this
implies that C[M ] ≈∅ C[M ;M ], hence also C[M ] ∼∅ C[M ;M ]. The condition for �∼ is vacuously
true for all members of the empty set, so we have C[M ] �∼ C[M ;M ]. �

From the above lemmas, we can now conclude the desired equivalence.

Theorem 5.11 (Equivalence) In λV +cont+exn, the language with both exceptions and con-
tinuations, the expressions M and (M ;M) are contextually equivalent.

It is obvious that the putative equivalence (M ;M) ∼= M is easily broken by assignment: let
M = (x :=x+ 1;x). It is equally clear that exceptions and continuations can break M ; Ω ∼= N ; Ω;
see also [4]. (Here Ω is a divergent expression, such as (rec f(x). fx) 0 in the typed setting or
just (λx.xx)(λx.xx) in the untyped.) In that sense, the equivalence M ∼= (M ;M) drives a wedge
between control and state.

Corollary 5.12 Let O be any pure, closed, simply typed λ-term (such as λx.x). The following
two pure, closed, simply typed λ-terms are contextually equivalent is λV +cont+exn.

λf.f(f O; f O) ∼= λf.f O

Corollary 5.13 Continuations and exceptions cannot express state.

Proof By Theorem 5.11 and Felleisen [4]. �

Remark 5.14 It is not entirely obvious that continuations and exceptions together cannot give
rise to state. In fact, they almost can. More precisely, there is a variant of callcc and throw,
called capture and escape in Standard ML of New Jersey, which can express assignment when it is
combined with exceptions: see Figure 12. This allows M and (M ;M) to be separated by the choice
M = setx(getx () +1). If we use callcc instead of capture and throw instead of escape, the
same function only gives rise to an uncaught exception, not assignment.

We do not go into any details of the semantics of capture and escape here, but note in passing
that they, unlike the proper continuation constructs, use the handler in an essentially stateful way;
that is why the state can be teased out again, as in Figure 12.
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Figure 12: State from exceptions and capture/escape

open SMLofNJ.Cont;

exception x of int control_cont;

fun setx n = capture(fn c => (escape c ()) handle x k => escape k n);

setx : int -> unit;

fun getx () =
let

val y = capture(fn c2 => raise x c2)
in

setx y ; y
end;

getx: unit -> int;

(setx 0; setx(getx () +1); getx ());
val it = 1 : int
(setx 0; setx(getx () +1); setx(getx () +1); getx ());
val it = 2 : int

6 Exceptions and state cannot express continuations

In Section 3, we have contrasted exceptions and continuations in a stateless setting: because con-
tinuations allow us to backtrack, we could break an equivalence that holds in the presence of
exceptions. The equivalence that we used there would not help us much in the presence of state,
since state would already break the equivalence all by itself. On the other hand, we can use some
local state to observe backtracking much more easily than we could in the stateless setting.

To observe backtracking, we define an expression that contains a hidden value, so to speak, in
that this value cannot be observed from the outside unless a sequence of assignments is run twice.
The context is allowed to pass in a non-local function. This function cannot directly glean the
values of the local variables. All it could do is use some control behaviour to influence how often
the assignments are executed. With exceptions, it can only prevent them from being executed at
all by not returning to the call site.

Definition 6.1 We define terms R1 and R2 in λV +state by

Rj ≡ λf.((λx.λy.(f 0; x:= !y; y:=j; !x)) (ref 0) (ref 0))

Informally, the idea is that j is hidden inside Rj . As the variables x and y are local, the only way
to observe j would be to run the assignments after the call to z twice, so that j is first moved into
y, and then x, whose value is returned at the end. With exceptions, that is impossible.

We need some lemmas that allow us to infer the behaviour of E[M ] from that of M .
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Lemma 6.2 Let P be an expression, E an evaluation context, and s a store of λV +exn+state.
If s0, P � s1, Q, then s0, E[P ]� s1, E[Q] by a smaller reduction.

Lemma 6.3 Let M be an expression, E an evaluation context, and s a store of λV +exn+state.
If s,E[M ]�, then also s,M�.

Lemma 6.4 Let M be an expression and E an evaluation context of λV +exn+state. Let s be a
state. If s,M is stuck, then s,E[M ] is stuck.

We can confine our attention to M in E[M ]. We also need to be able to focus on a subset of
the store.

