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Abstract

Emotional progression in narratives is carefully structured by
human authors to create unexpected and exciting situations,
often culminating in a climactic moment. This paper ex-
plores how an autonomous computational designer can cre-
ate frames of tension which guide the procedural creation of
levels and their soundscapes in a digital horror game. Using
narrative concepts, the autonomous designer can describe an
intended experience that the automated level generator must
adhere to. The level generator interprets this intent, bound
by the possibilities and constraints of the game. The tension
of the generated level guides the allocation of sounds in the
level, using a crowdsourced model of tension.

Introduction
Several computationally creative systems have stood at the
interplay of different multidisciplinary creative domains.
It should not come as a surprise, therefore, that several
projects in computational creativity tackle the transforma-
tion of data from one domain to another, e.g. images to
soundscapes (Johnson and Ventura 2014), news articles to
collages (Krzeczkowska et al. 2010), academic papers to
songs and their lyrics (Scirea et al. 2015), text descrip-
tions to player abilities (Cook and Colton 2014), to name
a few. Due to the dissimilarities between source and target
creative domains, such computational systems must learn to
creatively interpret the patterns of the input, and work to-
wards making them apparent in the output while still obey-
ing the constraints and the expressivity of the target creative
domain (e.g. a limited color palette).

In this context, digital games are particularly relevant as
a multi-faceted medium where visuals, audio, narrative and
rule- and level-design come together in an interactive expe-
rience (Liapis, Yannakakis, and Togelius 2014). Not only
must these creative domains go well together, but they must
provide players with an enjoyable experience: depending
on the genre, this experience can be, for instance, frantic
in “bullet hell” action games, relaxing in exploration games,
or tense in horror games (Ekman and Lankoski 2009).

When drawing inspiration from dissimilar creative do-
mains, it is important to find the right patterns to replicate
(or re-interpret) in the creative output of the system. While
systems can look at structural similarities and associations
(Grace, Gero, and Saunders 2012), a promising approach is

to identify the intentions of the creator of one artefact and
attempt to match those intentions in the artefact of the other
domain. Towards that outcome, having access to a frame
of reference for the intentions going into the creative act is
ideal. Framing information, as suggested in the FACE model
of Colton, Charnley, and Pease (2011), can be provided by
the creative system itself as “a piece of natural language text
that is comprehensible by people”. Such framing informa-
tion can clarify the intentions of the system in its design
choices and can make its creativity more easily perceptible
(Colton 2008). Moreover, the framing information can act
as a guide when transforming media generated by such a
creative system into different media.

In the context of digital games, a human game designer’s
primary concern and frame of reference is the intended
player experience. In most games, the intended player ex-
perience affects all design decisions: from the color palette
to the responsiveness of the controls and from the sound ef-
fects for rewards to the back-story presented in an introduc-
tory cut-scene. Taking a successful horror game such as Am-
nesia: The Dark Descent (Frictional Games 2010) as an ex-
ample, the intended player experience is one of dread, of im-
minent tragedy, of confusion and constant second-guessing
of players’ perception and actions. Towards this experience,
the visuals include dark colors and dim lights, the audio fo-
cuses on ambient noises which foreshadow monsters, the
level design has narrow corridors and low visibility while
the game rules preclude any way to combat monsters.

This paper extends the Sonancia creative system, (Lopes,
Liapis, and Yannakakis 2015a; 2015b) by providing the soft-
ware with the capacity to choose and describe the intended
player experience, which is then used to generate game lev-
els and their soundscapes for a horror game. The ability of
the computational designer to describe its intentions in clear
text to a human audience is paramount in the perception of
creativity. Moreover, the system can then create the frame
(as the progression of tension) via evolutionary search driven
by several fitnesses targeting specific narrative structures.
The paper includes several examples of generated frames
and their corresponding levels and soundscapes. As an ad-
ditional contribution to earlier work, the current version of
Sonancia uses a crowdsourced model of tension to allocate
sounds to the level in a way that more closely matches the
human perception (or ground truth) of tension.
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Figure 1: The creative process of the Sonancia system described here: a randomly selected tension frame is used to evaluate an
evolving tension progression (the intended tension curve). Once complete, the final intended tension curve guides the evolution
of a level generator which attempts to place monsters and items to match the tension curve. Finally, the evolved level and its
derived tension curve are used to deterministically allocate sounds based on a crowdsourced model of aural tension. The core
innovations of this paper are the framing information and the evolved tension curve (the first two modules); the level generator
was first described in (Lopes, Liapis, and Yannakakis 2015a), while sonification has been improved via crowdsourced models.

