
1

AN EFFECTIVE PROMOTER DETECTION METHOD USING THE
ADABOOST ALGORITHM ∗

XUDONG XIE
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Department of Electronic Engineering, Tsinghua University, Beijing, China

SHUANHU WU
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

School of Computer Science and Technology, Yantai University, China

KIN-MAN LAM
Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University, Hong Kong

HONG YAN
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

School of Electronic and Information Engineering, University of Sydney,
NSW 2006, Australia

In this paper, an effective promoter detection algorithm, which is called PromoterExplorer, is
proposed. In our approach, various features, i.e. local distribution of pentamers, positional CpG
island features and digitized DNA sequence, are combined to build a high-dimensional input vector.
A cascade AdaBoost based learning procedure is adopted to select the most “informative” or
“discriminating” features to build a sequence of weak classifiers. A number of weak classifiers
construct a strong classifier, which can achieve a better performance. In order to reduce the false
positive, a cascade structure is used for detection. PromoterExplorer is tested based on large-scale
DNA sequences from different databases, including EPD, Genbank and human chromosome 22. The
proposed method consistently outperforms PromoterInspector and Dragon Promoter Finder.

1 Introduction

In the past decade, many reliable methods have been developed for protein-coding
regions prediction [1] in human genome annotation. However, for regulatory regions
of genes, exact promoter detection still remains a challenge, and relatively few
algorithms have been proposed to tackle the problem. A promoter is the region of a
genomic sequence which is close to a gene’s transcription start site (TSS), and it
largely controls the biological activation of the gene [2]. Therefore, promoter
detection can be considered a fundamental and important step in gene annotation.

∗ This work is supported by research grants from City University of Hong Kong
(Projects 9010003 and 9610034).

2

In order to discriminate a promoter region from non-promoters regions, many
different features are considered, such as CpG islands [3, 4], TATA boxes [5, 6],
CAAT boxes [5, 6], some specific transcription factor binding sites (TFBSs) [5, 6, 7],
pentamer matrix [8] and oligonucleotides [9]. And also, various pattern recognition
technologies are adopted for classifying, e.g. neural networks [3, 5, 6, 8], linear and
quadratic discriminant analyses [4, 7], interpolated Markov model [6], independent
component analysis (ICA) [10, 11] and non-negative matrix factorization (NMF)
[11]. The experimental results and analyses in [12] show that selection of the right
biological signals to be implemented in promoter prediction programs still remains
an open issue. In fact, none of these signals can cover all promoter representations,
and each feature abstracted from promoter sequences has its own limitation.

2 Feature Extraction from DNA Sequence

In our method, we consider three different kinds of features, i.e. local distribution of
pentamers, positional CpG island features and digitized DNA sequence, which are
described in the following sections respectively.

2.1. Local Distribution of Pentamers

In our method, we select pentamers as input features. For an input DNA sequence, a
set of pentamers ai, i = 1, 2, …, W, can be obtained, where the maximal value of W is
45 = 1024. In order to select the most informative pentamers for discriminating
promoters and non-promoters, we consider the posterior probability of I given ai,
()iaIP | , where I is an indicator which equals 1 when the input sequence is a

promoter, otherwise I = 0. If () ()ii aIPaIP |0|1 =>= , the input sequence should be a
promoter with a higher probability, and vice versa. Define

()
() ,,2,1,

|0
|1 Wi

aIP
aIP

i

i L=
=
=

=η (1)

and compute the value of η for each pentamer. According to the Bayes' Theorem, we
have

() () ()
() ,,2,1,

11|
|1 Wi

aP
IPIaP

aIP
i

i
i L=

==
== (2)

and

() () ()
() Wi
aP

IPIaPaIP
i

i
i L,2,1,00||0 =

==
== . (3)

From Eq. (1) ~ Eq. (3), we can obtain that

() ()
() () Wi

IPIaP
IPIaP

i

i L,2,1,
00|
11|

=
==
==

=η . (4)

3

Considering P(I =1) and P(I =0) are constant, we define η as following equation, i.e.

()
() Wi

IaP
IaP

i

i L,2,1,
0|
1|

=
=
=

=η , (5)

and then the pentamers are ranked according to their η values. The pentamers which
have the highest 250 η values are selected to combine a pentamer set Pset.

In order to solve the small sample problem, all pentamers in Pset are considered
as one class, and the others as another class. In other words, 1024 pentamer patterns
are converted into two kinds of patterns: pentamers in Pset and pentamers out of Pset.
For each position of a DNA sequence, not only the pentamer at the position
concerned, but also the pentamers within its neighborhoods are considered. A
window of 51 bp moves across the sequence at 1 bp intervals and the number of
pentamers in Pset within this window is taken as a feature at the center of the
window. Therefore, for a DNA sequence with a length l, the number of features,
which represent local distributions of pentamers in Pset, is l – 4.

