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Consensus-based protein structure prediction methods have been proved to be successful in recent
CASPs (Critical Assessment of Structure Prediction). By combining several weaker individual
servers, a meta server tends to generate better predictions than any individual server. In this pa-
per, we present a Support Vector Machines (SVM) regression-based consensus method for protein
fold recognition, which is a key component for high-throughput protein structure prediction and pro-
tein functional annotation. Our SVM model extracts the features from a predicted structural model
by comparing it to other models generated by all the individual servers and then predicts the qual-
ity of this model. Experimental results on several LiveBench data sets show that our consensus
method consistently performs better than individual servers. Based on this approach, we have devel-
oped a meta server, Alignment by Consensus Estimator (ACE), which is participating in CASP6 and
CAFASP4 (Fourth Critical Assessment of Fully Automated Structure Prediction). ACE is available at
http://www.cs.uwaterloo.ca/˜l3yu/consensus.htm.

1. Introduction

Protein three-dimensional structure determination has been a fundamental challenge in
molecular biology. The experimental approaches like X-ray crystallography or nuclear
magnetic resonance spectroscopy (NMR) turn out to be costly and low throughput. Pro-
tein structure prediction by computational methods has been addressed for more than three
decades and only limited progress has been made. Recently, with the enlargement of pro-
tein databases and the advances in high-performance computing facility, great progress has
been achieved in this area and some community-wide experiments such as CASP ��� ��� � and
LiveBench ��� 	 have been carried out. Since the first CAFASP in 1998, great progress in
automatic structure prediction has been made, and more and more fully automatic structure
prediction servers have been developed. For example, the number of prediction servers in
CAFASP3 
 almost doubled, compared to that in CAFASP2. �

In CAFASPs, it has been observed that for different targets, the best predictions are
often made by different servers. 
 No single server can reliably generate the best models for
all the targets. In contrast, consensus predictors, also called meta servers, can consistently
produce better results than individual servers. A meta server takes the top models generated
by a set of individual servers as its input and chooses the best model or assembles a new
hybrid model as the prediction. Along with CASPs, several meta servers, such as PCON, �
3D-Jury, 
 Pmodeller ��� and 3D-SHOTGUN, ����� ��� have been developed.

The consensus method was first applied in fold recognition by some individual servers
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rather than meta servers. INBG � � threads a sequence to a template by using five different
scoring functions. The template with the highest average score is chosen as the final pre-
diction. 3DPS ��� aligns a query sequence to each protein structural template using three
different scoring functions and chooses the alignment with the maximum score as the final
prediction.

Making a consensus prediction based on the results of several individual servers was
first successfully applied in CASP4 by a group named CAFASP-CONSENSUS. � This
group derived predictions by inspecting and analyzing the outputs from the automated fold
recognition servers running in the CAFASP2. As a result, the CAFASP-CONSENSUS
outperformed any individual server in CAFASP2 and ranked seventh among the human
predictors in CASP4. � This led to the development of the first automated consensus server
PCON, which made use of the results of six individual servers. PCON uses a neural net-
work to predict the quality of one model by comparing it with other models and reports the
model with the highest quality score as the final prediction. PCON performs better than any
of its component servers, especially in specificity. Pmodeller is a new version of PCON.
It predicts the quality of a model by combining PCON and ProQ ��	 together. ProQ is a
neural network-based tool to predict the quality of a protein model based on the structural
characteristics of one model. With ProQ, certain amount of improvement is achieved.

Unlike PCON, 3D-Jury does not use machine learning methods and no training proce-
dure is required, which makes it simple and flexible. 3D-Jury compares input models with
each other using MaxSub � 
 and a similarity score is obtained for each pair of models. Then
a quality index for each model is calculated based on pairwise MaxSub scores. The 3D-
Jury can be operated in two modes in which quality indices are calculated in two different
ways.

