
17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

A HIGHLY SCALABLE ALGORITHM FOR THE EXTRACTION OF
CIS-REGULATORY REGIONS

ALEXANDRA M. CARVALHO ∗, ANA T. FREITAS, ARLINDO L. OLIVEIRA

IST/INESC-ID
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

E-mail: {asmc, atf, aml}@algos.inesc-id.pt

MARIE-FRANCE SAGOT

Inria Rhône-Alpes, Université Claude Bernard, Lyon I
43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

E-mail: Marie-France.Sagot@inria.fr

In this paper we propose a new algorithm for identifying cis-regulatory modules in genomic sequences.
In particular, the algorithm extracts structured motifs, defined as a collection of highly conserved
regions with pre-specified sizes and spacings between them. This type of motifs is extremely relevant
in the research of gene regulatory mechanisms since it can effectively represent promoter models.
The proposed algorithm uses a new data structure, called box-link, to store the information about
conserved regions that occur in a well-ordered and regularly spaced manner in the dataset sequences.
The complexity analysis shows a time and space gain over previous algorithms that is exponential on
the spacings between binding sites. Experimental results show that the algorithm is much faster than
existing ones, sometimes by more than two orders of magnitude. The application of the method to
biological datasets shows its ability to extract relevant consensi.

1. Introduction

In this large-scale genome sequencing era, the main bottleneck to the progress in molecular
biology is data analysis. The aim of this analysis is the extraction of biological information
from genome sequence data. An important task in this context consists in the detection
of regulatory signatures in DNA sequences as well as the prediction of the corresponding
promoter. An important part of gene regulation is mediated by specific proteins, called
the transcription factors(TF), which influence the transcription of a particular gene by
binding to sequence specific sites on the DNA sequence, calledtranscription factor binding
sites. Such binding sites are located inpromoter regions. In prokaryotic organisms, the
binding sites are predominantly in the immediate vicinity of the gene. However, in higher
eukaryotes, the binding sites of cooperating TFs are organized into short sequence units
calledcis-regulatory modules(CRM). We refer the reader to [13] for additional details.

The first methods for detecting promoter regions in DNA sequences [7, 11] looked

∗Work partially supported by FCT (SFRH/BD/18660/2004 and Project BIOGRID POSI/SRI/47778/2002)

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

only for a unique binding site –single motif. In the search for more complex promoter
models methods have appeared that extract promoter regions composed by two binding
sites [3, 12]. The first attempts to identify several binding sites –multiple motif– consisted
on crossing compatible single motifs [2, 5, 4], which takes time at least quadratic in the
number of single motifs and their occurrences. To address this problem, the lists for single
motifs were trimmed by statistical significance before the crossing operation. However, a
motif composed by several binding sites may be statistically significant even though none
of the sites taken individually are. Indeed, one of the main interests in seeking for multiple
motifs directly lies in this fact.

There are few realistic methods in the literature which attempt to find a modular organi-
zation of binding sites for TFs that cooperate in the regulation of genes. Some probabilistic
methods were proposed to identify CRMs and their component TFs using only the raw
sequence data as input [9, 8]. The main problem of these methods is that in the attempt
to reduce false positives they also eliminate true positive motifs. Moreover, an exact algo-
rithm [6] was also proposed to flexibly identify motifs composed of any number of binding
sites, possibly distributed over different CRMs. The main drawback of this method is its
incapacity to deal with large genomic data since it explodes both in time and in space. The
prime objective of this paper is to attack the explosion problem of this approach.

The main contribution of this work is a new algorithm to identify cis-regulatory mod-
ules from a set of promoter regions of co-regulated genes. The new method achieves an
exponential time and space gain, in the worst case analysis, relatively to [6]. Clearly, time
and space savings of this magnitude are of the utmost importance when searching through
genomic data. In practice, the exponential gain reflects that the extraction remains inde-
pendent of the distances between the binding sites that build up the multiple motif. This
improvement is very important to find eukaryotic TFs since the promoter model can be
very complex with consensus sequences observed over very large and variable distances.
The most important acceleration element of the proposed algorithm is a new data structure,
calledbox-link, which stores the information about how to jump within the DNA sequences
from site to site in the multiple motif. The algorithm uses afactor tree[1], which is a suffix
tree [10] built only up to a certain level, leading to an important space saving.

