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Automated discovery and extraction of biological relations from online documents,
particularly MEDLINE texts, has become essential and urgent because such literature data are
accumulated in a tremendous growth. We present here an ontology-based framework of
biological relation extraction system. This framework is unified and able to extract several
kinds of relations such as gene-disease, gene-gene, and protein-protein interactions etc. The
main contributions of this paper are that we propose a two-level pattern learning algorithm,
and organize patterns hierarchically.

1. Introduction

Biological data, including both experimental data and textual information, are
growing tremendously in these decades. However, most important biological
knowledge, such as protein-protein interaction and gene-disease interaction, is still
locked in a large number of literatures, remaining not computer-readable. The
burden of accessing, extracting and retrieving biological knowledge of interests is
left to the human user. To expedite the process of functional bioinformatics, it is
important to develop information extraction systems to automatically process these
online biological documents and extract biological knowledge like protein-protein
interaction (PPI), gene-disease correlation, sub-cellular location of protein and so
on. A number of database, for example, DIP for PPI [1], KEGG for biological
pathways [2], BIND for molecular interactions [3], accumulate such relations.

Portability is another major problem that impedes the wide use of IE tools in
online biological documents. Some systems are aimed to extract PPIs [4,5,6], some
are designed to mine gene-disease relation, some are able to discover gene-function
correlation [7], but none of them can extract these kinds of relations in a unified
framework. In other words, it is not easy or unable to adopt these systems from this
kind of relation extraction to another one. Most of the approaches are more focused
on a specific application to solve a specific kind of problem.

Ontology is a formal conceptualization of a particular domain that is shared by a
group of people [8]. Each concept in an ontology has a canonical and consistent
definition, and they are organized in a hierarchical tree, thus knowledge can be
easily communicated, shared and reused across applications. In recent decades, a
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number of biological ontologies have been designed and developed for public usage,
including Gene Ontology [9], MeSH [10], and LocusLink [11]. These ontologies
provide a controlled vocabulary or conceptualization for biological concepts such as
gene, protein, disease and function etc, and thus supply a shared understanding of
knowledge among biology communities. When an IE system is structured in an
ontology-style way, it is more portable and less dependent on applications.

We propose here an ontology-based biological relation extraction system to
automatically extract biological relations from a huge number of online MEDLINE
abstracts. Compared with the previous methods, our main contributions are:

1) External ontology integration. Currently, we have integrated four external
ontologies, including GO, MeSH, LocusLink, OMIM [12]. Concepts in these
ontologies have been converted into a uniform format, and each concept is
described by a set of synonymous terms (i.e. synset);

2) Ontology-based semantic annotation of online biological documents. Our
method will recognize and identify several categories of biological entities,
including GENE, PROTEIN, DISEASE, PROCESS, FUNCTION, CELLULAR
COMPONENT (CELLC);

3) Two-level pattern learning, i.e., token pattern learning and syntactic pattern
learning. We organize patterns in a hierarchy and then a weighted pattern matching
scheme is applied.

The rest of the paper is organized as follows: in Section 2, we present an
overview of the architecture of ONBIRES. In Section 3, we state that how external
ontologies are integrated into our system and how concepts are organized uniformly.
In Section 4, a pattern hierarchy is introduced, followed by the detailed pattern
learning algorithm in Section 5. Then, experiments and evaluations are shown in
Section 6. At last, we make our conclusion in Section 7.

2. Architecture of ONBIRES

A large number of methods have been proposed and various systems are developed
to extract biological knowledge from biological literature such as extracting protein-
protein interactions, or integrated systems as [13]. However, most systems do not
provide a unified framework and most algorithms are heavily dependent on a
specific application. Also there is a lack of a mechanism for automatic learning of
pattern for such information extraction tasks.

We proposed a novel framework that can extract several kinds of relations with
a mechanism of automatic pattern learning. Our algorithm is much less dependent
on a specific problem to be solved. It is able to learn patterns and extract relations in
a unified way. The system architecture is shown in Figure 1. Compared with
previous methods and systems, our approach has several significant advantages.
First, we utilize several external ontologies to try to capture as many synonyms as
possible for each type of biological entities, and organize them in a uniform format.
Second, a hierarchical pattern structure is introduced, on which a weighted pattern
matching scheme is used to balance precision and coverage.
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Figure 1. ONBIRES architecture.

