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Abstract

In this paper, we propose a computational framework that
models concept invention. The framework is based on con-
ceptual blending, a cognitive theory that models human cre-
ativity and explains how new concepts are created. Apart
from the blending mechanism modeling the creation of new
concepts, the framework considers two extra dimensions such
as origin and destination. For the former, we describe how a
Rich Background supports the discovery of input concepts to
be blended. For the latter, we show how arguments, promot-
ing or demoting the values of an audience, to which the inven-
tion is headed, can be used to evaluate the candidate blends
created. Throughout the paper, we exemplify the computa-
tional framework in the domain of computer icons.

Introduction

The cognitive theory of conceptual blending by Fauconnier
and Turner (2002) models human creativity as a mental pro-
cess according to which two input (mental) spaces are com-
bined into a new mental space, called a blend. This theory,
which was developed in the context of cognitive linguistics,
posits that input mental spaces are somehow packaged by
humans with the relevant information in the context in which
the blend is created, and that blends are evaluated against
some optimality principles (Fauconnier and Turner, 2002).

Existing computational models for concept invention —
see the Related Work section for an overview— especially
focus on the core mechanism of blending, that is, how blends
are created, and re-interpret the optimality principles to eval-
uate the blends. In this position paper, we claim that a com-
putational model also need to deal with two extra dimen-
sions to which we refer as the origin and destination of con-
cept invention. The origin considers from where and how
input spaces are selected, whereas the destination considers
to whom the creation is headed. These dimensions are justi-
fiable if we think that there is no creation ex nihilo — thus,
there is an origin — and there is usually a purpose in creat-
ing something new, and, consequently, there is a destination.

To this end, in this paper we propose to model concept
invention by means of a process that consists of different
sub-processes and components (Figure 1):

e Rich Background and Discovery: The origin consists
of a Rich Background, the set of concepts available to
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Figure 1: A process model for concept invention.

be blended. This set is finite but complex, diverse, poly-
mathic and heterogeneous. Concepts are associated with
a background, understood as a person’s education, expe-
rience, and social circumstances. The Rich Background
supports a discovery process that finds pairs of concepts
that can be blended.

e Blending: Conceptual blending is the mechanism accord-
ing to which two concepts are combined into a blended
concept. Blending is here characterised in terms of amal-
gams, a notion that was developed for combining cases
in case-based reasoning (Ontaién and Plaza, 2010). Con-
ceptual blending is modeled in terms of an amalgam-
based workflow. The blending of two concepts may result
in a large number of blends, that need to be evaluated.

e Arguments, Values, Audiences and Evaluation: Values
are properties expected from a good blend. Values are
considered as points of view and can be of different kinds,
e.g., moral, aesthetic, etc. A destination or audience is
characterised by a preference relation over these values.
Arguments in favor or against a blend are built to eval-
uate the generated blends. An argument can promote or
demote a value. In this way, the blends are evaluated de-
pending on the audience for which they are created.

The above process model can be made more concrete in
a domain such as computer icon design. In such a case,
the Rich Background is what we can learn from, program
about, specify of computer icons, such as a semiotic model
of shapes, signs and relations between signs. This is under-
stood as a finite and specific number of concepts given a
particular set of icons (an icon library or a collection of li-
braries). Values, on the other hand, can be aesthetics such
as simplicity or ambiguity, that matter for a specific type of
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audience. These values serve to identify good icons that are
created by the blending mechanism.

In the next section, we capture the process model above in
terms of feature terms. This computational model is exem-
plified by means of a running example that shows the main
processes that undergo the concept invention of new icons.

Related Work

Several approaches of formal and computational models for
concept invention, inspired by the work of Fauconnier and
Turner (2002), have been proposed.

Amalgam-based conceptual blending algorithms have
been developed to blend CASL theories and E£ " concepts
in (Confalonieri et al., 2015b; Eppe et al., 2015a,b). In these
works, input spaces are assumed to be given. Good blends
are selected by re-interpreting some optimality principles.