Definition 6.5 A set of addresses A is closed under references in s, P if A ⊆ dom(s) Addr(P ) ⊆ A
and for all addresses a ∈ A, Addr(s(a)) ⊆ A.

By chasing references emanating from P through the store s, we can never leave A.
The next lemma states that something in the store that is not reachable from the program

cannot be changed by it:

Lemma 6.6 If A is closed under references in s, P and s, P � s1, Q, then for all a /∈ A, s(a) =
s1(a).

We are now ready to define our simulation relation. This relation is in some way quite straight-
forward, in that we relate Rj and Rj′ interspersed in some larger program. What is more com-
plicated here is the need to restrict to a subset of the store. Although the difference between Rj
and Rj′ is not observable, their evaluation leaves different integers behind at inaccessible storage
addresses.

Definition 6.7 We define relations ∼ and ∼A, where A is a set of addresses, as follows:

• On terms, let ∼ be the least congruence such that Rj ∼ Rj′ for any integers j and j′.

• ∼ is extended to evaluation contexts in the evident way:

E ∼ E′ M ∼M ′

EM ∼ E′M ′

and analogously for all the rules of evaluation-context formation.

• On stores, let s ∼A s′ iff A ⊆ dom(s) = dom(s′) and for all a ∈ A, s(a) ∼ s′(a).

• For stores together with terms, let s,M ∼A s′,M ′ iff s ∼A s′ and M ∼ M ′ and A is closed
under references in both s,M and s′,M ′.

Briefly, the idea behind the annotation A on the simulation relation ∼A is that those addresses
a with a ∈ A are guaranteed to be related by ∼, whereas those with a /∈ A are guaranteed to
remain inaccessible.

Lemma 6.8 If s, P ∼A s′, P ′ and A ⊆ A1, then s, P ∼A1 s
′, P ′.

First we show that related programs behave the same until one of them calls Rj .
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Lemma 6.9 (One-step simulation) Let P and P ′ be closed expressions of λV +exn+state such
that s, P ∼A s′, P ′. Then one of the following is the case:

• Both P and P ′ are values.

• Both s, P and s′, P ′ are stuck.

• Both P and P ′ are uncaught exceptions, where P = E[raise e V ] and P ′ = E′[raise e V ′]
for some values V and V ′ with V ∼A V ′.

• There are values V and V ′ and contexts E and E′ such that P = E[RjV ] and P ′ = E′[Rj′V ′]
with E ∼ E′ and V ∼ V ′.

• There are expressions P1 and P ′1 and stores s1 and s′1 such that

s, P → s1, P1

s′, P ′ → s′1, P
′
1

such that there is A ⊆ A1 with (dom(s) \A) ⊆ (dom(s1) \A1) and s1, P1 ∼A1 s
′
1, P

′
1.

Building on Lemma 6.9, it remains to show that calls of Rj and Rj′ cannot lead to any observable
difference.

Lemma 6.10 (Simulation) Let P and P ′ be expressions in λV +exn+state, and s and s′ be
stores such that s, P ∼A s′, P ′, and s, P � s1, Q. Then there exist a term Q′, a store s′1 and a set of
addresses A1 such that

• s′, P ′ � s′1, Q′;

• if Q is a value, then s1, Q ∼A1 s
′
1, Q

′;

• if Q is an uncaught exception Ee[raise e V ], then Q′ = E′e[raise e V
′] where s1, V ∼A1

s′1, V
′;

• A ⊆ A1 and (dom(s) \A) ⊆ (dom(s1) \A1);

Proof We induct on the size of the reduction: we assume s, P � s1, Q and that the lemma is true
for all smaller reductions. We proceed with the cases given by Lemma 6.9. Suppose both s, P
and s′, P ′ are stuck; or both are values; or both are uncaught exceptions. In those cases, we have
s, P �s, P and s′, P ′ �s′, P ′, and we are done. Suppose s, P → s1, P1. Then s1, P1 ↑ is impossible, as
it would imply s, P ↑. Hence there is are Q and s2 such that s1, P1 � s2, Q. We apply the induction
hypothesis to this. Now suppose P = E[RjV ] and P ′ = E′[Rj′V ′]. First, is straightforward to
calculate that RjV applies V to 0 after allocating some addresses that are not known to V :