There are several steps in our system as follows:

1) For each entity pair (A,B), we will search synonyms in our local ontologies
for A and B, respectively. The set of synonyms are later called a synset. The
semantic type of each entity is also returned. If no synonym is found, the user has to
specify a semantic type.

2) According to the synsets of A and B, a query expression is formed. If the two
synset sets are A={ay,a,,...an} and B={by,b,,...b,}, the query expression is “(a; OR
a, OR ...a,) AND (b; OR b, OR ...b,)”. This expression is input into a search
engine to retrieve MEDLINE documents (currently only abstracts).

3) For each document, we will do semantic tagging using the synsets of entity A
and B. Then, documents are segmented into sentences and we only save those
sentences that contain both A and B for the further processing.

4) Sentences are part-of-speech (POS) tagged. At the training stage, patterns are
learned from a training corpus, whose sentences have been labeled as positive or
negative. At the matching stage, sentences are processed by a natural language
processing (NLP) module. We have several shallow parsing techniques in the NLP
module as describe in [14].

5) A weighted pattern matching algorithm is applied against the pattern
hierarchy. Sentences whose matching scores exceed a threshold are declared to have
relations.

6) Both the extracted relations and relevant documents are presented to the user
in a user interface. We provide PMID, title and abstract of a relevant document.



3. External Ontology Integration

Biological named entity recognition is a great challenge for IE communities [15]. A
number of methods, such as machine learning based ones [16], have been devised to
improve the performance, but they are still far away from real applications. In our
system, we try to collect external ontologies to enhance the results of entity
identification. The first one is Gene Ontology, which has been well-known as a
controlled vocabulary for gene annotation of documents. This ontology consists of
three subjects, that is, biological process, biological function and cellular
component. Accordingly, we extract three kinds of entities, that is, PROCESS,
FUNCTION, and CELLC, to form our own synset ontology. The number of the
three types of entities amounts to 9852, 7576 and 1679, respectively.

The second ontology we used is MeSH (Medical subject Heading). MeSH
models a hierarchical terminology of disease, chemical and drug and so on. In this
system we only consider two sub-branches of the hierarchical tree, that is, the
disease branch (labeled with C##.###, each ‘# is a digit), and the protein branch
(labeled with D12.776.###). Totally, we obtain 1610 proteins and 226 diseases
from MeSH. 1,303,625 genes are extracted from LocusLink and 9315 from OMIM
and another 3125 diseases are obtained from OMIM.

Finally, these data are organized uniformly in the format as shown in Table 1.
UID is the unique identity of an entity, where this identifier is directly reproduced
from the original ontology thus we could search the ontology via this symbol.
Synset is a set of terms describing the same entity. Six entity types are defined, that
is, PROCESS, FUNCTION, CELLC, PROTEIN, GENE, and DISEASE.

Table 1. Uniform concept format and examples. Synonyms are separated with ‘#’.

uiD Entity Description | Entity Type | Source Synset
D12.776.503 Lectins PROTEIN MeSH Animal Lectins#
Isolectins#
U_G0:0050285 sinapine esterase FUNCTION GO sinapine esterase
activity activity#

4. Pattern Hierarchy

We have defined a pattern hierarchy according to the generalization power of each
pattern. An example of the hierarchy is shown in Figure 2.

Syntactic pattern consists of a sequence of part-of-speech tags. It reveals the
syntactic constraints that a pattern must conform to. Syntactic patterns are learned
by aligning sequences of part-of-speech tags from token patterns.

Token pattern comprises keywords that are commonly used to describe relations.
And many token patterns may share the same form of syntactic constraints. They
have less generalization power than syntactic patterns, and at the same time, they
are more precise. Token patterns are generated by aligning sequences of words from
instance patterns.



Instance pattern is a sentence which has been labeled as positive. Token pattern
can be learned from positive samples.