Background
Sonancia attempts to blend different game facets (in this pa-
per level design, audio and narrative): this section covers
related work on blending, focusing on the audio facet.

Blending Game Facets
Digital games are a medium combining different creative
facets: visuals, audio, narrative, ludus, level architecture
and game-play; these facets complement each other to cre-
ate specific kinds of interactive experiences (Liapis, Yan-
nakakis, and Togelius 2014). While designing content for
each facet is a creative task, blending the different facets
is of utmost challenge and promise within computational
creativity (Lopes and Yannakakis 2014). Game generation
systems like Angelina (Cook, Colton, and Pease 2012) and
Game-o-matic (Treanor et al. 2012) extensively explore how
different facets of games can be combined to create interest-
ing and thought-provoking experiences. Commercial games
(designed and fine-tuned by humans) tend to blend either
their rules (ludus) or level design (architecture), in the case
of e.g. action-RPGs. However, suggestions for automating
such blends creatively have been put forth (Gow and Cor-
neli 2015). Blends between audio and gameplay have been
explored in AudioInSpace, where the shooting mechanics
change according to the background music, which can be
hand-authored (loaded from a music library) or artificially
evolved (Hoover et al. 2015). Similar studies have focused
on blending audio and narrative in order to foreshadow up-
coming story events via sound (Scirea et al. 2014).

The current paper builds upon and extends earlier work on
Sonancia (Lopes, Liapis, and Yannakakis 2015a; 2015b), by
allowing it to autonomously decide on an emotional progres-
sion through framing inspired by narrative structures, and
by applying a crowdsourcing methodology for the emotional
evaluation of sounds in the sonification audio library.

Sound and User Experience
When effectively used, audio has the potential of enhancing
the player experience by fully immersing the player within

a virtual world (Collins 2013). This property is especially
important within the genre of horror in which particular au-
dio patterns such as musical foreshadowing, the absence of
noise, or even a rise of tempo, volume and pitch can elicit
stressful experiences for players (Garner, Grimshaw, and
Nabi 2010; Ekman and Lankoski 2009). These audio pat-
terns are successful in eliciting intense affective responses if
they are well interwoven with the design of the game lev-
els. Earlier work of the authors explored how this could be
achieved by sonifying levels based on a common progres-
sion of tension (Lopes, Liapis, and Yannakakis 2015a). In
those studies each sound assset was given an empirical mea-
sure of how tense that particular sound was perceived, al-
lowing the Sonancia system to effectively place sounds that
accommodate the rise and fall of tension during play (Lopes,
Liapis, and Yannakakis 2015b).

Inspired by earlier success of crowdsourcing for anno-
tating highly subjective notions such as game aesthetics
(Shaker, Yannakakis, and Togelius 2013), the previous So-
nancia system (Lopes, Liapis, and Yannakakis 2015b) is
extended via crowdsourcing of annotations on tension for
sound samples. Such annotations can be used to derive more
accurate data-driven computational models of tension in hor-
ror games, and offer Sonancia a human-verified, objective
and more reliable way to select and place sounds to create
spooky, tense soundscapes.

Methodology
Sonancia consists of several generative modules working as
a pipeline (see Fig. 1): each generator restricts and guides
the type of content which can be created in the next gen-
erative step, and with each step the content becomes more
refined. The final result is a complete horror game, where
players must reach a specific room within a haunted man-
sion while avoiding terrifying monsters along the way (see
Fig. 2a). Players do not have weapons and must avoid direct
confrontation with monsters; monsters thus act as an insti-
gator of tension and fear, regardless of the player’s skill.