2.2. Positional CpG Island Features

CpG islands are regions of DNA near and in the promoter of a mammalian gene
where a large concentration of phosphodiester-linked cytosine (C) and guanine (G)
pairs exist. The usual formal definition of a CpG island is a region with at least 200
bp and with a GC percentage greater than 50% and with an observed/expected CpG
ratio greater than 0.6 [13]. CpG islands can be used to locate promoters across
genomes [2, 3, 4]. The most widely used CpG island features are GC percentage
(GCp) and observed/expected CpG ratio (o/e), which are defined as follows:

() ()GPCPGCp += , (6)
and

()
() ()GPCP

CGPeo
×

=/ , (7)

where P(CG), P(C) and P(G) are percentages of CG, C and G in a DNA sequence,
respectively.

GCp and o/e are two global features for G+C rich or G+C related promoters.
However, for the promoters that are G+C poor, CpG island features cannot be used
to predict the position of a promoter. It is a reasonable assumption that there are
some short regions, which are G+C rich, in a G+C poor promoter sequence, and then
these regions can be used for promoter detection. In other words, if we consider GCp
and o/e a sequence of local features instead of global features, more promoters can
be described based on CpG islands. Similar to pentamer feature extraction, a sliding
window 51 bp in length is used, and GCp and o/e are calculated for each window.
Then, for an l-length DNA sequence, the number of extracted positional CpG island
features is 2l – 8.

4

2.3. Digitized DNA Sequence

Beside the local distribution of pentamers and the positional CpG island features, we
also adopt the digitized DNA sequence as input features. In our method, each
nucleotide is represented using a single integer as given by: A = 0; T = 1; G = 2; and
C = 3.

From the discussion above, we can see that for an l-length input DNA sequence,
the number of extracted features, including local distribution of pentamers, positional
CpG island features and digitized DNA sequence, is l – 4 + 2 l – 8 + l = 4l – 12.
These features are concatenated to form a high-dimensional vector, and then a
cascade AdaBoost learning algorithm is used for feature selection and classifier
training for promoter detection.

3 Feature Selection and Classifier Training with AdaBoost

AdaBoost (Adaptive Boosting) is a boosting algorithm [14], which runs a given
weak learner several times on slightly altered training data, and combines the
hypotheses to one final hypothesis, in order to achieve higher accuracy than the
weak learner's hypothesis would have [15]. The main idea of AdaBoost is that each
example of the training set should act a different role for discrimination at different
training stage. The examples, which can be easily recognized, should be considered
less in the following training; while the examples, which are incorrectly classified in
previous rounds, should be paid more attention to. In this way, the weak learner is
forced to focus on the informative or the “difficult” examples of the training set. The
importance of each example is represented by a weight.

As discussion in Section 2, for an input DNA sequence with a length l, the
number of features extracted is N = 4l – 12, e.g. if l = 250, then N = 988. We assume
that of these features, only a small number are necessary to form an effective strong
classifier. We therefore define our weak classifier as follows:

() Nj
x

h jj
j ,,2,1

otherwise
 if

1
1

L=
>

⎩
⎨
⎧
−

=
θ

X , (8)

where X is an input feature vector, xj is the jth feature of X, and θj is a threshold.
Suppose we have a set of training samples: (X1, y1), … , (Xm, ym), where XX ∈i and

{ }1,1 −=∈Yiy (‘1’denotes positive examples and ‘–1’ is used for negative examples).
In order to create a strong classifier, the following procedure is used:

1. Initialize the weights for each training example:

5

mi
y

y

N

Nw
i

i

i ,,2,1
1

1

2
1

2
1

,1 L=
−=

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−

+
, (9)

where N+ and N– are the number of positives and negatives respectively.

2. For t = 1, …, T:
1. For each feature xj, train a classifier hj(X), which implies selecting the

optimal θj to produce the lowest error. The error for the classifier hj
considers all input samples with the condition of θj, which is defined as

()[]∑
=

≠=
m

i
ijitj hyw

1

Xε .

2. Find the classifier { }1,1: −→Xth that minimizes the error with respect to

the distribution wt: ()[]∑
=

Η∈
≠==

m

i
ijitjht hywh

j 1

minarg Xε . Here jht
j

εε
Η∈

= min

should be larger than 0.5.
3. Update the weights of the examples for the next round ie

titit ww −
+ = 1

,,1 β ,
where ei = 0 if example Xi is correctly classified, otherwise ei = 1, and

t

t
t ε

ε
β

−
=

1
.

4. Normalize the weights to make wt+1 a probability distribution:

∑
=

+

+
+ = m

j
jt

t
it

w

w
w

1
,1

1
,1 .