s, E[RjV ]
= s, E[(λf.((λx.λy.(f 0; x:= !y; y:=j; !x)) (ref 0) (ref 0))V ]
→ s, E[(λx.λy.(V 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)]
→ s+ {a 7→ 0}, E[(λx.λy.(V 0; x:= !y; y:=j; !x)) (ref 0) a]
→ s+ {a 7→ 0}, E[(λy.(V 0; a:= !y; y:=j; !a)) (ref 0)]
→ s+ {a 7→ 0}+ {b 7→ 0}, E[(λy.(V 0; a:= !y; y:=j; !a)) b]
→ s+ {a 7→ 0}+ {b 7→ 0}, E[V 0; a:= !b; b:=j; !a]
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Here a, b /∈ dom(s). Choosing the same addresses, we have the analogous reduction

s′, E′[Rj′V ′]
→ s′ + {a 7→ 0}+ {b 7→ 0}, E′[V ′ 0; a:= !b; b:=j; !a]

By Lemma 6.3, P � implies that there must be some N and a store s1 such that s + {a 7→
0} + {b 7→ 0}, V 0 � s1, N . We need to consider whether N is a value, an uncaught exception, or
stuck.

• N is a value V1, that is
s+ {a 7→ 0}+ {b 7→ 0}, V 0 � s1, V1

We apply the induction hypothesis to s+ {a 7→ 0}+ {b 7→ 0}, V 0, which gives us s′1, V
′

1 with
s′, V ′ 0 � s′1, V

′
1 and s1, V ∼A1 s

′
1, V

′
1 . Furthermore, A ⊆ A1 and (dom(s + {a 7→ 0} + {b 7→

0}) \A) ⊆ (dom(s1) \A1). As b /∈ A, the this implies b /∈ A1.

As A is closed under references in s + {a 7→ 0} + {b 7→ 0}, V 0, and b /∈ A, Lemma 6.6
tell us that s1(b) = 0. Furthermore, by Lemma 6.2 applied to the evaluation context
E[[ ]; a:= !b; b:=j; !a] we know that

s+ {a 7→ 0}+ {b 7→ 0}, E[V 0; a:= !b; b:=j; !a]� s1, E[V1; a:= !b; b:=j; !a]

Therefore

s+ {a 7→ 0}+ {b 7→ 0}, E[V 0; a:= !b; b:=j; !a]
� s1, E[V1; a:= !b; b:=j; !a]
→ s1, E[a:= !b; b:=j; !a]
→ s1, E[a:= 0; b:=j; !a] as s1(b) = 0
→ s1 + {a 7→ 0}, E[b:=j; !a]
→ s1 + {a 7→ 0}+ {b 7→ j}, E[!a]
→ s1 + {a 7→ 0}+ {b 7→ j}, E[0]

In sum, we have for s,E[RjV ] and analogously for s′, E′[Rj′V ′] the following reductions:

s,E[RjV ] � s1, {a 7→ 0}+ {b 7→ j}, E[0]
s′, E′[Rj′V ′] � s′1 + {a 7→ 0}+ {b 7→ j′}, E′[0]

Moreover, the right-hand sides are related: E ∼A E′ implies E ∼A1 E
′ by Lemma 6.8, hence

E[0] ∼A1 E
′[0], also Addr(E[0]) = Addr(E′[0]) ⊆ A ⊆ A1. As s1 + {a 7→ 0} + {b 7→ j} ∼A1

s′1 + {a 7→ 0}+ {b 7→ j′}, we have

s1 + {a 7→ 0}+ {b 7→ j}, E[0] ∼A1 s′1 + {a 7→ 0}+ {b 7→ j′}, E′[0]

This is the linchpin of the whole proof: the store address b may hold different integers j and
j′, respectively; but that is of no consequence, because b, lying outside of A1, is garbage. Now
s1 + {a 7→ 0}+ {b 7→ j}, E[0] ↑ would again imply s, P ↑, contrary to our assumption. Hence
there are some Q and s2 such that s1 + {a 7→ 0}+ {b 7→ j}, E[0] � s2, Q by a reduction smaller
than s, P � s2, Q. We apply the induction hypothesis.

• If N is an uncaught exception:

s+ {a 7→ 0}+ {b 7→ 0}, V 0 � s1, Ee[raise e V1]
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By Lemma 6.2,

s+ {a 7→ 0}+ {b 7→ 0}, E[V 0; a:= !b; b:=j; !a]
� s1, E[Ee[raise e V1]; a:= !b; b:=j; !a]

then there are two cases, depending on whether E catches the exception e or not. If it is not
caught, we apply the induction hypothesis and are done.

