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PREFACE

Previous editions of Tools for teaching logic (TTL) took place as follows. The
first TTL conference took place in 2000'. It was the idea of an international group of
logicians that, in 1998, created ARACNE, a European Community ALFA (America
Latina Formacién Académica) network. The second conference took place in 2006
(http://logicae.usal.es/SICTTL/), and the third in 2011 (http://logicae.
usal.es/TICTTL/).

Proceedings of the 2000 edition were published in [3] and those of the 2006 were
published in [4]. For the latter edition, a special volume of the Logic Journal of
the IGPL was published in 2007 [5]. Finally, selected contributions to the third
conference were published in Lecture Notes in CS [6]. As we write this, the number
of downloads of the latter are over 16 thousand.

The Fourth International Conference on Tools for Teaching Logic, TTL 2015
(http://tt12015.irisa.fr/) was held during June 9-12 2015 at Institut de Recherche
en Informatique et Systémes Aléatoires (IRISA), Rennes, France. This special issue
contains nine papers that have been selected from the 35 papers of the conference

[1]:

1. Anne Zamansky. Teaching Logic to Information Systems Students: a Student-
centric Approach

2. Gilles Dowek. Rules and derivations in an elementary logic course

3. Johan van Benthem An old discipline with a new twist: the course “Logic in
Action”

4. Jorgen Villadsen, Alexander Birch Jensen, Anders Schlichtkrull NaDeA: A
Natural Deduction Assistant with a Formalization in Isabelle

5. Maria Manzano, Nitsa Movshovitz-Hadar, Diane Resek Leon Henkin: A logi-
cian’s view on mathematics education

6. Ryo Hatano, Katsuhiko Sano and Satoshi Tojo Teaching Modal Logic from
The Linear Algebraic Viewpoint

7. Patrick Blackburn. The New Trivium

aracne.usal.es/congress/congress.html

Vol. 4 No. 1 2017
IFCoLog Journal of Logic and its Applications



PINCHINAT & SCHWARZENTRUBER

8. John Slaney. Logic considered fun

9. Jeremy Seligman and Declan Thompson. Teaching natural deduction in the
right order with Natural Deduction Planner

The contributions can be typed according to two main streams that are not
exclusive:

e Teaching logic to a specific audience: 1, 2, 3, 5, 6, 7.
e Softwares for teaching logic: 4, 6, 8, 9.

We thank all the authors who have contributed to this special issue. Each submis-
sion for this special issue were assigned to two reviewers. We are immensely grate-
ful to Giovanna D’Agostino, Carlos Areces, Eric Badouel, Sandrine Blazy, David
Cachera, Susanna Epp, Annie Foret, Tim French, Thomas Genet, Andreas Herzig,
Colin de la Higuera, Josje Lodder, Emiliano Lorini, Etienne Lozes, Valeria de Paiva,
David Pichardie, Ram Ramanujam, Olivier Ridoux, Martin Strecker and Moshe
Vardi for their valuable efforts and support.

We are also very grateful to the Editorial Board of IfCoLog for agreeing in
publishing this volume. Thanks are due to Jane Spurr, M. Antonia Huertas Sanchez,
Dov Gabbay and Michael Gabbay.

We would like to also thank again all the reviewers for the conference TTL 2015
as well as all the members of the organizing committee of TTL2015, M. Antonia
Huertas Sénchez, Joao Marcos, Maria Manzano and Elisabeth Lebret, for their
valuable help for this volume to exist.

We hope that this volume will inspire teachers so that the way logic is taught
to a wide range of students from undergraduate to postgraduate gets improved, and
thereby make those audiences aware of the tremendously importance of this topic
at the crossing of many established disciplines.

September 2016,
Sophie Pinchinat & Frangois Schwarzentruber
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TEACHING LOGIC TO INFORMATION SYSTEMS
STUDENTS: A STUDENT-CENTRIC APPROACH

ANNA ZAMANSKY*
Information Systems Department, University of Haifa, Israel
annazam@is.haifa.ac.il

Abstract

In contrast to Computer Science and Software Engineering, where it’s fun-
damental role is widely recognized, logic plays a practically non-existent role
in information systems (IS) curricula. In this paper we argue that instead of
logic’s exclusion from the IS curriculum, a significant adaptation of the con-
tents, as well as teaching methodologies, is required for an alignment with the
needs of IS practitioners. We present a vision for such adaptation and report on
concrete steps towards its implementation in the design and teaching of a course
for graduate IS students at the University of Haifa. We discuss the course plan
and present a qualitative analysis of feedback provided by students of the course.

