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We present a randomized algorithm for semi-supervised learning of Mahalanobis metrics over Rn.
The inputs to the algorithm are a set, U , of unlabeled points in Rn, a set of pairs of points,
S = {(x, y)i}; x, y ∈ U , that are known to be similar, and a set of pairs of points, D =

{(x, y)i}; x, y ∈ U , that are known to be dissimilar. The algorithm randomly samples S, D, and
m-dimensional subspaces of Rn and learns a metric for each subspace. The metric over Rn is a linear
combination of the subspace metrics. The randomization addresses issues of efficiency and overfitting.
Extensions of the algorithm to learning non-linear metrics via kernels, and as a pre-processing step for
dimensionality reduction are discussed. The new method is demonstrated on a regression problem
(structure-based chemical shift prediction) and a classification problem (predicting clinical outcomes
for immunomodulatory strategies for treating severe sepsis).

1. Introduction

Many classification, clustering, and regression algorithms depend on a metric over the in-
put space. For example, k-means clustering, k-nearest-neighbor classification/regression,
radial basis function networks, and kernel methods, such as SVMs, need to be given good
metrics that accurately reflect the important relationships between points. Many common
distance metrics, such as the Euclidean metric, assume that each feature is not only inde-
pendent of the others, but also equally important. Both assumptions are routinely violated
in real-world applications. To address this problem, a number of (semi)supervised distance
metric learning algorithms have been proposed (e.g., [15, 16]). Here, the user supplies a
set of pairs of instances that are known to be similar and/or dissimilar to each other; the
distance metric learning algorithm finds a metric that respects these relationships. In con-
trast to techniques like Multidimensional Scaling [6] and Principal Components Analysis
(PCA) [9], which simply find an embedding of the test points, a distance metric learning
algorithm learns a true metric, that can be incorporated into any learning algorithm that
uses metrics, pseudo-metrics, or (dis)similarity measures.

This paper introduces a randomized approach to metric learning. In particular, given
any algorithm, λ, for learning a Mahalanobis metric, M , the new method can construct a
new metric M̂ , by calling λ as a subroutine on samples of the training data and subspaces
of Rn. The randomization serves two purposes: (1) The computational complexity of met-
ric learning algorithms generally depend on the number of training samples, z, and the
dimensionality of the input space, n. The new algorithm builds a metric by combining a
constant number of metrics over random subspaces of Rn, each trained on a small sample
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of the training data. While our algorithm has the same computational complexity as λ, in
practice, the decrease in training times is dramatic. Moreover, the subspace metrics can be
trained in parallel, yielding another constant factor speed-up. (2) In the language of statis-
tical learning theory [e.g., 8], random sampling of training instances and features reduces
variance and thus guards against overfitting. Our approach to metric learning is influenced
by the Random Forest algorithm [2] which uses similar strategies for classification and
regression, but is not a technique for learning metrics.

We demonstrate the accuracy and efficiency of the new algorithm for representative
problems in biology and medicine. In particular we construct distance metrics over (i)
nuclear electronic environments and (ii) clinical data from patients with severe sepsis. We
then use these metrics in k-nearest neighbor regression and classification, respectively. Our
results demonstrate that the randomized algorithm is not only much faster than the deter-
ministic algorithm (λ), but often produces metrics that improve the accuracy of k-nearest
neighbor regression and classification. This indicates that the random algorithm resists
overfitting and produces metrics that better generalize to novel instances.

2. Distance Metric Learning

Consider a set of points, U = {xi}l
i=1 ⊆ Rn, and a distance metric of the form

dM (xi, xj) = ‖xi − xj‖ =
√

(xi − xj)T M(xi − xj), (1)

where M is a symmetric positive semi-definite n × n matrix. If M is an identity matrix,
then Eq. (1) is simply the un-weighted Euclidean distance. If M is merely diagonal, then
Eq. (1) is a diagonally weighted Euclidean distance. More generally, M parameterizes a
family of Mahalanobis distances over Rn and encodes the weights and correlations among
variables.

The distance metric learning problem is to learn M given U and a set, S =
{(x, y)i};x, y ∈ U . The set S represents pairs of points in U that a domain expert
has asserted are “similar”, but has not defined precisely how or why they are simi-
lar. Optionally, the domain expert may also provide a set of dissimilar pairs of points,
D = {(x, y)i};x, y ∈ U ;S ∩D = {}.