The Alloy algorithm for conceptual blending by Goguen
and Harrell (2005) is based on the theory of algebraic semi-
otics (Goguen, 1999). Alloy has been integrated in the Griot
system for automated narrative generation (Goguen and Har-
rell, 2005; Harrell, 2005, 2007). The input spaces of the
Alloy algorithm are theories defined in the algebraic spec-
ification language OBJ (Malcolm, 2000). In the algorithm,
input spaces are assumed to be given, hence there is no dis-
covery. The optimality principles by Fauconnier and Turner
(2002) are re-interpreted as structural optimality principles,
and serve to prune the space of possible blends.

Sapper was originally developed by Veale and Keane
(1997) as a computational model of metaphor and analogy.
It computes a mapping between two separate domains —
understood as graphs of concepts— that respects the rela-
tional structure between the concepts in each domain. Sap-
per can be seen as a computational model for conceptual
blending, because the pairs of concepts that constitute its
output can be manipulated as atomic units, as blended con-
cepts (Veale and Donoghue, 2000). Strictly speaking, Sap-
per does not work with a priori given input spaces. It is the
structure mapping algorithm itself which determines the set
of concepts and relations between these concepts. In Sapper,
most of the optimality principles are captured and serve to
rank and filter the correspondences that comprise the map-
pings computed by the algorithm.

Divago, by Pereira (2007), is probably the first complete
implementation of conceptual blending. The Divago’s ar-
chitecture includes different modules. A knowledge base
contains different micro-theories and their instantiations. Of
these, two are selected for the blending by the user or ran-
domly, thus, no discovery is taken into account. A mapper
then generates the generic space between the inputs, and
passes it to a blender module which generates the ‘blendoid’,
i.e., a projection that defines the space of possible blends. A
factory component is used to select the best blends among
the blendoid by means of a genetic algorithm. A dedicated
module implements the optimality principles. Given a blend,
this module computes a measure for each principle. These
measures yield a preference value of the blend that is taken
as the fitness value of the genetic algorithm.

Finally, another work that relates to ours is (Confalonieri
et al., 2015a). The authors use Lakatosian reasoning to

model dialogues in which users engage to discuss the in-
tended meaning of an invented concept. The main difference
with the current work relies on the way in which arguments
are generated and used. Here, an argument is a reason for
choosing a blend and it is generated automatically, whereas,
in (Confalonieri et al., 2015a), an argument is a reason to
refine the meaning of a blend and is provided by the user.

Computational Model
Rich Background

Let the Rich Background be a collection of computer icons.
We assume that computer icons are described in terms of
form and a meaning. The form consists of a finite set of
signs which are related by spatial relationships. Figure 2b(I)
shows an example of an icon in which two signs, a MAGNI-
FYINGGLASS and a HARDDISK, are related by relation on.
The meaning, on the other hand, is the interpretation that is
given to an icon. For instance, a possible meaning associated
to the icon in Figure 2b(I) is SEARCH-HARDDRIVE. We al-
low a sign to have different interpretations depending on the
icons in which it is used.

We shall model the Rich Background by means of a finite
set C of feature terms (Carpenter, 1992; Smolka and Ait-
Kaci, 1989), each representing a concept. In this paper, fea-
ture terms are defined over a signature ¥ = (S, F, <, X)),
where S is finite set of sort symbols, including T and 1,
which represent the most specific and the most general sort,
respectively; J is a finite set of feature symbols; < is an
order relation inducing an inheritance hierarchy such that
1 < s < T,forall s € S; and X is a denumerable set of
variables. Then, a feature term v has the form:

w :=a?:s[f1 = \Illa"'7fn = ‘l/n]

with n > 0, and where x € X is called the root variable
of ¢ (denoted as root(z))), s € S is the sort of  (denoted
as sort(x)), and, for all j with 1 < j < n, f; € F are the
features of = (denoted as features(z)) and the values ¥ of
the features are finite, non-empty sets of feature terms and/or
variables (provided they are root variables of feature terms
ocurring in ¥). When the set of values of a feature is a single-
ton set, we will omit the curly brackets in our notation. We
will write vars(¢)) to denote the set of variables occurring in
a feature term .

We choose to model icons as concepts represented by fea-
ture terms over the signature with the following sort hierar-
chy S:!