Otherwise, we have E = E1[handle e V2 E2]. Hence

s+ {a 7→ 0}+ {b 7→ 0}, E1[handle e V2 E2[V 0; a:= !b; b:=j; !a]]
� s1, E1[handle e V2 Ee2[Ee[raise e V1; a:= !b; b:=j; !a]]
→ s1, E1[V2V1]

Hence the assignments are discarded; a and b are garbage, as in the previous case, but now
they do not even hold different values.

• If s1, N is stuck, we have by Lemma 6.2 that

s, P � s1, E[N ; a:= !b; b:=j; !a]

and the latter is stuck by Lemma 6.4. We apply the induction hypothesis to

s+ {a 7→ 0}+ {b 7→ 0}, V 0 � s1, N

giving us s′1, N
′, which is also stuck. Applying Lemmas 6.2 and 6.4 again, we conclude that

s′, P ′ is stuck, and we are done.

�

Lemma 6.11 In λV +exn+state, the following contextual equivalence holds:

R1
∼= R2

where Rj ≡ λf.((λx.λy.(f 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)) as in Definition 6.1.

Proof As neither of these terms contains any addresses, they are related in the empty store with
respect to the empty set of addresses, that is ∅, C[R1] ∼∅ ∅, C[R2]. The statement follows from
Lemma 6.10. �

It remains to show that the two terms that are indistinguishable with exceptions and state
can be separated with continuations and state. To separate, the argument to Rj should save its
continuation, then restart that continuation once, so the assignments get evaluated twice, thereby
assigning j to x, and thus making the concealed j visible to the context.

Lemma 6.12 In λV +cont+state, R1 and R2 can be separated: there is a context C such that

∅, C[R1]� s1, 1
∅, C[R2]� s′1, 2

We omit the lengthy reduction here, but see Figure 13 for the separating context written in Standard
ML of New Jersey.
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Figure 13: A separating context using continuations and state in SML/NJ

fun R j z = (fn x => fn y => (z 0; x := !y; y := j; !x))(ref 0)(ref 0);

fun C Rj =
callcc(fn top =>

let
val c = ref 0
val s = ref top
val d = Rj (fn p => callcc(fn r => (s := r; 0)))

in
(c := !c + 1;
if !c = 2 then d else throw (!s) 0)

end);

C(R 1);
val it = 1 : int
C(R 2);
val it = 2 : int

7 Conclusions

Exceptions and continuations, as we have seen, are fundamentally different in their semantics, and
in the way we can reason about them. Consequently they admit different contextual equivalences, so
that macro-inexpressiveness follows as a corollary. But more importantly the difference in reasoning
elucidates both constructs.

The same basic technique, starting directly from the operational semantics and establishing
a simulation relation, worked in all cases. Significant variations arose because of the effects in
the language. Both continuations and assignment allow communication between different parts
of the program. In proving contextual equivalence, we have to reason about expressions that are
not themselves equivalent in all contexts, but only if we restrict the effects that they may use to
communicate with the larger program. Hence our induction hypothesis can not simply assume that
they behave the same. Rather, we need to carry extra information in the simulation relation. For
continuations, this was a set of continuations guaranteed never to be invoked; for state it was a set
of storage addresses guaranteed to be the only ones that the expression could reach.

The contrast between exceptions and first-class continuations is in large part due to the fact that
exceptions do not allow backtracking, as becomes particularly clear if we can detect backtracking,
or its absence, by local state, as we did in Section 6. The same issue can also be addressed using
linear typing, to make explicit that callcc allows a continuation to be used multiple times, whereas
in the presence of only exceptions, continuations are linearly used [2], which prevents backtracking.
If one could exploit the linearity in the CPS transforms for exceptions to prove equivalences, then
the approach based on linear typing, and the one in this paper, based on equivalences, could be
related and combined into a larger picture of control constructs.

Another connection to typing and logic may lie in the distinction between classical and intu-
itionistic logic, with continuations being perhaps inherently classical and exceptions intuitionistic.
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At the level of types, there is a well established connection between the types of control operators
for first-class continuations and classical logic [7, 3]. More specifically, Griffin [7] has shown that a
term that backtracks witnesses excluded middle ¬A∨A. For exceptions, however, there is not such
connection to classical logic; to the extent that one can give a logical interpretation to exceptions,
it would arguably be intuitionistic [27], the same as for a language without control.