Both PCON and 3D-Jury only choose the best possible model from all the input mod-
els. Some meta servers go beyond this selection-only method. 3D-SHOTGUN � ��� � � is such
an example and capable of assembling a new hybrid model from the input models. It is be-
lieved that this feature makes it usually more sensitive and specific than other meta servers.
In spite of the success with this approach, it has also been observed that the hybrid models
assembled by 3D-SHOTGUN sometimes contain nonnative-like structural fragments.

In this paper, we are to explore the possibility of developing a selection-only meta
server by utilizing more effective features and applying state-of-the-art machine learning
techniques. We will present a new consensus method based on SVM regression, which
turns out to be quite effective at boosting the performance, especially when not many
high-performance individual prediction servers are available. By using SVM regression
approach, for each target, we can predict the quality of each model, which in turn is used
to rank all the input models generated by individual servers.

The rest of this paper is organized as follows. Section 2 briefly introduces the idea
of SVM regression. Section 3 discusses how to extract some effective features from each
model. Section 4 describes some experiments and discusses various factors that may influ-
ence the performance of the meta server. Finally, section 5 draws some conclusions from
the experimental results.
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2. SVM Regression

Approximating a real-valued function from a finite set of samples is a central problem in
many areas. The commonly used techniques for such tasks are linear regression, or logistic
regression, which are often not sufficient to approximate complex functions with a high
degree of nonlinearity. In such cases, nonlinear regression methods should be used to
improve the approximation accuracy. For our application, we are to use SVM regression
to approximate the functional relationships between the features of a predicted structural
model and its structural quality.

Support Vector Machine was developed by Vapnik et al. in 1970’s. � � SVM classifiers
turned out to have excellent generalization performance and were successfully applied in
many areas like pattern recognition and information retrieval. � � When applied in regres-
sion applications, SVM also gives excellent performance. � 
 We will start with linear SVM
regression which is simple and straightforward.

Linear SVM Regression Given training data
���������	��


, ��
�� ����������� , where for our ap-
plication,

� �������
is the model feature vector and

� �
is the model quality score. An� -insensitive loss function is used, that is, we look for a function ��� �� 
"! �#��$&%

that has
at most � deviation from the actual obtained

� �
for all the data points. Here ! is a vector

in
���

. By looking for a minimized '(!�' , a unique solution can be defined. This can be
formulated as a convex optimization problem as shown below � � :)+*-,.*-/0*-1�2 �� '(!�'��354.6.7 2�8(9:9�; < �	��= ! �#�>�?=@%BA �! ��� � $C%D=E� � A � (1)

There is no guarantee that such ��� �> always exists. So we can introduce slack variables F � ,FHG� to cope with otherwise infeasible solutions of the optimization problem (1).)+*-,.*I/J*-1�2 �� '(!�' � $&K@LNM�IO
� �PF ��$ F �Q 354.6R7 2�8(9:9�; ST U � � = ! �#� � =@%VA � $ F �! �#�>�>$C%W=X�	��A � $ FHG�F � � FHG�JY[Z (2)

where
K

penalizes the amount to which deviations larger than � are tolerated.
By introducing Langrangian multipliers \ � and \�G� ( �]
^� ����������_ ), we can obtain the

dual formulation of the original optimization problem (1).

)�`baR*I/J*-1�2 c = ��
L M �

� d O � �e\ �?= \�G�  �f\ �?= \�G�  � �>�?�#� d  = � L M �-O
� �e\ � $ \�G�  g$ L M �-O

�
� � �f\ � = \>G�  354h6R7 2�8#9i9j; c L M �IO

� �f\ ��= \>G�  
 Z\ � � \�G� �Ek Z �lKnm (3)
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Solving (3), we have: ! 
 M� �IO
�
�f\ �?= \ G�  �� �

��� �> 
 M� �IO
�
�f\ �?= \ G�  � �>�?�#�� i$C%

(4)

Note that ! is a linear combination of support vectors
� �

. And the support vectors appear
only in the form of dot product with

�
in the trained SVM machine.