IcoN

SIGN < {ARROW, MAGNIFYINGGLASS, DOCUMENT,

PEN, HARDDISK, CLOUD}

MEANING < {ACTION, OBJECTTYPE}

ACTION < {MODIFY, VIEWSEARCH, TRANSFER}

MoDIFY < {EDIT, WRITE}

VIEWSEARCH < {SEARCH, FIND, ANALYSE}

TRANSFER < {UPLOAD, DOWNLOAD}
OBJECTTYPE < {INFOCONTAINER, DATACONTAINER}
INFOCONTAINER < {PAGE, DocC, FILE}
DATACONTAINER < {HARDDRIVE, CLOUD}

'The notation s < {s1,...,5,} denotes that s1,...

sub-sorts of s.

, Sn, are
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action = x4 ] i

_ E
T2 : MAGNIFYINGGLASS C
on = I3 I N m
form = HSZEISCh Download Edlit
. ardDrive ;
x3 : HARDDISK | object Type = x5 | HardDrive Doc
x1 : ICON pan —
e | &»
x4 : SEARCH s 4 \ ¥
meaning = IV, V. Search
x5 : HARDDRIVE Download Search Doc
Doc Document Cloud
Cloud

(a) Feature term representation of a computer icon.

(b) Examples of computer icons.

Figure 2: Rich Background about computer icons.

and features F = {form, meaning, on, below, left, right,
action, object Type}.

In addition, feature terms representing icons need to be of
the following form. A representation of the structure of an
icon is presented below and its description follows.

fm, Sma S

form

meaning

Root variables are of sort ICON and have at most two fea-
tures form and meaning, modelling the signs (s1,...,Sp)
and the meaning (m+, . .., m,) of these signs in the context
of the icon. Each sign is again represented by means of a fea-
ture term whose root variable is of sort s > SIGN, and each
meaning by means of feature terms whose root variable is of
sort s > MEANING.

Features of sign terms (fs, , ... fs, in the schema above)
are at most one of on, left, right, or below, specifying
the spatial relationship between signs; and at most one
of action or objectType, specifying the meaning of signs
(frmys--- fm, in the schema above). The values of spa-
tial relation features are root variables of feature terms that
are in the value of the form feature; and those of features
action and objectType are root variables of feature terms
that are in the value of the meaning feature. In addition the
root variables in the value of the action feature are of sort
s > ACTION, while those of the objectType feature are of
sort s > OBJECTTYPE. Figure 2a shows the feature term
representation of the icon in Figure 2b(I).

A fundamental relation between feature terms is that of
subsumption (Z). Intuitively, a feature term ); subsumes
another one 19, or 11 is more general than 12, denoted as
11 T 1o, if all the information in 1, is also in ;.2 We omit
the formal definition of subsumption, which can be found in
(Ontandn and Plaza, 2012) for feature terms as represented

*Notice that, in Description Logics, A = B has the inverse
meaning “A is subsumed by B”, since subsumption is defined from
the set inclusion of the interpretations of A and B.

in this paper. The subsumption relation induces a partial or-
der on the set of all features terms £ over a given signature,
that is, (£, =) is a poset.

Discovery

In cognitive theories of conceptual blending, input spaces to
be blended are givens that represent how humans package
some relevant information in the context in which the blend
is created.

In our computational model, an input space is a con-
cept belonging to a library of concepts. The packaging of
some relevant information corresponds to a discovery pro-
cess that takes certain properties, which the blends need to
satisfy, into account. In the creation of computer icons, we
can imagine that an icon designer knows the meaning of an
icon he wishes to create, but he ignores its form.

The discovery takes a query over the meaning of an icon
concept as input, looks for concepts in the Rich Background,
and returns an ordered set of pairs of concepts that can be
blended. The query is modeled as a feature term 1), in which
only the meaning part of an icon is specified. For instance,
a query asking for an icon with meaning SEARCH-DOC is
modeled as:

L . o x2 : SEARCH
g 1= x1 : ICON [ meaning = { 25 : DOC } ] (1)

The matching of the query is not always a perfect match,
since icon concepts in the Rich Background can have only
one part of the meaning or similar meanings w.r.t. the mean-
ing searched. To this end, the query resolution is modeled as
a similarity-based search.

The main idea behind the similarity-based search is that,
for each icon concept ¥; in the Rich Background, we mea-
sure how v, and 1); are similar and, we use this measure to
rank the results. The similarity between two feature terms
can be defined by means of their anti-unification or Least
General Generalisation (LGG) (Ontafidén and Plaza, 2012).