There are a number of approaches to learning M, given U , S, and, D. Xing et al [16]
pose the following optimization problem:

M̂ = argmin
M

∑
(xi,xj)∈S

‖ xi − xj ‖2
M (2)

s.t.
∑

(xi,xj)∈D

‖ xi − xj ‖M ≥ α (3)

M � 0, (4)

where α is an arbitrary constant ≥ 1. The constraints are convex and the objective is linear
in M, thus Eq. 2 can be solved using convex-optimization techniques. Xing et al introduce
two iterative algorithms solving for M̂ . The first algorithm deals with the case when M is
diagonal, the second algorithm solves the problem when M is an arbitrary positive semi-
definite matrix. Tsang and Kwok [15] pose a different optimization problem (not shown
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here due to space considerations) and derive a quadratic programming problem using the
technique of Lagrangian multipliers. The convex programming formulation of the problem
has no user parameters (other than the sizes of S and D), but requires an iterative solution.
The quadratic programming formulation of the problem can be solved more efficiently but
has several user parameters.

Both approaches learn a metric over the entire input space. This raises two possible
concerns: computational complexity and overfitting. The complexity of [16] is O(I2n3),
where I2 reflects the nested iterations required to converge, and the n3 term is the time
needed to diagonalize an n×n matrix; the complexity of [15] is O(z3+n2), where z = |D|
and the z3 term is the time to solve a quadratic programming problem with z variables.
The second concern is overfitting; if the sizes of S and D are small, it becomes difficult to
estimate the parameters of the metric. Similarly, if the input features are particularly noisy,
spurious correlations among features may unduly influence the parameter estimates. Both
issues can be addressed using randomization.

3. Algorithm

Our algorithm is presented in Algorithm 1. Briefly, the sets S and D are randomly sampled
(with replacement) to construct sets Sb and Db, where b is the number of samples in the sub-
sets. Next, Sb and Db are modified using the function Random-Features(Sb, Db,m),
where m is the dimensionality of the subspace (m < n). The resulting sets, Sb

m and
Db

m, contain points in the same random m-dimensional subspace of Rn. The function
Random-Features also returns a vector, f, whose components encode which dimen-
sions were sampled. Sb

m and Db
m comprise a subspace training set. This training set is

passed to the given metric-learning algorithm, λ, which returns a metric, Mf , over the ran-
dom subspace. Mf is, by definition, an m × m symmetric positive semi-definite matrix.
The choice of λ dictates the properties of the subspace metric. For example, the algorithms
presented in [16] and [15] are guaranteed to converge to an optimal solution for a given
training set.

The next step is to update the matrix encoding the metric over Rn. The matrix M̂ is
initialized as a n×n identity matrix. Thus, M̂ is also a symmetric positive semi-definite ma-
trix. Recall that the components of vector f indicate which dimensions of Rn were sampled.
That is, the components of f correspond to rows and columns of M. Consider the auxiliary
n × n matrix, A : A(f(i), f(j)) = Mf (i, j);∀ i, j ≤ m. The function update(M̂, Mf , f)
returns the matrix M̂ + A. This whole procedure is repeated c times, with different ran-
dom samples of the training data and features. It can be shown that M̂ + A is a symmetric
positive semi-definite matrix. That is, the symmetric, positive semi-definiteness of M̂ is an
invariant property of the algorithm. Thus, M̂ satisfies all the properties of a metric.

The computational complexity of the algorithm is a function of the size of U , the pa-
rameters c, b, and m, and the complexity of the underlying metric learning algorithm, λ.
Let z = |U |. The parameters c and b are generally set so that the product cb = O(z). The
parameter m is generally set so that the product cm = O(n). Let gλ(b, m) be the compu-
tational complexity of λ on b instances of m-dimensional data. Note that gλ(b, m) varies
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Algorithm 1 Random Metric Learning Algorithm pseudocode. See text for details.
Input:

U : The unlabeled set of points in Rn

S = {(x, y)i}; x, y ∈ U : a set of pairs of similar points
D = {(x, y)i}; x, y ∈ U : a set of pairs of dissimilar points (optional)
λ: an algorithm for learning metrics
c: the number of subspace metrics to learn
b: the number of subspace training samples
m: the dimensionality of the subspace

/* Initialize the metric */
M̂n×n ← In×n: an n× n identity matrix

for i = 1 to c do
/* Select random training instances */

Sb ← Random-Sample(S, b)
Db ← Random-Sample(D, b)

/* Select a random subspace */
Sb

m, Db
m, f ← Random-Feature(Sb, Db, m)

/* Learn the subspace metric */
Mf

m×m ← λ(Sb
m, Db

m)