We demonstrate our results on simulated and real data. In the first case, the goal was to
test the ability of the algorithm to deal with large amounts of human simulated data. In the
second case, we wanted to verify the accuracy of the algorithm in recovering known single
and multiple motifs in yeast, and to apply it to discover novel motifs.

2. Model overview

A single model, or simply amodel, is a non-empty string over the alphabetΣ={A,C,T,G}.
From this point on, we denote the length of a single modelm by k. A modelm is said
to have ane-occurrencein the input sequences if there is one wordu of lengthk in the
input sequences such that the Hamming distance betweenu andm is less than or equal
to e. Recall that the Hamming distance between two sequences of the same length is the
minimum number of substitutions needed to transform one sequence into another. A model

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

is said to be avalid model, or simply amotif, if it has an occurrence in at leastq input
sequences, whereq is called thequorum. Motifs are used to describe highly conserved
strings in a set of DNA sequences which, in the case of sequences from co-regulated genes,
are candidates for binding sites.

A structured modelis a pair(m, d) wherem is ap-tuple (mi)1≤i≤p of single models
andd is a(p − 1)-tuple of pairs(dmini

, dmaxi
)1≤i<p, denotingp − 1 intervals of distance

between thep single models. Each elementmi of the structured model(m, d) is called a
box and we denote its length byki. Given ap-tuple (ei)1≤i≤p of allowed substitutions,
a structured model(m, d) is said to have an(ei)1≤i≤p-occurrence in the input sequences
if, for all 1 ≤ i ≤ p, there is anei-occurrenceui of mi such that: (i)u1, . . . , up are
in the same input sequence; (ii) the end position ofui and the start position ofui+1 in
the sequence is in[dmini

, dmaxi
], for all 1 ≤ i < p. A structured model is said to be a

valid structured model, or astructured motif, if it has an(ei)1≤i≤p-occurrence in at leastq
input sequences. As expected, structured motifs try to capture highly conserved complex
regions in a set of DNA sequences which, in the case of sequences from co-regulated genes,
simulate functional combinations of TF binding sites.

3. Factor tree

In this section we restrict our attention to a basic data structure upon which our algorithm is
based. Afactor treeis a data structure used to index strings, proposed by Allali and Sagot
[1], which is very similar to suffix trees [10]. A factor tree, also called thek-factor tree,
indexes the substrings of a string whose length does not exceedk. As for suffix trees, the
time complexity for constructing a factor tree is linear in the length of the string. However,
compared with a suffix tree, thek-factor tree offers a substantial gain in terms of space
complexity for small values ofk.

As an example, consider the 5-factor tree for a strings=AGACAGGAGGC$ presented
in Figure 1 ($ is commonly used as a termination character to guarantee that all substrings
of s which match a prefix of a substring ofs have a path from the root that ends at a leaf,
e.g., the substring C ofs matches a prefix of the substring CAGGA). All substrings up to

A
C

A G

A
G

C
$

$
CA

G
G

C

G

CAGG

C
A
G

A G

$

G C $

A
G

G
$

A
G
G
A

C

1

2

3

4

5

6

7

8

9

1011

12

A $
CA

G

G

CA

C

A G

$

G C

A$

A
G

C

11

12

3

1

G

(5,8) 4
2 7

10
6

9

Figure 1. The 5-factor tree (on the left) and the 3-factor tree (on the right) for the string AGACAGGAGGC$.

size 5 are depicted in the factor tree (e.g. AGACA, GACAG, etc.) and the corresponding
leaf contains the positions where the substring occurs in the input string (the first position

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

in the string is position 1). Note that the 5-deep factor tree does not have any leaf with a
collapsed position, since there is no common substring of size 5 in the strings. However,
with k = 3, the substring AGG occurs twice ins, at positions 5 and 8, and we obtain a
3-factor tree with collapsed positions, as depicted in Figure 1.