Levels in Sonancia are generated via evolutionary com-
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putation guided by intended tension frames, evolved previ-
ously. Every Sonancia level consists of rooms connected
by doors; rooms can have monsters to be avoided and the
objective which must be reached to complete the level (see
Fig. 2a). The level is characterized by its critical path, which
is the shortest sequence of rooms (i.e. shortest path) between
the player’s starting room and the room with the objective.

The version of Sonancia presented in this paper consists
of three different generative modules (see Fig. 1): the fram-
ing of tension to a randomly chosen narrative property, the
game level generation, and the level sonification module.
The details of each module are presented below.

Framing Tension
To clearly explain how levels are created in Sonancia, it is
important to firstly define how the designer intention is rep-
resented within the system. The frame for the task of horror
game generation is provided by an intended tension curve
which consists of a 2D representation of how tension rises
and falls as the player progresses along the critical path (see
Fig. 2b). In other words, the intended tension curve portrays
the ideal player experience when going through the level.

This paper specifically explores how an autonomous cre-
ative system can provide a frame to the level generation pro-
cess by creating different intended tension curves. For hor-
ror games, we focus on a frame of tension as an amalgam of
the predominant emotions within the horror genre (Ekman
and Lankoski 2009): fear, anxiety and stress.

Evolving Intended Tension Curves: The intended ten-
sion curves are created via a genetic algorithm (GA), driven
by one or more aesthetics of narrative progression. The GA
allows for flexibility and creativity when defining the curve,
but push it towards specific shapes. The tension curve is rep-
resented as as an array of values between 0 and 3 (in incre-
ments of 0.25), where the array index is the room in the order
of the critical path, while each value of the array is the spe-
cific tension value. Evolution applies a roulette wheel selec-
tion mechanism with one-point crossover (Mitchell 1998).
After recombination each offspring has a 20% chance of
mutating, i.e. incrementing or decrementing a single value
in the array by 0.25 (provided the result is within 0 and 3).
The GA runs for 100 generations with a population of 100
individuals, each initialized with random tension values.

Evaluating Intended Tension Curves: Eight different fit-
ness functions are encoded into the system, inspired by
narrative structures and normalized to [0, 1]. The Escalat-
ing and Decreasing tension fitness rewards individuals with
rooms that have a higher or lower tension value from the pre-
vious room, respectively. The Resting Point fitness rewards
individuals with the deepest tension ‘valley’, while the Sur-
prising Moment fitness rewards the height of the highest
‘peak’. The Cliffhanger fitness rewards tension curves with
at least one peak, where the last room’s tension is higher
than any of the peaks. The Denouement fitness gives high
values to individuals if the highest peak is close to the final
room (but is not the final room). Unresolved Tension fitness
rewards consecutive rooms with the same tension. Finally
the Rising & Falling Tension fitness is proportionate to the

(a) Example 2D level (b) Tension curves of Fig. 2a.

(c) Playable Sonancia level in 3D (curated).

Figure 2: Example of a Sonancia “haunted manor” level in
2D (Fig. 2a) and 3D (Fig. 2c). In Fig. 2a, the room with
the diagonal lines is the starting room, red rectangles are
doors, green triangles are monsters, the blue square is the
objective and the black arrow is the critical path (the shortest
path between the starting room and objective). The critical
path creates a level tension curve (grey) in Fig. 2b which
must closely match the intended tension curve (black).

number of peaks in the tension curve. Among these eight
fitnesses, one is chosen randomly to generate the appropri-
ate tension frame. To increase the expressivity of generated
frames, the system can also choose two fitnesses and apply
an “Or” or “And” operator which sums or multiplies, re-
spectively, the individual fitness scores.

The Level Tension Curve: Each level derives a tension
curve from the distribution of monsters on the level’s criti-
cal path: this process generates the level tension curve. Go-
ing through each room on the critical path, the level tension
curve increases tension by 1 if the room contains a mon-
ster; if the room has no monster the tension decreases by 0.5
(to a minimum of 0) to simulate the players relaxing after a
stressful event. Figure 2b shows the level tension curve for
the level of Fig. 2a.