Definition 1 (Least General Generalisation) The  least
general generalisation of two feature terms 1 and s,
denoted as 1)1 ™ o, is defined as the most specific term that
subsumes both: 1y Maby = {0 | Y S 1 Ap Ty AR
Y AY EPr AY E i}
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The least general generalisation encapsulates all the infor-
mation that is common to both 1, and 15 and, for this rea-
son, is relevant for defining a similarity measure.

The least general generalisation can be characterised as
an operation over a refinement graph of feature terms. The
refinement graph is derived from the poset (£, =) by means
of a generalisation refinement operator ~y.

() = {¢ e L]y Epand }" sty =" = )

The above definition essentially says that ~y is an operation
that generalises a feature term to a set of feature terms that
is an anti-chain. The refinement graph, then, is a directed
graph whose nodes are feature terms, and for which there is
an edge form feature term 1)1 to 15, whenever ¢a € (1)1).

We shall call generalisation paths all finite paths 1) —> ¢’ in

a refinement graph, and denote with \(¢p > 1) its length.
Ontafién and Plaza (2012) describe a generalisation oper-
ator for feature terms that consist of:

Sort generalisation, which generalises a term by substitut-
ing the sort of one of its variables by a more general sort;

Variable elimination, which generalises a term by remov-
ing the value of one of the features in one variables of the
term (a variable is removed only when the variable does
not have any features);

Variable equality elimination, which generalises a term
by removing a variable equality and ensuring that | can
be reached from any term.

We refer to (Ontaiién and Plaza, 2012) for the formal details
of the operator.

It is worthy noticing that, in case of variable equalities, it
is not possible to define a generalisation operator that finds
all possible generalisations of a feature term. However, for
the purpose of defining a least general generalisation-based
similarity, an operator which ensures that | is reachable in
a finite number of steps will suffice.

Example 1 (LGG example) Ler us consider the feature
terms 4 in Eq. I and 1y in Figure 2a. The LGG g M)y is:

. xo = SEARCH
x1 : ICON | meaning =

x3 = OBJECTTYPE

Vg M Y1 captures the information shared among the icon
concept 11 and the query 1)q. Both of them have two mean-
ings. According to the ontology previously defined, the most
general sorts for variables xs and x3 are SEARCH and OB-
JECTTYPE respectively. The form feature of 1)1 is removed,
since 1 does not contain this information.

As previously said, the least general generalisation of two
feature terms 1 M 12 is a symbolic representation of the
information shared by v; and 5. It can be used to measure
the similarity between feature terms in a quantitative way.
The refinement graph allows us to estimate the quantity of
information of any feature term ¢. It is the length of the
(minimal) generalisation path that leads from % to the most
general term L. Therefore, the length A(y; m ¢y - 1)
estimates the informational content that is common to
and 5. In order to define a similarity measure, we need to

compare what is common to ), and 1), with what is not
common. To this end, we take the lengths A(v Loapy M
thg) and \(1)o - 11 1 1)2) into account. Then a similarity
measure can be defined as follows.

Definition 2 (LGG-based similarity) The LGG-based
similarity between two feature terms 1) and 1o, denoted by

Sx(th1,92), is:
A gz 5 1)

A(hr Mahe > L) + A(thr > 1 M1 ha) + A(ha > 41 M aha)
The measure S estimates the ratio between the amount of
information that is shared and the total information content.
From a computational point of view, S requires to compute
two things. The LGG and the three lengths defined in the

above equation. The algorithms for computing S can be
found in (Ontaiién and Plaza, 2012).

Example 2 (Similarity example) Let us consider the fea-
ture terms g in Eq. 1, 11 in Figure 2a and their LGG in
Example 1. Lengths A1 = A(¥1 m by - L) = 8 o =
M1 5 1 M) = 12, and Az = A(hg > 1 mhy) = 2.
Notice that \s is very small (2 generalisations), while Ao is

larger since 11 has more generalised content. Therefore, the
similarity between 1), and 1 is:

) = 1590

Sx(¥1,1,) expresses that these two concepts share the 36%
of the total information.