The factor tree construction for a set ofN strings, called ageneralized factor tree, can
be easily obtained by consecutively building the factor tree for each string of the set. The
resulting factor tree is built in time proportional to the sum of all the string lengths. An
usual way to distinguish the input strings is by storing at each tree nodev a Boolean array,
called theColorsv array [7] (usually implemented as a bit vector with dimensionN). This
array indicates the strings in the input set that contain the substring labeling the path from
the root to the tree nodev.

4. Structured motif extraction

In this section we introduce the main contribution of this paper. A new data structure,
calledbox-link, is proposed and used in a new algorithm for structured motif extraction.
For the sake of exposition, we consider only structured motifs withp boxes of the same
sizek, same distanced between boxes, and a fixed number of allowed substitutionse for
each box. The general case was studied and implemented. Furthermore, all complexity
results lift naturally, but the full details are out of the scope of this paper.

4.1. Box-link

A box-link stores the information needed to jump from box to box in a structured model.
Its name comes from the fact that it links allp boxes of a structured model. Formally, a
box-link can be defined as follows. LetL be the set of leaves at depthk of a k-factor
treeT for a strings andLi

k denote all possiblei-tuples overL. A box-link of sizei, with
1 ≤ i < p, is a(i + 1)-tuple inLi+1 such that there is a substrings′ of s where: (i) the
length ofs′ is ik+(i−1)d; (ii) the k-length substring ofs′ ending at positionjk+(j−1)d,
with 1 ≤ j ≤ i, is the path inT spelled from the root to thej-th leaf of the box-link tuple.

As an example, consider the 3-factor tree for AGACAGGAGGC$ presented in Figure 2
with box-links depicted for 2 boxes distanced by a spacer of 4 nucleotides.

AGACAGGAGGC$
AGA AGG

GGCGAC A
CA

G

G

CA

C

A G

$

G C

A$

A
G

C

G

$

Figure 2. The 3-factor tree for the string AGACAGGAGGC$ with box-link forp = 2 andd = 4.

When considering a generalized factor tree for a set ofN strings, a box-linkb has to be
endowed with a Boolean array of dimensionN , similar to the one associated with factor
tree nodes, defined as:Colorsb[i] = 1, if b links boxes of thei-th input sequence, and
Colorsb[i] = 0, otherwise, with1 ≤ i ≤ N .

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

4.2. Box-links construction

In this section we present an algorithm to build box-links. The algorithm makes use of two
variables. First, the variablelistleaf has the list of all leaves inserted in the factor tree,
which can be easily obtained during the factor tree construction. In fact, for the sake of
exposition,listleaf can be seen as a family of variables(listleafi

)1≤i≤N (one for each
input sequence), where eachlistleafi

has average lengthn (the average length of an input
sequence). Observe that the substring labeling the path from the root to thej-th leaf of
listleafi

corresponds to thej-th at mostk-length substring of thei-th input string. Second,
the variablebj stores thej-size box-links being built. Moreover, we have to set up the
function AddBoxLink. AddBoxLink(b,v,i) adds a box-link between an existing(j − 1)-
size box-linkb and a leafv for the i-th input sequence. However, it only creates a new
box-link if there is not already a box-link between box-linkb and nodev (merging in this
way equivalent box-links). In either way, creating or not a new box-link, the AddBoxLink
function sets the Boolean array entryi to 1. The pseudo-code of the algorithm to build
box-links is presented in Algorithm 1.

Algorithm 1 BoxLink(Boxesp, BoxSizek, BoxDistanced, ListLeaf listleaf)

(1) for i from 1 toN

(2) while size oflistleafi
≥ pk + (p− 1)d

(3) b0 = AddBoxLink(nil, listleafi
[0], i)

(4) for j from 1 to p− 1
(5) bj = AddBoxLink(bj−1, listleafi

[jk + jd], i)
(6) remove the first leaf oflistleafi

Next, we establish the time and space complexity for the BoxLink algorithm. We de-
note bynl the number of nodes at depthl of the generalized suffix tree for the same input
sequences as the factor tree where the box-links are being constructed (note that this suf-
fix tree is never built, it only serves the purpose of providing us a value to establish the
complexity analysis). Moreover, we definebp(k, d) = min{np

k, npk+(p−1)d}.
Proposition 4.1. Algorithm 1 takesO(N2np) time andO(Nbp(k, d)) space.