Level Generation
To create levels that adhere to the frame of intended ten-
sion, a search-based PCG approach was chosen (Togelius et
al. 2011). The level generation process has been described
in (Lopes, Liapis, and Yannakakis 2015a), but a high level
description is included in this paper for the sake of com-
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pleteness. The level layout is represented as an array of in-
tegers (each integral value corresponding to a room’s identi-
fier or ID), while the doors are represented by their connect-
ing rooms’ IDs and monsters or objective by the ID of the
room they are in and their type. Mutations allow a gene to
change the level layout (pushing walls or splitting rooms), or
to add, remove and move doors, monsters or the objective.
Crossover is omitted due to its disruptive nature.

Levels construct their own version of the tension curve
(i.e. the level tension curve), and the fitness function rewards
rooms which more closely match the intended tension curve.
The fitness function is the average distance between level
and intended tension curve (see Fig. 2b). If the level has
fewer rooms on the critical path then the intended tension
curve is scaled, while if it has more rooms then it receives a
minimal fitness as the intended tension curve acts as a con-
straint on room number. In addition, the fitness function also
calculates the number of unique rooms visited between the
start (room ID 0) and all “dead-end” rooms and subtracts the
number of rooms with no doors (as those can not be visited).
More details on the evolutionary algorithm and objectives
can be found in (Lopes, Liapis, and Yannakakis 2015a).

Level Sonification
Level sonification in the Sonancia system consists of allocat-
ing specific audio pieces within the level, based on the level
tension curve. The goal of sonification is to have sounds
which match the tension of the room, i.e. rooms with mon-
sters will have scarier associated music; this is different from
(Lopes, Liapis, and Yannakakis 2015b) which used sonifi-
cation for suspense as the reverse of tension. Sonancia in-
cludes a soundbank of human-authored recordings with an
average length of 7 seconds. To accurately map sound assets
to specific values of tension, a crowdsourcing experiment
was conducted to obtain an approximation of how tense the
different sounds are compared to each other.

The Sound Library: The Sonancia sound library cur-
rently contains 97 different sound assets, recorded by hu-
man authors via the FM8 (Native Instruments 2006) tool
and the Reaper (Cuckos 2005) digital audio workstation. To
maintain a large, yet feasible number of samples for crowd-
sourced annotation, we undersampled sounds from the li-
brary based on their “pitch” and “loudness”.

According to Garner, Grimshaw, and Nabi (2010) loud
(i.e. power) and high-pitched sounds tend to trigger fearful
emotions. Based on this finding, we plotted (see Fig. 3) each
audio asset according to the ∆Db value (loudness) and av-
erage power of frequencies above 5k (high-pitch). For the
crowdsourcing experiment presented in this paper we se-
lected the 40 sounds (out of the 97 available) with the highest
average Euclidean distance between them along pitch and
loudness (see Fig. 3).

Crowdsourcing Tension: A survey was conducted to de-
rive an approximate value of reported tension to each sound
asset in the library1. For annotating the tension value of
sounds we adopt a rank-based approach due to its evidenced

1sonancia.institutedigitalgames.com

Figure 3: Scatter plot of the entire Sonancia sound library.
High pitch frequencies are between 5 and 22 Hz, while vol-
ume difference is between the maximum and minimum dB
values of the sound. Triangles and circles are, respectively,
selected and unselected audio samples.

effectiveness for highly subjective notions such as affect and
emotion (Yannakakis and Hallam 2011). Human annotators
were presented with pairs of sounds selected randomly and
were asked to report which sound in each pair is more tense
via a 4-alternative forced choice questionnaire (Yannakakis
and Hallam 2011). Annotators could listen to the two se-
lected sounds as many times as they desired. At the time
of writing, 452 pairs of sounds have been ranked by ten-
sion. While this is a smaller number than the 780 possi-
ble pairings, the sound pairs were randomized and thus all
sounds were annotated for at least half of the possible pair-
ings; some insight on every sound’s tension properties can
be gleaned even with the limited data.