= 0.36

Given the above definitions, the discovery of concepts can
be implemented by a discovery algorithm. The algorithm ac-
cepts a Rich Background of concepts C, a query 14, and the
generalisation operator 7y as input, and returns a ranked set
of pairs of concepts. This ranking can be done according to
different strategies. One way is to build all pairs of concepts
and rank them in a lexicographical order. The discovery re-
turns a set of pairs of concepts (¢, A;), (¥j1+1,Aj4+1)) in
which \j = A\j4 .

Blending

The computational model of concept blending is based on
the notion of amalgams (Ontafion and Plaza, 2010). This
notion was proposed in the context of case-based reasoning.
Amalgams have also been used to model analogy (Besold
and Plaza, 2015). According to this approach, input concepts
are generalised until a generic space is found, and pairs of
generalised input concepts are ‘unified’ to create blends.

Formally, the notion of amalgams can be defined in any
representation language £ for which a subsumption relation
C between formulas (or descriptions) of £ can be defined,
together with an anti-unifier operation—playing the role of
the generic space— and a unifier operation. Therefore, it can
be defined for feature terms. We already defined the anti-
unification of two feature term descriptions (Definition 1).
Now, we proceed to define their unification.

Definition 3 (Unification) The unification of two feature
terms 11 and 1, denoted as 1 L s, is defined as the most
general term that is subsumed by both: {1 L s = {1 |

VIEYAY S ARt/ o Athy S Athy S ')
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Figure 3: A diagram of a blend 1), from inputs ¢/1 and ).

Intuitively, a unifier is a description that has all the informa-
tion in both the original descriptions. If joining this infor-
mation leads to inconsistency, this is equivalent to say that
1 u Y = T, e.g., they have no common specialisation
except ‘none’.

An amalgam or blend of two descriptions is a new de-
scription that contains parts from these two descriptions. For
instance, an amalgam of ‘a red French sedan’ and ‘a blue
German minivan’ is ‘a red German sedan’; clearly, there
are always multiple possibilities for amalgams, like ‘a blue
French minivan’.

For the purposes of this paper, we define an amalgam or
blend of two input descriptions as follows:

Definition 4 (Blend) A description ¢y, € L is a blend of two
inputs Y1 and 1y (with LGG g = 11 M 12) if there exist
two generalisations 1 and 15 such that: 1) g E 1 E 1y,

2) by E thy E tho, and 3) thy, = Py Ly # T.

The above definition is illustrated in Figure 3, where the
LGG of the inputs is indicated as 14, and the blend v is
the unification of two concrete generalisations 1 and o
of the inputs. Equality (=) here should be understood as C=-
equivalence, that is, 1; = g iff 1) & 19 and 19 E 1.

Usually one is interested only in maximal blends, e.g., in
those blends that contain the maximal information of their
inputs. A blend v, of two inputs 1 and 5 is maximal if
there is no other blend ¢;, of 11 and )2 such that ¢y, = 1j.
The reason why one is interested in maximal blends is that
a maximal blend captures as much information as possible
from the inputs. Moreover, any non-maximal blend can be
obtained by generalising a maximal blend.

However, the number of blends that satisfies the above
definition can still be very large and selection criteria for
filtering and ordering them are therefore needed. Fauconnier
and Turner (2002) discuss optimality principles, however,
these principles are difficult to capture in a computational
way, and other selection strategies need to be explored.

We interpret blend evaluation in two steps. First, we dis-
card those blends that do not satisfy a query 4. Then, we
order the blends by means of arguments, values and audi-
ences in order to decide which blend is the best one.

Arguments, Values and Audiences

An argument is a central notion in several models for rea-
soning about defeasible information (Dung, 1995; Pollock,
1992), decision making (Amgoud and Prade, 2009; Bonet

and Geffner, 1996), practical reasoning (Atkinson, Bench-
Capon, and McBurney, 2004), and modeling different types
of dialogues such as persuasion (Bench-Capon, 2003). In
most existing works on argumentation, an argument is a rea-
son for believing a statement, choosing an option, or doing
an action. Depending on the application domain, an argu-
ment is either considered as an abstract entity whose origin
and structure are not defined, or it is a logical proof for a
statement where the proof is built from a knowledge base.