We can perhaps glimpse a connection between continuations and classical logic not only in
typing, but also in reasoning about control. The proofs of Lemmas 3.7 and 6.10 about exceptions
are intuitionistic, whereas the main arguments about control behaviour in Lemmas 4.4 and 5.6
are crucially classical in their use of excluded middle: it was argued that some continuation would
either be invoked at some unknown point in the future, or not. Arguing thus in terms of excluded
middle greatly simplified the proof; for the author it was the breakthrough in proving an otherwise
recalcitrant equivalence. A more constructive, intuitionistic argument would presumably involve
keeping track of the continuation and backtracking in the proof when it is invoked, at the cost of
a prohibitive amount of additional housekeeping in the construction of the simulation relation. In
a sense, the use of excluded middle neatly encapsulated the backtracking in the logic, with proof
by contradiction as the logical analogue of jumping. Rather than having to backtrack whenever a
continuation in C is invoked, we obtain a contradiction, and are done.
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A Appendix: proof of some lemmas

A.1 Lemmas from Section 3

Lemma A.1 If M ≈M ′ and E ≈ E′, then E[M ] ≈ E′[M ′].

Proof Induction on the derivation of E ≈ E′. �

Lemma A.2 If M ≈M ′ and N ≈ N ′, then M [x 7→ N ] ≈M ′[x 7→ N ′].

Proof Induction on the derivation of M ≈M ′. �

Lemma A.3 (Decomposition) Let P and P ′ be closed such that P ≈ P ′. Then at least one of
the following is the case:

1. P and P ′ are the same numeral n.

2. P and P ′ are the same exception e.

3. P = λx.M and P ′ = λx.M ′.

4. P and P ′ are both stuck.

5. P = E[(λf.(f1; f2))M ] and P ′ = E′[(λfg.(f 1; g 2))M ′M ′]

6. P = E[(λx.M)V ] and P ′ = E′[(λx.M ′)V ′].

7. P = E[rec f(x). M)] and P ′ = E′[rec f(x). M ′)]

8. P = E[pred n] and P ′ = E′[pred n]

9. P = E[succ n] and P ′ = E′[succ n]

10. P = E[if0 V thenM else N ] and P ′ = E′[if0 V ′ thenM ′ else N ′]

11. P = E[handle e Ee[raise e V ] V2] and P ′ = E′[handle e E′e[raise e V
′] V ′2 ]

12. P = E[handle e V V2] and P ′ = E′[handle e V ′ V ′2 ]

13. P = Ee[raise e V ] and P ′ = E′e[raise e V
′]

In all cases, E ≈ E′, V ≈ V ′, M ≈M ′, V2 ≈ V ′2 , N ≈ N ′ and E1 ≈ E′1.

Proof Induction on the derivation of P ≈ P ′. �
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A.2 Lemmas from Section 4

We first need some technical lemmas to ensure that these relations respect the plugging of an
expression into an evaluation context, substitution, and a kind of weakening.

Lemma A.4 Let E ≈AC E′, E1 ∼AC E′1, M ≈AC M ′. Then

E[M ] ≈AC E′[M ′] E1[M ] ∼AC E′1[M ′]

Proof Induction on the derivation of E ≈AC E′ and E1 ∼AC E′1. �

Lemma A.5 Let N ≈AC N ′. If M ≈AC M ′, then M [x 7→ N ] ≈AC M ′[x 7→ N ′].

Proof Induction on the derivation of M ≈AC M ′. As elements of A and C are required to be closed,
the substitution does not change them. �

Lemma A.6 Let A ⊆ A′ and C ⊆ C′. Then ∼AC ⊆∼A
′
C′ and ≈AC ⊆≈A

′
C′ , both on expressions and

evaluation contexts.

Proof Induction on the derivation of P ∼AC P ′, Q ≈AC Q′, E1 ∼AC E′1, E ≈AC E′. �

Lemma A.7 (Decomposition) Let P and P ′ be closed expressions of λV +cont such that P ≈AC
P ′. Then at least one of the following is the case:

• P and P ′ are the same numeral.

• P = λx.M and P = λx.M ′,

• P and P ′ are both stuck.

• P = E[(λf.N)(λx.0)] and P ′ = E′[(λf.N ′)(λy.((λf.N ′)(λx.0); 0))].