After T iterations, the resulting strong classifier is:

() ()
 otherwise

2
1

1
1

11 ∑∑ ==
≥

⎩
⎨
⎧
−

=
T

t t
T

t tthh αα XX , (10)

where
t

t β
α 1log= . The procedure described above not only selects features, which

produce the lowest error tε when computing weak classifiers, but also trains the
weak classifiers and the combined strong classifiers, i.e. the optimal values of θj, wt
and αt are determined based on the training set.

For an input DNA sequence, the number of non-promoter segments is much
larger than the number of promoters. Therefore, it is best to remove as many non-
promoter segments from consideration as possible early on. Then we can cascade our
classifiers to filter out most of the non-promoters, where a number of strong

6

classifiers are used. In the early stage, few features, or weak classifiers, are
considered, which can rapidly filter out most of the non-promoters while maintain
most of the promoters. In the later stages, increasingly more complex features are
adopted. For each stage, total positive samples (promoters) and only the negative
samples (non-promoters), which are incorrectly classified in the previous stage, are
used for training. In our method, a five-layer cascade is used, and for each strong
classifier, the number of weak classifiers is 10, 20, 50, 100 and 200, respectively.

4 Experimental Results

In this section, we will evaluate the performance of the proposed algorithm, namely
PromoterExplorer, for promoter detection based on different databases. The training
set is from the Eukaryotic Promoter Database (EPD), Release 86 [16], and the testing
databases include EPD, six Genbank genomic sequences and human chromosome 22
(http://www.sanger.ac.uk/HGP/Chr22/).

For training, the positive samples are 2,426 promoter sequences in EPD, which
are from 200 bp upstream to 50 bp downstream of the TSS. The negative samples are
randomly extracted 11,515 sequences of 250 bp, which are out of the range [–1000,
1000] relative to the TSS locations. In our experiments, all training sequences are
constructed only by A, T, G and C; in other words, the sequence which includes the
letter ‘N’ is excluded.

When perform testing, an input DNA sequence is divided into a set of segments
of 250 bp, which are overlapped each other with a 10 bp shift. As described in
Section 2, features including the local distribution of pentamers, the positional CpG
island features and the digitized DNA sequence are obtained, following a cascade
AdaBoost for classification. From Eq. (10), if the final output is larger than zero, a
TSS candidate is marked. Those TSS candidates, which have no more than 1,000
nucleotides apart from their closest neighboring prediction, should be merged into a
cluster. Then a new TSS prediction is used to represent this cluster, which is obtained
by averaging all TSS candidates within the cluster. In order to fairly compare the
performance of PromoterExplorer with other methods, a similar merging mechanism
is also adopted for PromoterInspector and DPF. As the criteria proposed in [12],
when one or more predictions fall in the region [-2000, +2000] relative to the
reference TSS location, a true positive is counted; otherwise the predictions are
denoted as false positives. When the known gene is missed by this count, it
represents a false negative. Sensitivity (Sn) and specificity (Sp) are two criteria
widely used to evaluate the performance of promoter prediction program, which are
defined as following:

FNTP
TPSn +

= , (11)

FPTP
TPS p +

= , (12)

7

where TP, FP and FN denote number of true positives, false negative and false
negative, respectively. For DPF, the values of Sn can be preset which is used to
control the predictions. In our algorithm, the sensitivity can be modulated by the
number of TSS candidates within a cluster. For each cluster to be merged, if the
number of TSS candidates within this cluster is larger than a threshold, the merged
TSS prediction is considered a true prediction; otherwise, the cluster is removed
from the output. Various thresholds will result in different outputs.

4.1. Experimental Results Based on EPD

In this section, we will test the PromoterExplorer based on the whole 2,541
vertebrate promoters in EPD, which include a total of 40,656,000 base pairs in the
genome sequences. The sensitivity- specificity curve is shown in Figure 1. We can
see that when the sensitivity is 68.5%, the specificity is about 68.6%. In this case, the
average of the distance between the predicted TSS and the real TSS location is about
320. This result is better than the performances evaluated in [12], where no program
simultaneously achieves sensitivity and specificity >65%.

50 55 60 65 70 75
50

55

60

65

70

75

Sensitivity (%)

S
pe

ci
fic

ity
 (%

)

Figure 1. The sensitivity-specificity curve based on EPD using PromoterExplorer.

4.2. Experimental Results Based on Genbank

We also evaluate PromoterExplorer on another test set, which contains six Genbank
genomic sequences with a total length of 1.38 Mb and 35 known TSSs in these
sequences. In Figure 2, the sensitivity-specificity curves of PromoterExplorer,
PromoterInspector and DPF are shown.