In our model, arguments are reasons for accepting or re-
jecting a given blend. They are built by the agent when cal-
culating the different values associated with a blend. Values
are considered as points of view and can have different ori-
gins, e.g., they can be moral, aestethic, etc.

Generally, there can be several values V = {v1,...,v;}.
Each value is associated with a degree that belongs to the
scale A = (0,...,1], where 0 and 1 are considered the
worst and the best degree respectively. For our purposes, we
will consider values such as simplicity and unambiguity.

The main idea behind simplicity is that we want to esti-
mate how simple an icon is from a representation point of
view. This can be done by counting the quantity of infor-
mation used in the feature term describing an icon. We can
assume that simple icons are those described with less in-
formation. Therefore, simplicity is defined to be inversely
proportional to the total number of features and sorts used in
the variables of a feature term ).

1
> features(z) + sorts(z)

zevars(iy)

Simplicity (¢p) =

Unambiguity, on the other hand, measures how many in-
terpretations an icon has w.r.t. the Rich Background. Since
icons are polysemic —they can be interpreted in different
ways— there can be icons that contain the same sign but
the sign is associated with a different meaning. To define the
unambiguity value, let us first define the polysemic set of
as:

Pol(vp) ={1; € C | s € form(1);) N form(wy)
A meaning(v;, s) # meaning(1y, s)}

where form(1);) is a function that returns the value of fea-
ture form, i.e., the set of signs used in the icon represented
by feature term v;; and meaning(1);, s) is a function that
returns the sort of the variable that is the value of feature
action or object Type of the variabe of sort s, i.e., the mean-
ing used for the sign represented by sort s in feature term
;. Then, the unambiguity value is defined to be inversely
proportional to the cardinality of Pol.

() {1/|P°|(¢b)| if |Pol(1y)] # 0

Unambiguity = otherwise

Values play a different role depending on the target or audi-
ence towards which the creation is headed. Audiences are
characterised by the values and by a preferences among
these values. Given a set of values V), there are potentially
as many audiences as there are orderings on V.

Definition 5 (Audience) An audience is a binary relation
R <V x V which is irreflexive, asymmetric, and transitive.
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We say that v; is preferred to v; in the audience R, denoted
as v; >r vj, if (v;, vy € R. We say that a value v; covers
v; in the audience 'R, denoted as v; >R vj, if v; >r v; and
ﬂvi/ such that v; >R vy >R Vj.

Given a blend, an argument is generated for each value.
The degree of the value characterises the ‘polarity’ of the
argument which can be pro or con a blend. Arguments pros
promote a blend whereas arguments cons demote it. Given a
set of blends B, the tuple (3, V, A) will be called a theory.

Definition 6 (Argument) Ler (B,V, A) be a theory.

e An argument pro a blend b is a tuple {(v, ), by where v €
V,0eAand0.5 <§ <1

e Anargument con b is a pair {(v,§), by wherev € V, § € A
and 0 < § < 0.5

A function Val returns the value v associated with an argu-
ment and a function Deg returns 9.

The blend evaluation can be formulated as a decision
problem in which one has to decide an order relation >p
on the set of candidate blends 3. The definition of this re-
lation is based on the set of arguments pros and cons asso-
ciated with the candidate blends. Depending on the kind of
arguments that are considered and how they are handled, dif-
ferent decision criteria can be defined (Amgoud and Prade,
2009):

o Unipolar decision criteria: they focus either only on ar-
guments pros or arguments cons;

e Bipolar decision criteria: they take both arguments pros
and cons into account;

o Meta-criteria: they aggregate arguments pros and cons
into a meta-argument.

In what follows, we denote the set of arguments pros and
cons as A, = {a1,...,an} and A, = {aq,...,qn} re-
spectively. Besides, we assume to have the following func-
tions: M, : B — 240 and M, : B — 24 that return the set
of arguments pros and the set of arguments cons associated
with a blend respectively; M : B — 24»“A< that returns all
arguments associated with a blend.

A basic decision criterion for comparing candidate blends
can be defined by comparing the number of arguments pros
associated with them.

Definition 7 Let bi,bo € B. by > bs if and only if
|Mp(bl)| = |Mp(b2)|-

Notice that the above criterion guarantees that any pair of
blends can be compared.