The 40 sounds are ranked based on the human-annotated
tension preferences. The global order of sound ten-
sion is derived through the pairwise preference test statis-
tic (Yannakakis and Hallam 2011) which is calculated as
Pi = (

∑N
j zij)/N , where zij is the tension preference score

of i in the pair of sounds i and j (zij is +1 if sound i is
preferred, −1 if sound j is preferred, and 0 if no sound is
preferred or there is no annotation); N is the total number of
sounds. The obtained tension preference scores P define the
global order (rank) of each sound with respect to tension.

Audio Allocation and Mixing: Audio allocation consists
of placing sound assets in each room of a level, based on
the level tension curve and the tension preference score of
each sound in the library. The system picks sounds equidis-
tantly from the global order (in descending tension prefer-
ence score) depending on the total number of rooms (not
only those in the critical path). A sound is assigned to each
room so that the room’s tension value matches the global or-
der of sound tension. The process starts with the most tense
sound which is allocated to the room with the highest ten-
sion and it continues until no more rooms (or sounds) are
available and each room has a unique sound. Higher ranked
sounds with respect to tension are prioritized for rooms on
the critical path. For rooms with equal tension values, the
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first room in the critical path gets the more tense sound.
The mixing algorithm controls how the sounds are played

in the game. Audio mixing uses the player’s distance from a
neighbouring room to adjust the volume of the contribution
from each neighbouring room’s sound. This mixing rule al-
lows players to hear sounds from neighbouring rooms, of-
fering a sense of foreshadowing.

Experiments
This section describes results obtained from Sonancia’s en-
tire process, from creating a framing of tension to generat-
ing levels based on this frame and finally sonifying the level.
The goal is to evaluate, in a qualitative way, how the differ-
ent generators interpret (in a tension graph, level structure or
sound sequence) a frame of increasing detail created by the
previous generative step in the pipeline of Fig. 1. The dis-
cussion of results assesses how accurately, for instance, the
levels match the tension curves and where the limitations of
one generative domain lead to a creative transformation of
the other domain’s data.

The system ran independently 40 times, where the fram-
ing fitnesses were selected (and often combined) by the sys-
tem without human intervention. Once a framing fitness is
selected, intended tension curves evolved for 100 genera-
tions in 20 independent runs; the fittest one among these
runs is selected to guide level generation. Level generation
performed 20 independent runs for 100 generations using
the intended tension curve found previously. For brevity,
we discuss the fittest individuals (tension curves, levels and
soundscapes) for four chosen generated frames; these pro-
vide the most varied and interesting results. The highlighted
system’s frames were provided in text as such:

1. “I want an experience with a denouement.”

2. “I want an experience with a cliffhanger.”

3. “I want an experience with both a surprising moment and
a point of rest.”

4. “I want an experience with decreasing tension or a
cliffhanger.”

The following sections describe (in the above order) the ten-
sion curves, levels and soundscapes created following this
computer-generated frames of tension.

Framing Denouement
Denouement (or conclusion) is encoded aesthetically as a
fitness function which rewards when the highest peak in the
tension curve is near the last room (but not the last room, as
that would not form a ‘peak’ per se). Observing the fittest in-
tended tension curve in Figure 4c, the intended tension curve
(in black) matches this specification as the highest peak (at
2.5) is on the 7th room out of 8 rooms on the critical path.

Level Generation: Figure 4a shows the fittest level for
the intended tension curve discussed above; its level tension
curve is shown in Fig. 4c, in grey. It is immediately obvious
that the level tension curve does not match the intended one
closely, although it does have a single peak at room 4 and
a denouement of 4 rooms after that (rooms 5-8). The level

(a) Best level for Denouement (b) Best level for Cliffhanger

(c) Tension for Denouement (d) Tension for Cliffhanger

Figure 4: Haunted mansions and their intended and actual
(level) tension curves for single aesthetics.