Nonlinear SVM Regression To make SVM nonlinear, the straightforward way is to map�>�
to a higher dimension space. The drawback is that it can easily become computationally

prohibitive. A cheaper way to achieve this is to make an implicit mapping via kernel
functions. Instead of defining �:� �  explicitly, we can make an implicit mapping by defining� � �i���>�Q 
��:� �> � �:� �>�Q directly without knowing �i� �  . � � � � �g��� �Q is called the kernel
function. Now the SVM has a form like:��� �> 
 M� �-O

�
�f\ � = \ G�  � � �i��� �  g$C%

(5)

Various kernels can be used for different applications. The most commonly used ones are
polynomial kernels and Radial Basis Function (RBF) kernels.

3. Feature Extraction

Features are critical for the performance of machine learning based meta predictors. For
our meta server, all the features are extracted from the structural comparisons of the input
models. After the top � Z models reported by each server are collected, all the models are
compared with each other and a similarity score is obtained for each pair. The similarity
between two models is calculated by MaxSub, ��
 a program originally designed to measure
the quality of a single model. The quality score of a model serves as the objective function
of our SVM regression method. MaxSub is a sequence-dependent quality assessment tool
that identifies the maximum superimposable subset of

K��
atoms of two protein structures.

Let �	� � 
 denote the
%���


model reported by server � and �����E����� � 
 � � � � d  the similarity
score between model � � � 
 and � � � d . Let � denote the total number of servers and

�
the

number of top models reported by one server. For each model, we extract three groups of
features as follow.
Feature I This feature is specific to each model and can be calculated by Formula 6. That
is, for a given model � � � 
 , we calculate its similarity with all the models generated by all
the servers excluding server � .���� = �  �� ���IO

���
���O � ��d O � ����� ��� � � 
 � � � � d  (6)

Feature II This feature is also specific to each model and can be calculated by Formula 7.
Given a model ��� � 
 , we compare it with all the models from another one server and pick
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out the maximum similarity score. This procedure is repeated for each of all the rest servers.
Finally, we calculate the average of those selected maximum scores.�

� = � ���-O
���
���O � �/J`bad O � � �����E��� � � 
 � � � � d  (
 (7)

Feature III Feature III is different from feature I and II and composed of a set of subfea-
tures rather than one number. In addition, it is not model-specific but target-specific. That
is, for different target proteins, feature III is different and all the models predicted for the
same target protein have the same feature III. To obtain feature III, the similarity between
predictions made by every two servers must be calculated. So for � servers, there areK �
�

subfeatures altogether. The disadvantage is that if � is very large, this number grows
quickly. But later we will show that a large � may not be a good choice. For server � and� , the similarity between the models generated by them can be calculated by Formula 8.��

�

��

 O �

��d O � ����� ����� � 
 � � � � d  (8)

Feature I and II can be viewed as two methods measuring the degree to which each
model is supported by other models. It is observed that the most accurate model usually
have more similarity with other models than a less accurate model does. Based on this
assumption, one approach to estimate the quality of a model is to compare it with all the
models from the other servers, which is the basis for feature I and II. Note that for feature I
and II, the models from the same server as � � � 
 are ignored. The reason is that it has been
observed in the experiments that the models reported by the same server are more likely to
be similar to each other. So including them in the sum may introduce bias and degrade the
performance. Instead, 3D-Jury 
 takes into consideration the models generated by the same
server in calculating the support of one model. 3D-Jury-All uses a formula similar to Eq. 6
to calculate the support of one model and 3D-Jury-Single uses a formula similar to Eq. 7.