We note that the generalization power of a pattern decreases from the top to the
bottom along the hierarchy, and the accuracy increases. With a weighted pattern
matching scheme at different levels, we could obtain a balance between the
accuracy and extensibility. This is the major motivation why we organize patterns
hierarchically.

| NE,VBINNE, | Syntactic

Token
NE; interacts with NE, NE; associate with NE,
/ \ Instance
We have shown that NE; interacts NE; interacts specifically with NE,,
with NE,, and that results ... but does not activate ...

Figure 2. Pattern Hierarchy

5. Automatic pattern learning

The idea of using dynamic programming to automatically learn patterns is used by
[5,7,14,17]. The major contribution of our method is that we use a two-level pattern
learning algorithm and organize patterns hierarchically, and furthermore we adopt a
weighted pattern matching scheme on the structure. We generate patterns at a token
level and syntactic level. At each level, sequence algorithm alignment is used to
generate patterns. The pattern structure used in our system is Eliza-style [18]. A
pattern will be represented in a 5-tuple: <prefiller, NE;, midfiller, NE,, postfiller>,
where NE; and NE; are two entities concerned with a specific application. Prefiller
is a pattern element before the entity NE;, midfiller is a pattern element between
NE; and NE,, and postfiller is a pattern element after NE,. They are all lists of
words or tags. For instance, given a sentence as “We/NNP found/VBD that/IN
NEDDB8/PROTEIN modifies/VBZ CUL1/PROTEIN in/IN Drosophila/NN.”, the
algorithm may learn a token pattern {*”, PROTEIN;, modifies, PROTEIN,, “"},
and a syntactic pattern {*”, PROTEIN;, VBZ, PROTEIN,,””}. The sentence |tself is
an instance pattern (may be positive or negative). A sentence is also represented in a
similar 5-tuple.

It is well known that local alignment is a dynamic programming algorithm as
formula (1a-b).

sim(i,0) =sim(0, j) =0;i=12,...,M, j=1,2,....N (1a)

0
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During token pattern learning, we take s(w,w)=1 and s(w,,w,)=-1w, #W,,
which means that if two words share the same base form, the score is 1, otherwise
the score will be -1. Therefore only those words that have the same base form can
be aligned together.

During syntactic pattern learning, the local alignment algorithm is applied again
on sequences of part-of-speech tags of token patterns. The scores s(a,b) is adopted
from [5].

In our pattern learning algorithm, we use pattern frequency to record how many
times a pattern is aligned during the pairwise alignment. Those whose frequencies
are less than a user-specified threshold are removed from the pattern set.

When a pattern hierarchy is obtained, a weighted pattern matching scheme is
used. The matching score for a sentence is defined in formula (2):

Score(S;) = arg max{Ww,, *Sim(P,, , S,) +w,, *Sim(P,,, (P,,), S;)} )

tok ¥ syn

Rok

where Py is a token pattern, Pgn(P) is the syntactic pattern of Pyg. Wik i the
weight for token pattern, and wyy, for syntactic pattern. When this score exceeds a
user-specified threshold, we can say definitely that this sentence describes a relation.
For those sentences that have more than two entities, all possible combinations of
two entities are considered. Since syntactic patterns are much less precise than
token patterns, wi is set to be larger than ws,,. We also apply other constraints on
syntactic patterns. For example, if two words match in syntactic patterns, but do not
match in token patterns, the semantic similarity is computed by using WordNet. The
matching score from syntactic pattern is added to the overall score only when the
similarity is larger than a threshold (0.7 currently).

The reason why we have to weight between different levels derives from this
fact: if we only consider one level of patterns, either the matching precision is quite
low, or the coverage is narrow. For example, if we have two patterns, as shown in
Figure 2, a token pattern {*”, NEy,”interacts with”, NE,,””} and a syntactic pattern
{*”, NE,VB IN, NE,,”"}, for a sentence “...NE; associates with NE,...”, there is
no match at the token level, while it can be matched at a syntactic level. Similar
cases are also observed for the problem of low-precision.

6. Experiments

Evaluating the precision and recall of ONBIRES is very difficult because a huge
collection of online MEDLINE abstracts is involved. For a small number of
documents, it is possible to annotate them manually and compute the precision and
recall. In the current version of our system, we evaluate our approach on two
applications, i.e. gene-disease interactions, and protein-protein interactions.