Room 1 2 3 4 5 6 7 8
Rank 22 16 7 1 4 10 13 19
P 0.04 0.13 0.44 0.79 0.67 0.24 0.19 0.05

(a) Denouement

Room 1 2 3 4 5 6 7 8
Rank 10 16 19 22 13 4 7 1
P 0.24 0.13 0.05 0.04 0.19 0.67 0.44 0.79

(b) Cliffhanger

Table 1: Sound selection for the Denouement (Table. 1a)
and Cliffhanger (Table. 4b) levels. The sounds’ correspond-
ing rank position with respect to tension (Rank) and tension
preference score (P ) are also presented.

cannot match the intended tension curve since e.g. monsters
always add 1 to the tension and decay does not allow the
‘constant’ tension between rooms 3 and 4 or the quick drops
of rooms 5 and 6. Instead, evolution attempts to balance the
tradeoffs between monsters and tension decay, by adding or
removing monsters in specific rooms. The result in Fig. 4a
contains 3 monsters in the first three rooms after the start-
ing one, and then no monsters until the objective room —
allowing the player to relax. The biases and constraints of
the level generation forced evolutionary search to interpret
the intended tension curve to the best of its ability; the level
tension curve does exhibit denouement, albeit lasting longer.

Level Sonification: Table 1a shows the distribution of dif-
ferent audio assets and their respective rank value within
the level of Fig. 4a. It is important to note that sonifica-
tion will always follow the level tension curve, to create a
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soundscape coherent to the current level. In this instance
the algorithm places the highest ranked sound at the tension
peak (i.e. room 4). Room 3 has a higher ranked sound than
room 6 even though they have the same tension values, as it
occurs first on the critical path. A game-play video of this
level is available online2.

Framing the Cliffhanger
The cliffhanger is encoded aesthetically as a fitness function
which rewards tension curves with at least one peak, where
the last room’s tension is higher than any of the peaks (act-
ing, thus, as the cliffhanger). The fittest intended tension
curve in Figure 4d (in black) matches this specification as
the tension peaks in the 6th room (with a value of 2.0) but
the final room is even more tense (2.25). It should be noted
that the curve starts at the highest value (3.0) in room 1; this
is due to the fact that the first room does not register as a
peak (peaks compare tension values with both neighbours).

Level Generation: Figure 4b shows the fittest level for
the intended tension curve discussed above; its level tension
curve is shown in Fig. 4d, in grey. Unlike denouement, the
level tension curve closely matches the intended one for the
cliffhanger aesthetic. Both curves start at the maximum pos-
sible tension (for levels, this is 1 if there is a monster in the
first room) and then drop the tension in the next rooms only
to increase it around rooms 5 and 6, culminating at the high-
est value (ignoring the first room in the intended curve) on
room 8. Interestingly the level curve drops to 0 in rooms 3
and 4 as it can not maintain the near-identical tension of the
intended curve (due to tension decay).

The result in Fig. 4b has 4 monsters on the critical path,
distributed near the start and end of this path. This causes an
initial tense moment for the players when they start the level,
then lets them relax with 3 empty rooms, reach a climax after
two monsters and release some tension with the next-to-last-
room only to find a monster in the room with the objective.

Level Sonification: Table 1b contains the sounds allo-
cated along the critical path of the level in Fig. 4b). As the
level tension curve closely matches the intended curve, soni-
fication largely matches the original frame as well. While
rooms 2 to 5 have sounds with a low global rank value, this
changes swiftly with tense sounds which culminate to the
most tense sound in the last room. A game-play video of
this level is available online3.

Frame of Surprising Moments and Resting Points
When combining fitness functions, the “and” combination
forces both fitnesses to have high scores: in this case, the
surprising moment aesthetic rewards high ‘peaks’ while the
resting point aesthetic rewards deep ‘valleys’. Indeed, both
aesthetics are present in the intended tension curve of Fig. 5c
as it exhibits the highest peak (height of 3) and the lowest
possible valley (depth of 3, considering the tallest adjacent
peak). The aggressive changes in tension were expected, as
both fitnesses directly reward high peaks and deep valleys;

2https://youtu.be/IJQFqxfHqY8
3https://youtu.be/z5R12NPVVFA

(a) Best level for Surprise and
Resting Point

(b) Best level for Decreasing or
Cliffhanger

(c) Tension for Surprise and
Resting Point

(d) Tension for Decreasing or
Cliffhanger

Figure 5: Haunted mansions and their intended and actual
(level) tension curves for combined aesthetics.