Proof. Step 1 requiresO(N) time. Step 2 requiresO(n), wheren is the average number
of leaves inlistleafi

. Step 4 requiresO(p) time. Step 5 requiresO(N) time, which
corresponds to the creation or update ofColors array. Hence, Algorithm 1 takesO(N2np)
time. Briefly, the space complexity is given by the number of box-links (which is upper
bounded bybp(k, d)) times its size (which is upper bounded byN).

4.3. Structured motif extraction using box-links

In this section we introduce the algorithm to extract structured motifs from upstream se-
quences of co-regulated genes. The basic data structure used by the algorithm is a factor
tree. The first step is the construction of the generalizedk-factor treeT for the input set of
DNA sequences (recall thatk is the size of the boxes in the structured models). Next, the

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

tree is modified in order to store at each node theColors array, as explained in Section 3.
The pre-processing phase ends with the construction of box-links, which are added to the
leaves of the factor tree. At this point we are in condition to start the extraction phase,
but before presenting the pseudo-code of the algorithm we need to introduce the following
concept. Ae-node-occurrenceof a modelm is a pair(v, ev) such that: (i)v is a node in the
factor treeT ; (ii) ev is the Hamming distance between the label of the path from the root to
v andm; (iii) ev ≤ e. Whenevere is understandable from context we usenode-occurrence
instead ofe-node-occurrence. Clearly, when substitutions are allowed (e > 0) a model can
have more that one node-occurrence inT .

We now give a summary of the extraction process forp = 2. The pseudo-code for
the extraction is presented in Algorithm 2. The algorithm recursive process is initialized
with ExtractMotifs(m = ε, i = 1), whereε represents the empty model. The algorithm
starts by extracting single motifsm1 of lengthk, one at a time. The extraction of single
motifs is done by a simple depth-first traversal of the factor treeT (step (7)) [7]. Since
i = 1 < p = 2 a recursive call is made with ExtractMotifs(m = m1, 2) (step (8)). For
each node-occurrencev of a first boxm1 (step (1)), box-links are followed to reach nodes
z (step (2)) and the content of the Boolean arrayColors stored in these box-links is used
to temporarily and partially modify theColors of the target nodesz (steps (3) to (6)). The
extraction of the second boxm2 then proceeds in the same way, but only over this modified
part of the tree (step (7)). Once the extraction of all valid motifs〈(m1,m2),d〉 has ended
(step (9)), the factor tree is restored to its previous state (step (10)). The construction of
another single motifm1 follows (step (7)), and the whole process unwinds in a recursive
way until all structured motifs are extracted.

Algorithm 2 ExtractMotifs(Motifm, Box i)
(1) for each node-occurrencev of m

(2) for each leafz such that there is a box-linkb〈v,z〉 from v to z

(3) putz in L(i)
(4) if (first time z is reached) setColorsz to

−→
0 and putz in NextEnds

(5) Colorsz = Colorsz + Colorsb〈v,z〉
(6) UpdateTree(T ,NextEnds)
(7) for each motifmi obtained by a depth-first traversal ofT
(8) if (i < p) ExtractMotifs(m = m1 . . . mi,i + 1)
(9) else KeepMotif(m = 〈(m1, . . . , mp),d〉)

(10) RestoreTree(T ,L(i))

A proper appreciation of the algorithm needs some set up that follows. The UpdateTree
updates the Boolean arrays from the nodes inNextEnds to the root in the following way:
if nodesz andẑ have the same parentz, thenColorsz = Colorsz + Colorsẑ (Colors are
usually implemented as a bit vector, so this means the bitwise OR operation). Any arc from
the root that does not have a node inNextEnds is not part of the updated tree, nor are the
subtrees rooted at its node inNextEnds. Moreover,L(i) is an array that stores the state of
the nodes at levelk for the(i− 1)-th box of a structured model. The RestoreTree restores

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

the Boolean arrays from the nodes inL(i) to the root in the following way: if nodesz andẑ

have the same parentz, thenColorsz = Colorsz + Colorsẑ. Any arc from the root is part
of the restored tree. Finally, KeepMotif stores all information concerning valid motifs.