The first experiment is to extract protein-protein interactions. We collect the
training corpus from http://www.biostat.wisc.edu/~craven/ie/ [19]. Each sentence is
annotated as either a negative sample or positive sample. Positive samples are
labeled with relation tuples which were gathered from the MIPS Comprehensive
Yeast Genome Database. We used 1102 positive samples to generate patterns. 1024




sentences from GENIA corpus are used for evaluation [20]. GENIA corpus is
available at: http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/. These sen-
tences are manually annotated by experts, where there are 238 positive samples.

The second experiment is to extract gene-disease correlations. This corpora is
also downloaded from http://www.biostat.wisc.edu/~craven/ie/. The relation tuples
were gathered from the Online Mendelian Inheritance in Man (OMIM) database.
There are 636 positive samples in this corpus, which are all used for learning
patterns. Since the corpus is comparatively small, 100 of the training samples and
another 177 negative samples are randomly selected for evaluation.

In each experiment, we compare the performance of token patterns and that of
token patterns plus syntactic patterns. These results are shown in Figures 3 and 4.
During pattern learning, we provide a vocabulary to restrict which words can be
contained by a pattern. Patterns whose frequencies are less than one are removed.
The statistics of extracted interactions in these experiments are listed in Table 2.

From these results, we could see that token patterns plus syntactic patterns
outperform only token patterns. The two curves converge to the same curve when
the threshold becomes larger because sentences with large matching scores have
matched token patterns perfectly, and syntactic patterns have tiny contributions to
these sentences. With a smaller threshold, the performance is improved remarkably
when syntactic patterns are used.

We also investigated into those sentences that can not be extracted correctly.
There are three kinds of errors:

1) Incorrect patterns. Although we have limited the vocabulary of patterns, and
have removed patterns with low frequencies, a small proportion of incorrect
patterns are still left. Unfortunately, they have a fairly high frequency. Therefore,
more sophisticated techniques need be developed to assess each pattern.

2) Errors caused by complicated grammatical structures. This method treats a
sentence as a linear sequence, thus it is not competent to process complicated
grammatical structures. Although we have done long sentence splitting, appositive
and coordinative structure recognition as shown in [14], there are more structures
that can not be handled. For example, there is a sentence:

The oxygen radical scavenger N-acetyl-L-cysteine, but not an inhibitor of nitric
oxide synthase, inhibited LIF -induced HIV replication. where underlined parts are
identified as proteins. It matches a pattern “PROTEIN inhibit PROTEIN”, which is
erroneous.

3) Errors caused by named entity identification. In our system, we used a
dictionary-based method to recognize named entities. However, in many cases, this
method produces errors. Particularly, it can not discriminate proteins from genes,
since most genes and proteins have the same lexical symbols. An example is:

Taken together, our data indicate that MS-2 mediates induction of the CD11b
gene as cells of the monocytic lineage mature. The underlined terms are identified
as proteins, but the second should be recognized as a gene.
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Table 2. Statistics of extracted interactions with the best threshold. TP indicates the
number of correct samples. ET denotes the number of extracted samples.

Corpus | Experiment Precision | Recall | F-score | TP ET

Token pattern 0.424 0.235 | 0.302 |56 132

GENIA .
Token+syntactic | 0.411 | 0.243 | 0.306 |58 | 141

Token pattern 0.532 0.42 0.469 42 79

OMIM Token+syntactic | 0.58 0.58 0.58 58 100




7. Conclusion

In this paper, we have proposed an ontology-based information extraction system to
search biological relations from online documents. This system, which is ontology-
based, has a unified framework and is less dependent on specific applications.
Several external ontologies are integrated to improve the structure and organization
of concept. A two-level pattern learning algorithm is applied to generate patterns
which are then organized in a hierarchy. A weighted matching scheme is devised to
balance the accuracy and coverage of the system.

The experimental results show that our system is promising to extract
knowledge from a huge number of MEDLINE abstracts. Future work will be
focused on how to evaluate patterns more efficiently, process complicated
grammatical structures and handle named entity recognition errors.
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