Room 1 2 3 4 5 6 7 8
Rank 7 16 22 10 1 4 13 19
P 0.44 0.13 0.04 0.24 0.79 0.67 0.19 0.05

(a) Surprising Moments and Resting Points

Room 1 2 3 4 5 6 7 8
Rank 16 4 10 19 22 13 1 7
P 0.13 0.67 0.24 0.05 0.04 0.19 0.79 0.44

(b) Decreasing Tension or a Cliffhanger

Table 2: Sound selection for the Surprising Moments and
Resting Points (Table 2a) and Decreasing Tension or a
Cliffhanger (Table 2b) levels. The sounds’ corresponding
rank position with respect to tension (Rank) and tension
preference score (P ) are also presented.

their combination unsurprisingly causes tension to soar from
a value of 0 to 3 within the span of two rooms. In many
other runs, the fittest individuals contained adjacent rooms
with tension values of 0 and 3 (or vice versa).

Level Generation: Figure 5a shows the fittest level for
the intended tension curve discussed above; its level tension
curve is shown in Fig. 5c, in grey. The level tension curve
matches the intended tension curve as closely as possible
given the constraints of the way it is computed. The fact that
each room can have only one monster (which increases ten-
sion by 1) causes the peak of room 5 after the resting point
in room 3 to have lower tension values than the intended.
The structure of the level tension curve retains both a resting
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point at room 3 and the surprising moment at room 5, and
thus matches the provided frame. Of interest is the observa-
tion that unlike the intended curve, the last room in the level
does not contribute to an increase in tension since adding a
monster there (getting the tension value to 2) would cause
more deviation from the intended value (1.25).

The level of Fig. 5a has 3 monsters on the critical path,
placed primarily midway to the objective. This yields a high
spike (surprising moment) in room 5 after encountering two
monsters. The starting room also has a monster, in order to
let players relax in the next two rooms and thus reach the
resting point (before more stressful events) in room 3.

Level Sonification: Table 2a contains the sounds allocated
along the critical path of the level in Fig. 5a. Obviously, the
most tense sound is placed on the surprising moment (room
5) which matches both the intended and the level tension
curve; similarly, the resting point has the least tense sound
as per the provided frame. Due to the similarity of the level
curve with that of Fig. 4c, tense sounds are allocated in a
somewhat similar fashion with a slight change in the first
rooms. A game-play video of this level is available online4.

Framing Decreasing Tension or a Cliffhanger
Combining fitness functions with an “or” in this system adds
the two fitness scores together. This will still reward the
presence of both features but since it is less aggressive than
multiplying the scores (as in “and”), it may reward either
fitness equally. The fittest tension curve in Fig. 5d, for in-
stance, does not have the cliffhanger pattern (although par-
tially it does exhibit a peak in room 7) but has predominantly
a decreasing tension. The cliffhanger and decreasing tension
are conflicting objectives, as the former rewards an increase
in tension both for the presence of a peak and for the final
room. Therefore, the intended curve in Fig. 5d attempts to
balance between the two by predominantly having a decreas-
ing tension while also having a peak (which is rewarded, par-
tially, by the cliffhanger fitness). Thus, the less aggressive
search of the “or” operator is demonstrated.

Level Generation: Figure 5b shows the fittest level for
the intended tension curve discussed above; its level tension
curve is shown in Fig. 5d, in grey. The level tension curve
matches the intended tension curve except that the gradient
of the tension decay is different: this causes evolution to use
two rooms (6 and 7) to increase the tension in order to match
the tension value of room 7 (2.25 in the intended curve and
2.5 in the actual one). Interestingly, despite the expected
differences when the level generator interprets the intended
frame (e.g. an increase in tension at room 2), the aesthetics
match between intended and level tension curve. The level
tension curve predominantly has decreasing tension, with no
cliffhanger but at least one peak (thus fulfilling one of the re-
quirements for a cliffhanger).