Next, we establish the complexity of Algorithm 2. The termν(e, k) denotes the number
of distinct words that are at a Hamming distance at moste from ak-long word.

Proposition 4.2. Algorithm 2 takesO(Nbp(k, d)νp(e, k)) time andO(Nbp(k, d)+Npnk)
space.

Proof. We can parcel out the complexity into: (i) the number of operations needed to build
all p parts of structured motifs; (ii) the number of operations needed to updateT ; (iii) the
number of operations needed to restoreT . To compute (i) we have to calculate the cost of
all visits to nodes between the root and levelk (the deeper level ever reached). Notice that
when spelling all parts of a motif we are working with nodes between the root and level
k only, and because factor trees are compact, being at least binary, there are at most2nk

such nodes. Hence, the number of visits to nodes between the root and levelk is upper
bounded by twice the number of visits to nodes at levelk. Moreover, when no substitutions
are allowed, there are at mostbp(k, d) ways of spelling all structured motifs. However,
when up toe substitutions are allowed, a node at levelk may be visitedO(νp(e, k)) times
more. Hence, (i) takesO(Nbp(k, d)νp(e, k)), whereN accounts for the access to the
Colors array. To compute (ii) we need to count the number of operations necessary to
modify the firstk levels ofT which is upper bounded byO(Nbp(k, d)νp−1(e, k)). This
corresponds to all visits made to nodesz coming fromb〈v,z〉 for all modelsmp−1. In
addition, the propagation fromz to the rootR for all modelsmp−1 is upper bounded by the
same value. Finally, since (iii) is also upper bounded by the time to updateT , we conclude
that Algorithm 2 takesO(Nbp(k, d)νp(e, k)) time. Briefly, the space complexity is given
by the space required by box-links and the space required by the factor tree and theL(i)
arrays (1 ≤ i < p).

This algorithm exhibits an exponential time and space gain relatively to the previous
approaches to extract structured motifs presented in [6], where the best algorithm takes
O(Nbp(k, d)νp(e, k) + Nnpk+(p−1)dν

p−1(e, k)) timea and O(Nnpk+(p−1)d + Npnk)
space. The difference between the time complexity expressions occurs in the second term
which is eliminated by Algorithm 2. Observe that in the worst case scenario, the factor tree
is complete and we havebp(k, d) = min{|Σ|pk, |Σ|pk+(p−1)d} = |Σ|pk < npk+(p−1)d =
|Σ|pk+(p−1)d which reflects an exponential gain of the order|Σ|(p−1)d (we denote by|Σ|
the cardinality ofΣ, so for the DNA alphabet case|Σ| = 4). The major gain of this new
method, over previous approaches for extracting structured motifs, is that in the worst case
scenario the extraction time of the motifs remains independent of the distances between
them (recall that an exponential factor on(p − 1)d disappears in the worst case analysis).
A similar reasoning applies for the exponential gain in space complexity.

aThe time complexity presented herein differs from the one presented in [6]. Indeed, the authors of [6] acknowl-
edged a mistake in the time complexity and agree with the expression we present here.

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

5. Experimental results

This section presents results attained by RISO, the C implementation of the new algorithm
proposed in this paper, as well as benchmark comparisons with SMILE, the C implementa-
tion of the algorithm presented in [6] made available by the authors. The results presented
were obtained using a Intel Pentium IV at 2.4GHz with 1GB of RAM.

The structured motifs extracted by RISO were classified according to their statistical
significance in order to give them some biological relevance [6]. The Z-score for a motif
was considered, indicating how far and in what direction the number of occurrences of the
motif deviates from its distribution mean. This score is especially useful when comparing
the relative occurrences of motifs from distributions with different means and different
standard deviations. This difference clearly occurs for highly conserved regions on a set of
DNA sequences against ordinary uniformly distributed sequences (random background).