When the audience is taken into account, one may think
of preferring a blend that has an argument pro whose value is
preferred to the values of any argument pro the other blends.

Definition 8 Let by,by € B. by >p by if and only if o €
M, (b1) such that Vo!' € My (bs), Val(a) > Val(e').

In the above definition, >z depends on the relation >.
Since >g is a preference relation, some of the values of
the arguments can be incomparable. Consequently, b; and
ba will not be comparable neither. This definition can be re-
laxed, for instance, by ignoring these arguments.

The counter-part decision criteria of Definitions 7-8 for
the case of arguments cons can be defined in a similar way
and we omit them.

In the case of bipolar decision criteria, we can combine
the criterion dealing with arguments pros with the criterion
dealing with arguments cons.

Definition 9 Let bi,00 € B. by >p by if and only if
|Mp(b1)| = [Mp(b2)| and [Mc(br)] < [Me(ba)].

Unfortunately, the above definition does not ensure that
we can compare all the blends.

Finally, meta-criteria for deciding which blends are pre-
ferred can be defined by aggregating arguments pros and
cons into a meta-argument. Then, comparing two blends
amounts to compare the resulting meta-arguments. A sim-
ple criterion can be defined by aggregating the degrees of
the arguments associated with a blend.

Definition 10 Lez by, by € B. by >3 by if and only if
S Degla)> Y Degla)

OéEM(bl) OC'EM(bZ)

This definition can be extended to take the audience into ac-
count. To this end, we consider a rank function that maps
each value of R to an integer. The rank function is defined
as follows:

1 if v’ st v >g v
Rankg (v) = / .

max {Rankg (v')} +1 otherwise

v'>RpU
Essentially, Rank counts how many values a certain value
covers. This ranking is then used to define the following
audience-based aggregation decision criterion.

Definition 11 Let by,bs € B. by >3 by if and only if

s Degl) 5 Degle) _
e (b1) Rankg (Val(«)) v Rankz (Val(e))

This definition also guarantees that all the blends are com-
parable.

The Model at Work

Let us imagine an agent that has access to a Rich Back-
ground C = {11, 19, 13,14} consisting of four of the icons
depicted in Figures 2b(I-II-1II-IV). As previously described,
11 is a feature term representing an icon with meaning
SEARCH-HARDDISK. )5 represents an icon that consists of
two sorts of type sign, an ARROW and a CLOUD, whose
meaning is DOWNLOAD-CLOUD. 13 represents an icon
with two sorts of type sign, a PEN and a DOCUMENT, whose
meaning is EDIT-DOC; finally, ¢4 is a feature term that con-
sists of three sorts, ARROW, DOCUMENT and CLOUD with
the intended meaning of DOWNLOAD-DOC-CLOUD.

The agent receives as input a query asking for an icon
with meaning SEARCH-DOC, 9, (Eq. 1), and an audience,
that is, a preference order over the values. For the sake of
this example, we assume that Simplicity > Unambiguity.

The discovery retrieves the following pairs of concepts:

{<(¥1,0.36), (¥3,0.36))}, {{(¢1,0.36), (¢2,0.27))}
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form =
1 : ICON =

meaning = {

xg9 : SIGN [

action = x4
on =3

x3 : SIGN| objectType = z5 |

x4 : ACTION
x5 : OBJECTTYPE

action = x4

: MAGNIFYINGGLASS [
on =x3

z2
form

: ICON =

={

meaning = {

={

meaning = {

i

z1 z3 : SIGN[ objectType = x5 ]

x4 : SEARCH
x5 : OBJECTTYPE

action = x4

Zo : MAGNIFYINGGLASS [
on = x3

form ]
1 : ICON = x3 : HARDDISK [ objectType = z5 ]
x4 : SEARCH
x5 : HARDDRIVE

/ %\
o s

«vr

(2

x2 SIGN[ zitzgnzz o4 ]
form = =3
1 : ICON = x3 : DOCUMENT [ objectType = z5 ]
N x4 : ACTION
meaning = z5 Doc
z2 : PEN [ action = x4 ]
on = xg3
form =
1/,13 7 : ICON = z3 : DOCUMENT [ objectType = x5 |

z4 : EDIT

meaning = { z5 : Doc }

z2
form =
1 : ICON =

meaning = {

: MAGNIFYINGGLASS [

z3 DOCUMENT[ objectType = x5 ]

x5 : Doc

action = x4
on = x3

i

x4 : SEARCH }

Figure 4: Amalgam-based blending of feature terms 1 and 3.