Feature I and II are the main driving force of our approach and feature III is an auxiliary
feature. Feature III represents the similarity between the two sets of structural predictions
made by any two servers for a particular target protein. This can help in some cases to
estimate the performance of different servers with respect to the same target protein, which
indirectly helps to distinguish models in some cases. For instance, suppose there are three
servers, named � ,

%
, � . Assume at any time, the majority of servers make correct predic-

tions. If we know that for a particular target, server � and
%

have similar predictions, but
server

%
and � , server � and � do not have similar predictions. Then it is quite possible that

server � makes poor predictions on this target. Thus, feature III can help to estimate the
model quality in this case. Note that all these features are calculated by averaging many
similarity scores. From this point of view, these features are obtained from the raw scores
in a statistical way. In this sense, if more models are involved in structural comparisons
the variations of the features can be reduced and the performance can be improved. That is
why all the top 10 models from each server are used.

As mentioned, the structural comparisons can be performed in different ways and dif-
ferent features can be extracted accordingly. For instance, we can compare one model with
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the top model from each of the other servers, or compare each model with all the mod-
els from other servers. In addition, some other features can be derived from the sequence
alignments, such as the gap numbers, gap length, target length, and template length. It
is also possible to generate some features by using some software such as PROCHECK ���
and WHATIF ��� to measure the stereochemical quality of each model. These software can
calculate some structural parameters from the coordinates of a protein structure, such as
torsion angles, hydrogen bond energy, which have been shown to correlate with the model
quality. Based on the distribution of these parameters, some statistics about the model’s
stereochemical quality can be calculated, which provide a simple guide as to the reliability
of the structure. � � A similar idea has also been implemented in ProQ by using machine
learning techniques to predict the quality of a model. ProQ uses neural network to predict
the Maxsub score or LGscore of a protein model based on the intrinsic features of a model,
such as atom-atom contact, solvent accessibility surfaces.

In spite of the abundance of the available features, not all the features are equally ef-
fective. The features mentioned above were tested and refined through a trial-and-error
process. By testing the combinations of different features, we explored the powers of dif-
ferent features and eventually arrived at the features reported in this paper.

4. Experimental Results

To test the performance of our new consensus algorithm, we downloaded publicly available
LiveBench 5-8 data to train the SVM regression model and test it. When we were doing
experiments, LiveBench 8 was incomplete and only had 148 targets. In addition, since
LiveBenchs are not totally blind, some servers might report the experimental structure of a
target as the prediction. In this situation, we just removed this prediction to avoid bias. Thus
we have four sets of data corresponding to LiveBench 5-8. In the following context, we will
call the four data sets LiveBench5, Livebench6, LiveBench7, and LiveBench8 respectively.
To test the performance of our meta server, we used the four-fold cross validation in the
experiments. Specifically, we used one data set to train the SVM model and tested it with
the other three data sets. This was repeated four times, each time with a different set used
for training.

4.1. Sensitivity

The sensitivity is defined as the sum of the MaxSub scores of the top models for all the
targets. We make use of the results of three individual servers FFA3, ����� ��� 3DPS, ��� and
FUG2. ��� To assure objectivity, we have avoided using our own RAPTOR server. The
top 10 models from each server were collected so there were

� Z
models for each target.

By comparing models with each other, we generated all the features. We used a RBF
kernel in the SVM. There are several tunable parameters in the SVM regression model. We
tried different settings of the parameters and selected the one with best performance. As
shown in Table 1, no matter which training set is used, our SVM regression approach has
a very stable sensitivity on all the test sets. The total MaxSub score on the four LiveBench
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Table 1. MaxSub scores of ACE with three component servers used. The number of targets
is shown under the name of each data set. One data set is used for training and the other three
for testing. The average testing result for each data set is calculated and summed.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum of
data set 78 98 115 148 average

LiveBench 5 —– 77.31 93.18 257.53 —–
LiveBench 6 73.59 —– 91.73 256.57 —–
LiveBench 7 73.15 75.35 —– 256.87 —–
LiveBench 8 73.15 74.47 91.89 —– —–