/* Update the complete metric */
M̂n×n ← update(M̂n×n,Mf

m×m, f)
end for
return M̂

by the choice of learning algorithm but is trivially lower-bounded by Ω(max(b2,m2))
since the m × m matrix M must be explicitly realized and b2 pairwise similarities must
be computed. The complexity of our algorithm is O(cn2 + cgλ(b, m)). In practice, we
set b ≈ z/10, m ≈ n/2, and c ≥ 10. Thus, c is a constant and since b = O(z) and
m = O(n), our algorithm has the same complexity as λ which, effectively, has c = 1,
b = z and m = n. However, in practice, the randomized algorithm is much faster because
b and m are significantly smaller than z and n, respectively. Finally, note that each sub-
space metric can be trained in parallel giving a constant factor speedup for p processors
(i.e., O(cn2 + d c

pegλ(b, m))).
An important feature of the algorithm is that the c subspace metrics are trained on dif-

ferent samples and different features. Each subspace metric is optimal for that subspace
and the data used to construct it. The global metric is not optimal for U , despite being
built from optimal subspace metrics. However, the random algorithm can be thought of as
an ensemble method for metric learning. Ensemble methods in machine learning are well
studied and have a number of desirable properties (see, e.g., [7]). In particular, ensemble
methods often generalize better to novel instances than non-ensemble methods. Briefly, if
the members of the ensemble are diverse, that is, not highly correlated in their erroneous
predictions, then it becomes very unlikely that two “bad” predictors can conspire to affect
the outcome. Conversely, two or more “good” predictors have a better chance of affecting
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the outcome. In our algorithm, diversity is enforced by sampling both the training instances
and the features. We present empirical evidence in Sec. 5 that demonstrates that the ran-
domized algorithm always produces metrics that are as good as, and often better than, the
metrics produced using deterministic algorithms.

4. Experiments

We tested our metric learning algorithm in the contexts of regression and classification
problems. The data for each experiment were split into randomly selected, non-overlapping
training and test sets. The training set was used to learn the metric over the feature space.
That metric was then used to compute the distance of each test instance to the training
instances. The predicted value (or class) for each test instance was then computed using
k-nearest neighbor regression (or classification). A variety of parameter settings (i.e., b, c,
m, z) were tested. The entire procedure was repeated 20 times to obtain error estimates for
a given configuration of parameters.

The base metric learning algorithm (i.e., λ) in our experiments was the technique of
Xing et al [16]. We will refer to our algorithm as λr for the purpose of comparison with λ.
Both algorithms were implemented in Matlab and the experiments were conducted on a 3
GHz Pentium 4 workstation running Linux. We did not use the parallel training option for
λr. Finally, λr and λ were trained and tested on the same training and test sets, respectively,
to ensure a fair comparison.

4.1. Chemical Shift Prediction

The first study comprised 5 separate experiments for predicting the real-valued chemical
shifts for backbone nuclei (HN, Hα, 13Cα, 13C’, 15N) given a structural model of the pro-
tein.

4.1.1 Background
Chemical shifts are the most fundamental of spectral parameters in Nuclear Magnetic Res-
onance (NMR) spectroscopy. Briefly, a spin I = 1/2 nucleus in an external magnetic field
will have two spin states whose energy difference is linearly proportional to the strength
of the applied magnetic field. Each nucleus, however, is influenced by the electrons in
its vicinity. Relevant factors include covalent bonding, the orientations of nearby aromatic
rings, hydrogen bonding, solvent interactions, and ionization constants. Thus, each nucleus
feels a slightly different field because it has a different local electronic environment. The
experimentally measured chemical shift for a given nucleus is proportional to the field felt
by that nucleus.

Chemical shifts can most accurately be predicted from structure models using quantum
mechanics. A purely quantum mechanical approach to chemical shift prediction involves
determining the wave function of the molecule; this is computationally intractable for large
molecules, like proteins. Consequently, hybrid methods for chemical shift prediction are
used in practice; these methods combine quantum calculations for local interactions and
either classical or empirical calculations for long-range interactions. There are a number of
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practical and important applications of structure-based chemical shift prediction including:
resonance assignment (e.g. [10]), structure determination and model refinement (e.g., [3,
5]), high-throughput fold recognition (e.g. [11, 13]), as well as a variety of assays for
probing mutations and structure-activity relationships.

4.1.2 Features and Training/Test Data
The regression model for these experiments included variables (i.e., features) that represent
quantum and empirical factors. These contributions were computed in the manner of [17]
and include the effects of torsion angles, residue type, ring-currents, electrostatics, and
hydrogen bonding. The experimental data for these experiments were obtained from the
REFDB [18] database. REFDB is a carefully re-referenced subset of the BioMagResBank
(BMRB) [14] that corrects some systematic errors within the BMRB. The REFDB also
includes a mapping to specific Protein Data Bank [1] (PDB) IDs; these structures were
downloaded from the PDB and used to compute the quantum and empirical features.