5.1. Human simulated data

As a basic test of RISO, we used a set of DNA sequences generated by a Markov chain
with order 5, calibrated on intergenic oligonucleotide frequencies for the human DNA.
These sequences were obtained using the Regulatory Sequence Analysis (RSA) tools
(http://rsat.scmbb.ulb.ac.be/rsat/). In this context, two datasets were prepared, one
with 1000 sequences of size 1000, and another with 2000 sequences of size 2000. Four
sets of experiments were performed by running RISO and SMILE over each dataset, re-
quiring a quorum of20% (q = 200/1000) and40% (q = 800/2000) for each data set,
respectively. Each set of experiments consisted on three searches for structured motifs of
two boxes with sizes 3, 5, and 7, respectively, in all cases distanced by 15 nucleotides.
Allowed substitutions varied in the experiments: in the first searche1 = 0 ande2 = 0;
in the second searche1 = 1 ande2 = 1; in the third searche1 = 2 ande2 = 1. In Fig-
ure 3 we depict the results obtained in these experiments. We emphasize that time results

0

50000

100000

150000

200000

3 4 5 6 7

T
i
m
e

(
s
e
c
o
n
d
s
)

Box size

SMILE1 1000 x 1000
RISO 1000 x 1000

SMILE1 2000 x 2000
RISO 2000 x 2000

0

50

100

150

200

250

300

350

400

450

500

3 4 5 6 7

M
e
m
o
r
y

(
M
B
)

Box size

SMILE1 1000 x 1000
RISO 1000 x 1000

SMILE1 2000 x 2000
RISO 2000 x 2000

Figure 3. Time (on the left) and space (on the right) comparison of RISO and SMILE.

encompass the construction of the factor tree with box-links (for the RISO case), which
took, in the computationally most demanding experiment, less than 5 seconds. In terms
of time RISO was always much faster than SMILE (with both RISO curves lying below
SMILE curves). RISO showed to be scalable with respect to dataset size increase (RISO
performed 3.5 times slower when dataset size increased 4 times, while SMILE performed

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

6 times slower with the same dataset size). In terms of space RISO also showed a better
performance. Moreover, SMILE was not able to cope with a dataset of 4000 sequences of
size 4000 in a 1GB memory machine, while RISO was able to perform extractions over
this dataset.

5.2. Cis-regulatory regions in yeast

In real data we evaluated the performance of the algorithm to recover known motifs in yeast,
as well as to discover new ones. As test sets we used a collection of 68 genes that are known
to be regulated by zinc cluster factors. The upstream sequences were retrieved from posi-
tions -1 to -1000 relative to the ORF (open-reading frame) start positions. To set up our data
we took advantage of the TRANSFAC database (http://www.gene-regulation.com/).
We made several extractions not allowing substitutions (e = 0) and requiring a quorum of
10% (q = 7/68) in the collected data. Our method was able to detect 6 CRMs with very
high significance out of 9 that we looked for. The results are summarized in Table 1. The

Table 1. Regulons of Zn cluster proteins.

TF name Known motif Predicted motifs Z-score Ranking

GAL4 CGGn11CCG CGGn11CCG (GAL4) 7.05 1st
HAP1 CGGnnntanCGG GGGn3AGC 3.05 –

CGGn6CGG (HAP1) 2.08 –
LEU3 RCCggnnccGGY GCCn6GGT (LEU3) 4.82 6th
LYS wwwTCCrnyGGAwww TTCn4GGA 3.05 –
PDR tytCCGYGGary TCCGCG 3.58 –
PPR1 wyCGGnnwwykCCGaw CGGn6CCG (PPR1) 5.86 1st
PUT3 yCGGnangcgnannnCCGa CCGn11GCC 3.05 –
UGA3 aaarccgcsggcggsawt AGCCGCC 7.59 –