• P = E[(λx.0)V ] and P ′ = E′[(λy.((λf.M ′1)(λx.0); 0))V ′] with M ′1 ∈ A.

• P = E[(λx.M)V ] and P ′ = E′[(λx.M ′)V ′].

• P = E[callccM ] and P ′ = E′[callccM ′].

• P = E[throw (#E1) V ] and P ′ = E′[throw (#E′1) V ′]

• P = E[rec f(x). M ] and P ′ = E[rec f(x). M ′]

• P = E[pred n] and P ′ = E′[pred n]

• P = E[succ n] and P ′ = E′[succ n]

• P = E[if0 V thenM else N ] and P ′ = E′[if0 V ′ thenM ′ else N ′]

In all cases, E ≈C E′, V ≈C V ′, M ≈C M ′, V2 ≈AC V ′2 , N ≈AC N ′ and E1 ∼AC E′1.

Proof The proof is a lengthy induction on the derivation of P ≈AC P ′. As a sample case, consider

M ≈AC M ′ N ≈AC N ′

MN ≈AC M ′N ′

We assume that the statement holds for M and N , and proceed by cases on M .
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1. M is a value. Both expressions are stuck unless M is a λ-abstraction. If M is a λ-abstraction,
it could be the case that M = λx.M1 and M ′ = λx.M ′1; or that M = λx.0 and M ′ =
λy.((λf.M ′1)(λx.0); 0). There are several cases what N could be.

(a) N is a value. Then N ′ must also be a value. Hence P = E[MV ] and P ′ = E′[M ′V ′],
where E = E′ = [ ], V = N , and V ′ = N ′.

(b) N = E1[Q]. Then N ′ = E′1[Q′], where E1 ≈AC E′1 and Q and Q′ are as required in the
various cases. Hence P = E[Q] and P ′ = E′[Q′], where E = ME1 and E′ = M ′E1, so
that E ≈AC E′.

(c) N is stuck. Then N ′ is also stuck. Thus both P and P ′ are stuck.

2. M = E1[Q] and M ′ = E′1[Q′]. Then P = E[Q] and P ′ = E′[Q′], where E = E1N and
E′ = E′1N

′.

3. M is stuck. Then M ′ must also be stuck. Thus both P and P ′ are stuck.

�
We need to relate expressions that may also differ in a continuation at the top (related by ∼AC ).

Such terms can make the same evaluation step, as long as they do not hit something from A or C.
Proof of Lemma 4.2.

Proof Assume P ∼AC P ′. By Definition 4.1, there are two cases why ∼AC could hold:

• Case P ≈AC P ′. By Lemma A.7, P and P ′ are either both values, stuck, or of the form
P = E[Q] and P = E[Q′] with E ∼AC E′.

• Case P = E1[M ] and P ′ = E′1[M ′] with M ≈AC M ′ and E′1 ∈ C. If M is a value, then
so is M ′, and we are done. Otherwise, we apply Lemma A.7 to M and M ′. That gives
us decompositions M = E2[Q] and M ′ = E′2[Q′] with E2 ≈AC E′2. Let E = E1[E2] and
E′ = E′1[E′2]; note that again E ∼AC E′.

So in both cases, we have a decomposition P = E[Q] and P ′ = E′[Q′], where E ∼AC E′. We proceed
by cases on Q and Q′, as given by Lemma A.7.

• Case Q = (λf.N)(λx.0) and Q′ = (λf.N ′)(λy.((λf.N ′)(λx.0); 0)): we are done.

• Case Q = (λx.0)V and Q′ = (λy.((λf.M ′1)(λx.0); 0))V ′; again we are done.

• Case Q = (λx.M)V and Q = (λx.M ′)V ′ with M ∼AC M ′ and V ∼AC V ′. Then

P = E[(λx.M)V ] → E[M [x 7→ V ]]
P ′ = E′[(λx.M ′)V ′] → E′[M ′[x 7→ V ′]]

We stay in ∼AC because M [x 7→ V ] ≈AC M ′[x 7→ V ′] by Lemma A.5, hence E[M [x 7→ V ]] ∼AC
E′[M ′[x 7→ V ′]].