The resulting data set contained between 20,000 and 47,000 instances, depending on
nucleus type, across 454 different proteinsa. Each instance comprised an experimentally
measured chemical shift (re-referenced, as needed), and a feature vector containing the
quantum and empirical calculations. The various nuclei types are sensitive to different
affects, thus the specific feature-vector size varied per nucleus type; the nuclei HN, Hα,
13Cα, 13C’, and 15N had feature vectors of size 5, 7, 6, 7, and 9, respectively. The goal is
to learn a metric over these features.

4.2. Patient Outcome

In a different experiment, we examined the performance of our algorithm in a classification
task. In particular, we used a data set created by Clermont et al [4] for in silico model-
ing of immunomodulatory interventions for severe sepsis. The goal here is to predict an
outcome for each of 1000 simulated patients. The four possible outcomes are (i) helped
by intervention; (ii) harmed by intervention; (iii) lives regardless of intervention; (iv) dies
regardless of intervention. The input space consists of 26 features that include the levels,
ratios, and products of a number of biomarkers at the time of the disease detection and one
hour following detection. The Clermont data set is divided into separate training and test
sets. The partitions between these two sets were maintained during our experiments.

5. Results

We first compared the rates of increase in training times for the random and deterministic
algorithms. Figure 1(a) plots the accuracy and the number of seconds required to train λ

and λr for z = 100, 200, ..., 1000 samples on the patient outcome data set. The test set
consisted of 200 randomly selected instances and the classifications were made with k = 1
nearest neighbor classification. Similar results are obtained for the other data sets. The

aRefDB actually contains data from 601 proteins. We used a subset of proteins that did not include protein
complexes.
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Figure 1. Left: Training times (solid lines) and accuracies (dashed lines) for λ and λr for varying z. Right:
Training times (solid line) and accuracies (dashed line) for λr for varying b. Note that left- and right hand axis
scales are not the same in the two figures.

parameters for λr were c = 20, b = z/10, and m = n/2. Recall that the parameters for
λ are, effectively, c = 1, b = z, and m = n. The rates of increase in training time are
dramatically different, as expected. The accuracies under both metric increase with the
size of z. We note that the accuracies under the λr metric are either statistically identical
or higher than those under the λ metric. That is, λr provides the same level of accuracy,
or better, than λ while drastically reducing training times. The accuracies under the λr

metric were statistically higher than those under the λ metric for z = 300, 400, 500, 1000.
These results are consistent with the notion that randomization may be an effective means
for resisting overfitting a given training set.

Figures 1(a), 2(a), and 2(b) plot the accuracy and training times for λr various values
of b, c, and m, respectively, while fixing the remaining variables (z = 200, c = 20, b =
z/10, and m = n/2). Training times increase dramatically with increasing b, but there
is no statistical difference in prediction accuracy between b = z × 0.1 and b = z × 0.9,
suggesting that small values of b are sufficient. Similarly, training times increase linearly
with increasing c, but there is no statistical difference in accuracy between c = 10 and
c = 100. Training times rise with increasing m, but not as quickly as for increasing z, c,
or b. Interestingly, there is a statistically significant decrease in accuracy (p < 0.001) as m

increases. This result further supports the hypothesis that randomization can lead to better
metrics.

Finally, we evaluated the accuracy of the random algorithm on larger test sets. In these
experiments the parameters of the random algorithm were z = 1000, c = 20, b = z/10,
and m = n/2. Using the complete training and test sets for the patient outcome data
(1,000 instances each), the classification accuracy for k = 1 nearest neighbor was 73%
using the λr metric versus 68% for using the λ metric. These results are in agreement with
the smaller test cases, described above. However, Clermont et al were able to obtain an
84% percent accuracy on the same training/test data using logistic regression [4]. We then
decided to test the performance of our method in the context of logistic regression. We first
constructed a classifier from the training data using simple logistic regression. The classifi-
cation accuracy on the test data was 83% — very similar to the results obtained by Clermont
et al. Next we considered projecting the training data into the learned metric space. Note
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Figure 2. Left: Training times (solid line) and accuracies (dashed line) for λr for varying c. Right: Training
times (solid line) and accuracies (dashed line) for λr for varying m. Note that left- and right hand axis scales are
not the same in the two figures.