Average 73.30 75.71 92.27 256.99 498.27

Table 2. Sensitivity (MaxSub score) comparison with three component servers and other
meta servers. The results of 3D-Jury are derived from three component servers FFA3, 3DPS
and FUG2. The results of all the other servers are taken from LiveBench. PCON’s results are
only available for LiveBench 5-7.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum
data set 78 98 115 148 score
FFA3 69.68 66.30 88.97 234.52 459.97
3DPS 58.97 61.62 81.47 252.17 454.23
FUG2 59.53 63.54 79.71 233.59 436.37
PCON 62.79 68.65 83.77 —– —–

3D-Jury-all 44.24 57.80 64.52 191.38 357.94
3D-Jury-single 64.09 65.36 88.26 250.08 467.79

ACE 73.30 75.71 92.27 256.99 498.27

Table 3. MaxSub scores of ACE obtained with six component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum of
data set 78 98 115 148 average

LiveBench 5 —– 63.15 92.57 253.44 —–
LiveBench 6 69.22 —– 90.37 253.39 —–
LiveBench 7 68.47 68.52 —– 255.81 —–
LiveBench 8 67.30 69.11 90.94 —– —–

Average 68.33 66.93 91.29 254.21 480.76

data sets is 498.27. Comparison with 3D-Jury and individual servers is shown in Table 2.
We can see that 3D-Jury-All has poor performance, even not as good as some component
servers. Both ACE and 3D-Jury-Single are better than any individual server. For ACE,
its sensitivity is above that of any individual server by about ��� . And for the same set of
three component servers, the sensitivity of ACE is higher than that of 3D-Jury-Single by� � . ACE is also approximately 10% better than PCON in LiveBench 5-7. More important
is that the performance of any individual server is not as stable as that our meta server. For
example, FFA3 performs very well in LiveBench 5-7, but very badly in LiveBench 8. In
contrast, 3DPS performs not as well as FFA3 in LiveBench 5-7, but much better than FFA3
in LiveBench 8. By using consensus method, our meta server ACE can generate a very
stable output.

Based on the three servers we used, we did another experiment with three additional
servers included, namely, INBG, SFPP, ��	 MGTH. ��
 The result is shown in Table 3. Even
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Table 4. Sensitivity (MaxSub score) comparison between ACE, six individual servers and
meta servers PCON and 3D-Jury. The results of 3D-Jury are derived from these six individual
servers. The results of all the other servers are taken from LiveBench.

data LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum
set 78 98 115 148 score

FFA3 69.68 66.30 88.97 234.52 459.97
3DPS 58.97 61.62 81.47 252.17 454.23
FUG2 59.53 63.54 79.71 233.59 436.37
INBG 61.56 46.63 79.25 219.22 406.66
SFPP 40.34 50.02 58.67 186.72 335.75

MGTH 58.52 68.04 70.98 237.40 434.94
PCON 62.79 68.65 83.77 —– —–

3D-Jury-all 64.09 65.36 88.26 250.08 467.79
3D-Jury-single 68.56 65.59 91.52 256.41 482.08

ACE 68.33 66.93 91.29 254.17 480.76

though theoretically we should be able to achieve better performance by using more servers.
The experimental result shows that using six servers is surprisingly worse than using three
servers. In spite of that, the meta server is still better than any individual server. When
more servers are included, the meta server has more chance to collect even better models
in its input. But at the same time, number of models increases. This increase may bring up
two problems. First, if some poor quality models are included, they will contaminate the
features extracted, which will result in performance degradation. Secondly, the capability
of the machine learning method is not unlimited. When more candidates are to be consid-
ered, it becomes more difficult for the machine learning method to pick out the best one.

Comparisons with 3D-Jury method and six individual servers are listed in Table 4. In
this case, ACE and 3D-Jury-Single have equivalent performance and have higher sensitivity
than any individual server. ACE does not have obvious advantage over 3D-Jury-Single.
Note that for 3D-Jury-All, when more servers are included, its performance increases a lot.