The level of Fig. 5b has 4 monsters on the critical path,
placed at the start and towards the end of the critical path.
The two monsters in the first and second rooms trigger a

4https://youtu.be/P2HkGr719f0

very tense experience to the player, but the decreasing ten-
sion aesthetic allows them to relax for the next 4 rooms be-
fore facing two more monsters in rooms 6 and 7. The room
with the objective does not have a monster, affording some
relaxation to the player.

Level Sonification: Table 2b shows how sounds were al-
located within the level and their respective values. Com-
pared to the other sonification results, this soundscape
spreads highly tense sounds throughout the level rather than
concentrating them in a specific section. Interestingly, the
level tension curve is unique compared to the other cases as
no room has a tension value of 0. For instance, room 2 has
the second highest ranked sound, but is surrounded by less
tense sounds, while the most tense sound is reserved for the
climax (i.e. room 7). A game-play video of this level is
available online5.

Discussion
The results highlighted four example tension frames which
were associated with one or multiple fitness dimensions.
The results showed that the intended tension curves created
by the system matched the patterns in the narrative struc-
tures they were based on. An exception was when conflict-
ing fitnesses were combined with the “or” operator, where
one fitness could dominate the other (earning the operator
its name). The generated levels in many cases matched the
intended curve (if not value-for-value) but the limitations of
the level tension curve calculation could cause deviations
(e.g. in the case of denouement). At a high-level, all gener-
ated levels exhibited the intended aesthetics of each frame.

Observing results with other fitness dimensions of fram-
ing, we found that Escalating, Decreasing and Unresolved
Tension fitnesses created the least variability in the tension
curves. This was expected, as these fitnesses reward small
incremental changes in the tension or no changes (for Unre-
solved Tension). Both the Surprising Moment and Resting
Point fitnesses created more variations in the tension curves
but both showed similar patterns: a drastic change of ten-
sion (from 0 to 3 or vice versa) between two adjacent rooms
(similar to Fig. 5c). This pattern is impossible to replicate
in the levels, leading to more free-form interpretation of the
intended curve by the level generator. An interesting emer-
gent solution to attain less aggressive tension changes was
when fitnesses were combined: for instance, combining any
fitness with the Escalating or the Decreasing fitness yielded
curves with smoother changes in tension. Due to a less strict
evaluation formula, the Denouement, Cliffhanger and Rising
& Falling Tension created the most diverse curves. Peaks
very often varied in tension, and in some cases the entire
curve would have low values of tension, or only high values.

The additional modules of the Sonancia pipeline (high-
lighted in Fig. 1) contribute to the creativity of the system
in two core ways: framing information and interpretation.
Framing information (as desired narrative structures) allow
the generator to describe in human language its intent; the
fitness function associated with each narrative structure al-

5https://youtu.be/JnFli_F-r38
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lows the system to appreciate whether it has achieved this
intent. The fact that the initial frame is chosen randomly
is a current limitation of the system; its creativity could be
strengthened if the inspiration for a narrative structure comes
from elsewhere (e.g. a newspaper article). Interpretation in
Sonancia is strengthened by extending the pipeline to in-
clude generated tension curves which guide the level gen-
erator, which in turn guides the sonification process: as the
level of detail of the creative artifact increases from an ab-
stract frame to a playable game, the generators must cre-
atively interpret the guidelines of the previous generative
step in order to satisfy them while still obeying the limi-
tations of their own level of detail (e.g. the structural re-
quirements of a level). This requires a degree of imagination
from each module in transforming high-level directives into
higher-detail artifacts. Finally, as the final game levels are
always playable and contain the necessary components for
horror gameplay, Sonancia has the necessary skill and thus
completes the creative tripod exhibited by creative systems
(Colton 2008).

Conclusions
This paper presented a system capable of creating and com-
bining different structures of tension influenced by narrative
concepts, then transforming them into horror levels and their
accompanying soundscapes. Several dimensions of tension
framing structure were developed and tested; the four ex-
ample generated frames highlighted the process from frame
conceptualization to level generation and finally to sonifica-
tion. Demonstrations of the sonification of all the example
levels in this paper can be found online6.
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