Table 1. Chemical Shift Prediction: Accuracy and summary of training and test data
for 5 different nuclei. Column 2: the total number of instances for a given nucleus;
1,000 randomly selected instances were selected for training, the remaining were used
to test the learned metric using k = 5 nearest neighbor regression. Columns 3-4, the
mean shift value, and range (in ppm). Columns 5-7, the root mean squared error (in
ppm) for the program SHIFTS and k-NN under the λ metric and under the λr metric,
respectively. Errors are estimated based 20 random partitions into training and test sets.

SHIFTS λ Metric λr Metric
Nucleus Instances Mean Shift Range RMSE RMSE RMSE

HN 47,401 8.29 5.44 0.647 0.611 0.607
Hα 39,009 4.41 4.19 1.13 0.340 0.336
15N 34,196 119.62 35.18 5.16 3.87 3.87
13Cα 30,174 58.10 26.46 1.74 1.67 1.67
13C’ 19,877 176.15 15.40 1.88 1.54 1.53

that because the matrix M is positive semi-definite, we can write M as AAT . The matrix
A can be thought of as a projection into a different feature space. Using the metric learned
over the training data, we projected the training data into the corresponding feature space.
We then constructed a different classifier on the transformed training data using simple lo-
gistic regression. We then projected the test data into the same space and performed the
classification. The resulting accuracy was 87%. Thus, the projection into the new space
does confer advantages in the context of logistic regression. The accuracy increases further
to 90% when we use a logistic regression algorithm with a ridge-estimator12. Here we also
noticed that the convergence of that algorithm is much faster on the transformed data.

The test sets for the chemical shift predictions contained between 19,000 to 46,000 in-
stances, depending on nucleus type. Accuracies are reported in terms of root mean squared
error (RMSE) in parts per million (ppm), the standard units of chemical shifts. The RMSEs
for the chemical shifts vary widely by nucleus type. This is due to the fact that the average
magnitude and range of different nuclei varies widely. For example the Hα nucleus has an
average chemical shift of ≈ 4.4 ppm and a range of ≈ 4.2 ppm; the 15N nucleus, on the
other hand, has an average chemical shift of≈ 119.6 ppm and a range of≈ 35.2 ppm. Table
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1 summarizes the training sets and reports the RMSE for the program SHIFTS [17], and for
k = 5 nearest neighbor regression under the λ and λr metrics. The predictions errors under
the λr metric are statistically significantly lower than those of the SHIFTS program for all
nuclei (p � 0.01). The predictions errors under the λr metric are statistically lower than
the λ metric for 13C’, Hα, and HN (p < 0.01); the errors for 13Cα and Hα are statistically
identical under both metrics.

6. Discussion

The primary finding of these experiments is that the randomized algorithm produces met-
rics that are equivalent, and sometimes better, than those produced by a deterministic metric
learning algorithm. The randomized algorithm, however, is much faster because the sub-
space metrics can be trained on smaller sets of data. Indeed, the size of the training set (U )
has the greatest effect on both training time and accuracy. An interesting finding is that
accuracy drops when m, the dimensionality of the subspace, increases. This suggests that
the sampling of random subspaces may guard against overfitting.

There are a number of extensions to this work that are worthy of investigation. Xing
et al have noted that it is also possible to consider non-linear metrics by introducing a
non-linear feature map, φ,

dM (x, y) =
√

(φ(x)− φ(y))T M(φ(x)− φ(y)). (5)

This can also be thought of as learning a metric in a feature space associated with a ker-
nel function k(xi, xj) = φ(xi)Mφ(xj) [15]. The exploration of non-linear metrics is an
interesting area for future research.

Another interesting area of investigation is the use of dimensionality reduction schemes.
Standard techniques for dimensionality reduction (e.g., via PCA) can be applied either be-
fore or after the metric is learned. Dimensionality reduction prior to learning the metric will
reduce training times, as demonstrated above. However, applying dimensionality reduction
after learning the metric is also worthy of consideration. As previously mentioned, matrix
M can be written as M as AAT , and matrix A can be thought of as a projection into a dif-
ferent feature space. The potential advantage to doing the dimensionality reduction in the
feature space is that the user implicitly defines the kinds of relationships that are important
by constructing S and D. For some problems, there may be several kinds of relationships
that are of interest. For example, the patient data defined “similar” in terms of mortality and
the response to the intervention. But there may also be other kinds of similarity that may be
of interest, such as comorbidity. Here, the expert can define a different S and D that reflect
the similarity of interest; the same training data can be used, but a different metric will be
learned. This additional flexibility is an attractive feature of any metric learning algorithm.

7. Conclusion

We have introduced a randomized algorithm for learning metrics over an input space. The
new algorithm compares favorably with deterministic metric learning algorithms in terms
of accuracy, generalization, and efficiency for both classification and regression tasks.
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