8

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Sensitivity (%)

S
pe

ci
fic

ity
 (%

)

PromoterExplorer
DPF
PromoterInspector

Figure 2. The sensitivity-specificity curves based on Genbank.

From Figure 2, we can see that PromoterExplorer outperforms others. When the

sensitivity of the prediction is about 35%, the specificity of PromoterExplorer,
PromoterInspector and DPF is about 52.0%, 46.4% and 41.4%, respectively; also,
the corresponding average distance between the predicted TSS and real TSS is 467,
472, and 486, respectively.

4.3. Experimental Results Based on Human Chromosome 22

Finally, we evaluate PromoterExplorer on Release 3 of the human chromosome 22,
which includes 34,748,585 base pairs and 393 known genes. The comparative
experimental results are shown in Figure 3. Similar to the observation in Section 4.2,
PromoterExplorer performs better than PromoterInspector and DPF. The average
distance between the predicted TSS and real TSS for PromoterExplorer,
PromoterInspector and DPF is 306 (Sn=63.9), 351 (Sn=63.6), and 315 (Sn=67.7),
respectively.

9

20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Sensitivity (%)

S
pe

ci
fic

ity
 (%

)
PromoterExplorer
DPF
PromoterInspector

Figure 3. The sensitivity-specificity curves based on Human Chromosome 22.

5 Conclusions

In this paper, we have proposed an effective promoter detection algorithm, which is
called PromoterExplorer. In our approach, different kinds of features, i.e. local
distribution of pentamers, positional CpG island features and digitized DNA
sequence, are extracted and combined. Then a cascade AdaBoost algorithm is
adopted to perform feature selection and classifier training. An advantage of our
algorithm is the most “informative” features in different classifying stages can be
selected for classification. PromoterExplorer is tested based on large-scale DNA
sequences, which are from different databases. It has superior performance to
existing techniques. Our method can achieve a balance between the sensitivity and
specificity of the predictions; therefore it can be used to detect unknown prompter
locations in a new DNA sequence.

References

1. Claverie J.M., Computational methods for the identification of genes in
vertebrate genomic sequences. Human Molecular Genetics., 6:1735-1744, 1997.

2. Pedersen A.G., Baldi P., Chauvin Y., Brunak S., The biology of Eukaryotic
promoter prediction: a review. Computers & Chemistry, 23:191-207, 1999.

3. Bajic V.B. and Seah S.H., Dragon gene start finder: an advanced system for
finding approximate locations of the start of gene transcriptional units. Genome
Research, 13:1923-1929, 2003.

4. Davuluri R.V., Grosse I., Zhang M.Q., Computational identification of
promoters and first exons in the human genome. Nature Genetics, 29:412-417,
2001.

10

5. Knudsen S., Promoter2.0: for the recognition of PoIII promoter sequences.
Bioinformatics, 15:356-361, 1999.

6. Ohler U., Liao G.C., Niemann H., Rubin G.M., Computational analysis of core
promoters in the Drosophila genome. Genome Biology, 3(12):RESEARCH0087,
2002.

7. Solovyev V.V. and Shahmuradov I.A., PromH: promoters identification using
orthologous genomic sequences. Nucleic Acids Research, 31:3540-3545, 2003.

8. Bajic V.B., Chong A., Seah S.H., Brusic V., An intelligent system for vertebrate
promoter recognition. IEEE Intelligent Systems Magazine, 17(4):64-70, 2002.

9. Scherf M., Klingenhoff A., Werner T., Highly specific localization of promoter
regions in large genomic sequences by PromoterInspector: a novel context
analysis approach. Journal of Molecular Biology, 297:599-606, 2000.

10. Matsuyama Y. and Kawamura R., Promoter recognition for E. coli DNA
segments by independent component analysis. Proceedings of the
Computational Systems Bioinformatics Conference, 2004:686-691, 2004.

11. Hiisila H. and Bingham E., Dependencies between transcription factor binding
sites: comparison between ICA, NMF, PLSA and frequent sets. Proceedings.
IEEE International Conference on Data Mining, 4:114-121, 2004.

12. Bajic V.B., Tan S.L., Suzuki Y., Sugano S., Promoter prediction analysis on the
whole human genome. Nature Biotechnology, 22:1467-1473, 2004.

13. Gardiner-Garden M. and Frommer M., CpG islands in vertebrate genomes.
Journal of molecular biology, 196(2):261-282, 1987.

14. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, Second Edition,
John Wiley & Sons Inc., 2001.

15. Freund, Y. and Schapire, R.E., A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119-139, 1997.

16. Schmid, C.D., Périer R., Praz, V., Bucher, P., EPD in its twentieth year: towards
complete promoter coverage of selected model organisms. Nucleic Acids
Research, 34:82-85, 2006.