{(¥3,0.36), (2,0.27))}, {{(¥1,0.36), (¢4, 0.25))}

{(13,0.36), (14,0.25))}, {{(¢2,0.27), (¢4,0.25))}

The agent proceeds to blend the first pair in the list. To
this end, it applies the amalgam-based blending. The least
general generalisation of ¢; and 3 is an icon with two
sorts of type SIGN, one on the other one, and with mean-
ing ACTION and OBJECTTYPE respectively. The agents ex-
plores the space of generalisations and finds two maximal
blends; a blend ¢, describing an icon with two sorts of
type MAGNIFYINGGLASS and DOCUMENT whose mean-
ing is SEARCH-DOC; another blend v, describing an icon
with sorts of type PEN and HARDDISK whose meaning is
EDIT-HARDDRIVE. Since 9, does not satisfy the query, is
discarded, and only vp, is kept. The creation of ¢, is illus-
trated in Figure 4.

The agents repeats the above procedure for each pair
discovered. Finally, it finds another blend, which satisfies
14, by blending the pair 1 and 4. It is a blend describ-
ing an icon with three sorts of type MAGNIFYINGGLASS,
DOCUMENT, and CLOUD whose meaning is SEARCH-DOC-
CLOUD. Intuitively, this blend can be obtained by generalis-
ing HARDDISK from 1), and ARROW from /4, and by keep-
ing the other input icons’ specifics. We denote this blend as
¥p,. The set of blends is B = {p,, ¥s, }. A representation
of v¢p, and v, is given in Figures 2b(V-VI).

The agent evaluates these blends by means of the argu-
ments and values described in the previous section. The
blend 13, contains 10 variables whereas 13, contains 14.
Therefore, the simplicity value’s degrees of 13, and v, are
0.1 and 0.07 respectively. Their unambiguity, on the other
hand, is 1, since the Rich Background does not contain icons
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with the same signs used in 1)y, and v, , but with a different
meaning. The arguments built by the agent are:

| Simplicity | Unambiguity
0.1 ‘ 1

U,
Vb,

Therefore, both blends have an argument pro regarding their
simplicity and an argument con w.r.t. their unambiguity
value. It is easy to see that the blends are ranked in differ-
ent ways when using the criteria we defined. For instance,
1y, and vy, are equally preferred when counting their argu-
ments pros (or cons) (Definition 7), and when considering
both arguments pros and cons (Definition 9). Instead, vy, is
preferred to 1), when using the criteria that take the audi-
ence into account (Definitions 8 and 11).

0.07 1

Conclusion and Future Work

In this paper, we described a process model for concept in-
vention that is based on and extends the conceptual blend-
ing theory of Fauconnier and Turner (2002). According to
this process, concept invention is characterised by differ-
ent sub-processes—discovery, blending, and evaluation—
that together account for concept invention. We proposed
its computational model in terms of feature terms, a formal
knowledge representation language. This allowed us to cap-
ture the concept invention process in terms of well-defined
operators such as anti-unification—for computing a generic
space—and unification—for computing a blend. Pairs of
input concepts are retrieved from a Rich Background by
means of a discovery process that takes a similarity measure
into account. Blending is realised according to the notion
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of amalgam, and blend evaluation is achieved by means of
arguments, values and audience.

We exemplified the computational framework in the do-
main of computer icon design, but the framework is general
enough to be used in other domains such as music or poetry
generation. We plan to explore the use of arguments, values
and audiences as a means to evaluate concept blends in such
domains as future work.

We also aim at extending the process model by includ-
ing the notion of coherence by Thagard (2000). Coherence
theory, when used to explain human reasoning, proposes that
humans accept or reject a cognition depending on how much
it contributes to maximising the constraints imposed by sit-
uations or other cognitions. In the case of concept invention,
coherence can be defined and used, for instance, to measure
to what extent a blend coheres or incoheres with the Rich
background and other blends.
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