• Case Q = callccM and Q′ = callccM ′. Hence P = E[callccM ] and P ′ = E′[callccM ′]
with E ∼AC E′ and M ≈AC M ′. Then

P = E[callccM ] → E[M (#E)] =: P1

P ′ = E′[callccM ′] → E′[M ′ (#E′)] =: P ′1

We stay in ∼AC because E ∼AC E′ implies #E ≈AC #E′ by Definition 4.1; hence M (#E) ≈AC
M ′ (#E′) by congruence, so that E[M (#E)] ∼AC E′[M ′ (#E′)] by Lemma A.4.
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• Case Q = throw (#E2) V . Hence P = E1[throw (#E2) V ] and P ′ = E′1[throw (#E′2) V ′]
with #E2 ≈AC #E′2. Then

P = E[throw (#E2) V ] → E2[V ]
P ′ = E′[throw (#E′2) V ′] → E′2[V ′]

We stay in ∼AC because #E2 ≈AC #E′2 implies E2 ∼AC E′2; and this together with V ≈AC V ′,
implies E2[V ] ∼AC E′2[V ′].

• Case Q = pred n and Q′ = pred n. Then

E[pred n] → E[n+ 1] =: P1

E′[pred n] → E′[n+ 1] =: P ′1

We have n+ 1 ≈AC n+ 1, hence E[n+ 1] ∼AC E′[n+ 1], so that P1 and P ′1 are still related by
∼AC , as required.

The remaining cases are analogous. �

A.3 Lemmas from Section 5

Lemma A.8 Let E ≈C E′, E1 ∼C E′1, M ≈C M ′, and E2 ≈C E′2. Then

E[M ] ≈C E′[M ′] E1[M ] ∼C E′1[M ′]
E[E2] ≈C E′[E′2] E1[E2] ∼C E′1[E′2]

Proof Induction on the derivation of E ≈C E′ and E1 ∼C E′1. �

Lemma A.9 Let N ≈C N ′. If M ≈C M ′, then M [x 7→ N ] ≈C M ′[x 7→ N ′].

Proof Induction on the derivation of M ≈C M ′. As elements of C are required to be closed, the
substitution does not change them. �

Lemma A.10 Let C ⊆ C′. Then ∼C⊆∼C′ and ≈C⊆≈C′ , both on expressions and evaluation con-
texts.

Lemma A.11 Let E and E′ be two evaluation contexts of λV +cont+exn with E ≈C E′ and e
an exception. Then either E = Ee and E′ = E′e, or

E = E1[handle e V Ee]
E′ = E′1[handle e V ′ E′e]

where E1 ≈C E′1 and V ≈C V ′.

Proof Induction on the derivation of E ≈C E′. �

Lemma A.12 Let E and E′ be two evaluation contexts of λV +cont+exn with E ∼C E′ and e
an exception. Then either E = Ee and E′ = E′e, or

E = E1[handle e V Ee]
E′ = E′1[handle e V ′ E′e]

where E1 ∼C E′1 and V ≈C V ′.
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Proof We induct on the derivation of E ∼C E′. If E ∼C E′, then we apply Lemma A.11 and
conclude from E1 ≈C E′1 that E1 ∼C E′1, as required. Otherwise E = E1[E2] and E′ = E′1[E′2;M ′]
with E1 ∼C E′1, E2 ≈C E2 and E′1[[ ];M ′] ∈ C. We proceed by cases, depending on whether E2

handles e.

• Suppose E2 handles e. Then

E2 = E3[handle e V Ee3]
E′2 = E′3[handle e V ′ E′e3]

where V ≈C V ′ and Ee3 ≈C E′e3. Thus

E = E1[E3[handle e V Ee3]]
E′ = E′1[E′3[handle e V ′ E′e3];M ′]

and E1[E3] ∼C E′1[E′3;M ′] by the definition of ∼C .

• Suppose E2 does not handle e. By Lemma A.11, E′2 does not handle e either. There are two
subcases, depending on whether E1 handles e or not. If it does not, then by the induction
hypothesis, neither does E′1. Hence E1[E2] and E′1[E′2] both do not handle e, and we are
done. If E1 handles e, then by the induction hypothesis so does E′1, that is

E1 = E3[handle e V Ee3]]
E′1 = E′3[handle e V ′ E′e3];M ′]

Thus

E = E3[handle e V Ee3[E2]]
E′ = E′3[handle e V ′ E′e3[E′2];M ′]

and E3 ∼C E′3[[ ];M ′] (because [ ] ≈C [ ]).

�

Lemma A.13 Let P and P ′ be closed expressions of λV +cont+exn with P ≈C P ′. Then at least
one of the following is the case:

• P and P ′ are the same numeral n.