4.2. Specificity

In addition to the sensitivity of servers, the specificity is also important for high-throughput
automated structure prediction servers. High sensitivity and specificity are desired goals
but it is hard to achieve the two goals at the same time. We used the method applied by
CAFASP3 to calculate the specificity of a server. The specificity is calculated according to
the following procedures: (1) Rank the models by the confidence scores (SVM outputs).
Note that only the top one model for each target is considered here; (2) Count the number
of correct predictions before the first � false positives ��� ���  ; (3) Calculate the average
of ��� ���  , � =1, 2,

�����
, 5 as the specificity of the server. Here a correct model is defined

as a model which has at least 40
K �

atoms that can be superimposed to the native structure
within 3.0

��
by using the MaxSub program.

Following the above steps, we calculated the specificity when there were three com-
ponent servers. Here we also used the four fold cross validation. The results are listed in
Table 5. Comparisons of specificity with 3D-Jury, PCON and individual servers are shown
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Table 5. Specificity of ACE obtained with three component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8
data set 78 98 115 148

LiveBench 5 —– 18.20 24.00 59.80
LiveBench 6 18.00 —– 24.00 59.80
LiveBench 7 18.00 19.00 —– 59.80
LiveBench 8 18.00 19.00 24.00 —–

Average 18.00 18.73 24.00 59.80

Table 6. Specificity comparison between ACE and its three component servers and
other meta servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8
data set 78 98 115 148
FFA3 18.00 17.00 23.00 56.60
3DPS 15.80 16.80 20.40 57.00
FUG2 18.00 16.60 17.60 57.79
PCON 16.00 19.00 22.00 —–

3D-Jury-All 12.00 15.20 16.00 54.00
3D-Jury-Single 15.40 15.60 17.80 59.60

ACE 18.00 18.73 24.00 59.80

Table 7. Specificity of ACE obtained with six component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8
data set 78 98 115 148

LiveBench 5 —– 14.80 20.60 59.60
LiveBench 6 15.00 —– 21.20 59.40
LiveBench 7 15.00 15.60 —– 59.60
LiveBench 8 15.00 15.60 21.20 —–

Average 15.00 15.33 21.00 59.53

in Table 6. We can see that the specificity of ACE is significantly higher than that of 3D-
Jury-All and 3D-Jury-Single. Also, the specificity of ACE is higher than any individual
server and PCON. We also calculated the specificity of our meta server using six individ-
ual servers as shown in Table 7 and 8. As shown in these two tables, when six servers are
used, the specificity of ACE drops as the sensitivity does. Even though the specificity is

Table 8. Specificity comparison between ACE and its six component servers and
other meta servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8
data set 78 98 115 148
FFA3 18.00 17.00 23.00 56.60
3DPS 15.80 16.70 20.40 57.00
FUG2 18.00 16.60 17.60 56.20
INBG 18.00 19.00 24.00 55.79
SFPP 18.00 18.73 24.00 59.80

MGTH 18.00 18.73 24.00 59.80
3D-Jury-All 16.40 14.8 18.20 58.60

3D-Jury-Single 15.00 15.20 21.20 58.80
ACE 15.00 15.33 21.00 59.53
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still better than 3D-Jury-All, it is no longer higher than that of any individual server.

5. Conclusion and Future Work

In this study, we have presented a SVM regression approach to build a protein fold recog-
nition meta server ACE (Alignment by Consensus Estimator). ACE extracts features of
each protein structure model through structural comparisons and predicts the model qual-
ity using the SVM regression. All the structural models generated by individual servers
are ranked, based on the predicted model quality. Testing experiments were done with
the LiveBench data. Experimental results show that our meta server is more sensitive and
specific than individual servers, and slightly better than meta servers 3D-Jury and PCON,
when not many individual servers are available for consensus. This feature is very desirable
since collecting prediction results of many servers is not a trivial task. There are not many
structure prediction servers that provide unlimited and consistent service to the commu-
nity. ACE is running in CAPS6 and CAFASP4 right now for further testing. A remaining
problem is how to find out the best combination of individual servers to produce the best
prediction possible. This topic has not been studied before in the community and is our
future research topic.
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