GGCGGCTAA 27.33 2nd
UME6 tagccgccga TAGCCGCC 12.52 11th

GCCGCCGA 12.52 12th

first column of the table lists the searched TFs, while the known consensus for each TF is
presented in the next column, using the standard IUPAC code. For known consensi, low-
ercase letters represent uncertainty with respect to the corresponding nucleotide, whereas
capital letters denote a higher certainty. The third column presents the predicted motifs,
where we emphasize the TFs GAL4, LEU3 and PPR1 because they were perfect matches
(with respect to the known motifs) with very high significance. The Z-score is presented in
the fourth column and its position in the ordered list of the scored motifs is presented in the
last column. When no ranking is provided it means that the predicted motif was not in the
fifteen best ranked. We stress that all the extractions performed above took less than one
minute with RISO, and in the best case RISO was 375 times faster than SMILE.

6. Conclusion

We presented a new algorithm and data structure for the extraction of structured motifs in
DNA sequences. The new algorithm exhibits an exponential time and space gain, in the
worst case analysis, relatively to existing algorithms for extracting structured motifs [6].

17th September 2004 12:6 Proceedings Trim Size: 9.75in x 6.5in boxlinks

The only added cost comes from the computation of box-links but this time is negligible
in comparison with the time required to perform the extraction of the structured motifs.
Moreover, the proposed algorithm only requires the creation of a suffix tree pruned at the
level of the largest box of the structured motif (called a factor tree [1]), saving much space
in comparison with the algorithms proposed in [6] that are based on the full suffix tree.
Experimental results show that the new algorithm is much faster than the SMILE algorithm
[6], in some cases, more than two orders of magnitude faster. The application of RISO to
biological datasets shows the ability of the method to extract relevant consensi.

Future work can progress in several directions. First, we are refining RISO in order to
have a trade-off between computing some box-links and having others stored in memory,
reducing even more the space used by the algorithm. Second, it would be valuable to
combine our approach with probabilistic ones, possibly by modeling each motif within a
structured motif using the standardposition specific scoring matrix(PSSM) representation.
Finally, we are exploring the use of our algorithm as part of a framework to unveil the
complex gene regulatory network underlying the yeast response to the 2,4-D herbicide and
to a new antimalarial/antitumor drug artesunate.

Bibliography

1. J. Allali and M.-F. Sagot. The at most k-deep factor tree. Submitted for publication, 2003.
2. T. L. Bailey and C. Elkan. The value of prior knowledge in discovering motifs with MEME. In

Proc. ISMB’95, pages 21–29, 1995.
3. L. R. Cardon and G. D. Stormo. Expectation Maximization algorithm for identifying protein-

binding sites with variable length from unaligned DNA fragments.J. Mol. Bio., 223(1):159–170,
1992.

4. E. Eskin, U. Keich, M. S. Gelfand, and P. A. Pevzner. Genome-wide analysis of bacterial pro-
moter regions. InProc. PSB’03, pages 29–40, 2003.

5. E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in DNA sequences.Bioinfor-
matics, 18(1):354–363, 2002.

6. L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a suffix tree with an
application to promoter and regulatory site consensus identification.J. Comp. Bio., 7(3-4):345–
362, 2000.

7. M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. In C. Luc-
chessi and A. Moura, editors,Proc. Latin’98, volume 1380 ofLNCS, pages 111–127. Springer-
Verlag, 1998.

8. E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. A discriminative model for identifying
spatial cis-regulatory modules. InProc. RECOMB’04, pages 141–149, 2004.

9. R. Sharan, I. Ovcharenko, A. Ben-Hur, and R. M. Karp. Creme: a framework for identifying
cis-regulatory modules in human-mouse conserved segments.Bioinformatics, 19(Suppl 1):i283–
i291, 2003.

10. E. Ukkonen. On-line construction of suffix trees.Algorithmica, 14(3):249–260, 1995.
11. J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the upstream

region of yeast genes by computational analysis of oligonucleotide frequencies.J. Mol. Bio,
281(5):827–842, 1998.

12. J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory elements in non-coding
sequences by analysis of spaced dyads.Nuc. Ac. Res., 28(8):1808–1818, 2000.

13. T. Werner. Models for prediction and recognition of eukaryotic promoters.Mamm. Gen.,
10(2):168–175, 1999.