• P and P ′ are the same exception e.

• P = λx.M and P ′ = λx.M ′.

• P and P ′ are both stuck.

• P = E[M ] and P ′ = E′[M ′;M ′].

• P = E[(λx.M)V ] and P ′ = E′[(λx.M ′)V ′].

• P = E[callccM ] and P ′ = E′[callccM ′].

• P = E[throw (#E1) V ] and P ′ = E′[throw (#E′1) V ′]
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• P = E[rec f(x). M ] and P ′ = E′[rec f(x). M ′]

• P = E[pred n] and P ′ = E′[pred n]

• P = E[succ n] and P ′ = E′[succ n]

• P = E[handle e Vh Ee[raise e V ]] and P ′ = E′[handle e Vh E′e[raise e V
′]]

• P = E[handle e V V2] and P ′ = E′[handle e V ′ V ′2 ]

• P = E[if0 V thenM else N ] and P ′ = E′[if0 V ′ thenM ′ else N ′]

• P = Ee[raise e V ] and P ′ = E′e[raise e V
′]

In all cases, E ≈C E′, V ≈C V ′, M ≈C M ′, V2 ≈C V ′2 , N ≈C N ′ and E1 ∼C E′1.

Proof By induction on P ≈C P ′ and cases of the definition of evaluation context, analogous to
Lemma A.7. �

The proof of Lemma 5.2 is largely analogous to that of Lemma 4.2, using Lemmas A.13 and A.11.

A.4 Proofs from Section 6

Lemma A.14 (Decomposition) Let P and P ′ be expressions in λV +exn+state, and s and s′

be stores, such that s, P ∼A s′, P ′. Then at least one of the following is the case:

1. P and P ′ are the same numeral n.

2. P and P ′ are the same exception e.

3. P and P ′ are the same variable x.

4. P = λx.M and P ′ = λx.M ′.

5. P and P ′ are both stuck.

6. P = E[RjV ] and P ′ = E′[Rj′V ′] for some integers j and j′.

7. P = E[refV ] and P ′ = E′[refV ′]

8. P = E[!a] and P ′ = E′[!a] for some address a.

9. P = E[a:=V ] and P ′ = E′[a:=V ′] for some address a.

10. P = E[pred n] and P ′ = E′[pred n]

11. P = E[succ n] and P ′ = E′[succ n]

12. P = E[if0 V thenM else N ] and P ′ = E′[if0 V ′ thenM ′ else N ′]

13. P = E[handle e Vh Ee[raise e V ]] and P ′ = E′[handle e V ′h E
′
e[raise e V

′]]

14. P = E[handle e Vh V ] and P ′ = E′[handle e V ′h V
′]

15. P = Ee[raise e V ] and P ′ = E′e[raise e V
′]

Moreover, in all cases E ∼A E′, V ∼A V ′, V2 ∼A V ′2 , M ∼A M ′, N ∼A N ′.
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Next we sketch the proof of Lemma 6.9.
Proof We need to consider the cases given by Lemma A.14. The most important ones are those
that manipulate the state.

1. Case P = E[refV ] and P ′ = E′[refV ′] with E ∼A E′ and V ∼A V ′. Then s,E[refV ] →
s+ {a 7→ V }, E[V ], where a /∈ dom(s). Hence s′, E′[refV ′]→ s′ + {a 7→ V ′}, E[V ′]. (We can
pick the same address a, because a /∈ dom(s′) = dom(s).) Now

s+ {a 7→ V }, E[V ] ∼A∪{a} s′ + {a 7→ V ′}, E′[V ′]

Clearly, A ⊆ A ∪ {a} and dom(s) \A ⊆ dom(s+ {a 7→ V }) \ (A ∪ {a}).

2. Case P = E[!a] and P ′ = E′[!a] with E ∼A E′. By the definition of ∼A, we have s(a) ∼A
s′(a). Hence E[s(a)] ∼A E′[s′(a)] and thus s,E[s(a)] ∼A s′, E′[s′(a)].

3. Case P = E[a:=V ] and P ′ = E′[a:=V ′] with E ∼A E′ and with V ∼A V ′. Since V ∼A V ′,
we have s+ {a 7→ V } ∼A s′ + {a 7→ V ′} and E[V ] ∼A E′[V ′], so that s+ {a 7→ V }, E[V ] ∼A
s′ + {a 7→ V ′}.

�
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