Keywords: LOGIC EDUCATION, COMPUTING CURRICULUM.

1 Introduction

Numerous works addressed the role of logic and formal methods in the computing
disciplines curricula. While its importance as a core discipline for computer scien-
tists and software engineers is widely acknowledged (see, e.g., the ACM curriculum
guidelines [19, 13]), there is a growing frustration of educators concerning a poor
alignment of such courses to the needs of practitioners of the computing disciplines.
In [16], J. Makowsky writes: “Teachers of logic in Computer Science are often still
teaching courses which are a mix of formalizing logical reasoning, meta-mathematics
and the fading reverberations of the famous crisis of the foundations of mathemat-
ics. By doing so, they are contributing to the disappearance of their courses from
mainstream undergraduate education in Computer Science. We have to rethink
which aspects of logic matter for the Computer Science undergraduate programs."

*Supported by The Israel Science Foundation under grant agreement no. 817/15.
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ZAMANSKY

According to J. Wing [22]: “..we still face the educational challenge of teaching
mathematical foundations like logic and discrete mathematics to practicing or as-
piring software engineers. We need to go beyond giving the traditional courses and
think about who the target students are."

While a poor alignment of the logic courses to the needs of practitioners seems
to be acknowledged (see also [3] in this context), works offering student-centric
approaches, i.e., practical advice on how to make logic courses more effective and
relevant for computing practitioners and/or reporting on empirical studies in logic
education are scarce. A notable exception for the latter is the Beseme project ([17]):
in a three-year study, empirical data on the achievements of two student populations
was collected: those who studied discrete mathematics (including logic) through
examples focused on reasoning about software, and those who studied the same
subject illustrated with more traditional examples. An analysis of the data revealed
significant differences in the programming effectiveness of these two populations in
favor of the former.

In this paper! we take a student-centric approach in the sense of providing practi-
cal advice, supported by student feedback analysis, for a particular target audience,
namely Information Systems students. The (academic) field of information systems
(IS) encompasses two broad areas: (i) acquisition, deployment, and management of
information technology resources and services, and (ii) development and evolution
of infrastructure and systems for use in organization processes. Thus, as opposed to
computer science (CS), IS’s primary focus is on an organization’s mission and objec-
tives and the application of information technology to further these goals. Yet the IS
discipline shares a significant body of knowledge with CS and software engineering
(SE), reflected also in the intersection of the respective study programs’ curricula.
Logic, however, does not appear to be in this intersection — almost none of the IS
undergraduate study programs include such course in their curriculum. As opposed
to the ACM CS [19] and SE [13] curriculum guidelines, the analogous guidelines for
IS [21] do not refer to logic as a core mathematical discipline.

The current state of affairs is suboptimal for several reasons. First of all, most
of the reasons for including logic in the CS/SE curricula still hold in the IS domain.
Secondly, the lack of experience with formal notation forms a major cognitive bar-
rier to the adoption of formal methods by IS practitioners ([28]). This is further
reinforced by the fact that because many IS study programs tend to be marketed as
programs "excluding the hard math", the students come to see the lack of mathemat-
ical courses as a benefit, and express disappointment? when any formal notations

'This is a revised and extended version of [25] and [24].
2Quoting one of our graduate students who was assigned to read a research paper on formal
methods: “When I see formal definitions, I just want to cry." Notably, she is one of the best students
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are integrated in the IS core courses — thus creating a vicious circle.

Although a typical IS major may need a less extensive mathematical background
than a CS major, it is our view that rather than excluding logic from the IS cur-
riculum, a significant adaptation is needed to align it with IS objectives. In this
paper we provide some practical suggestions for how to adapt logic courses to the
context of IS by reporting on our experience in designing and teaching the course
"Logic and Formal Specification" to graduate students at the Information Systems
(IS) department at the University of Haifa, which includes a mandatory course on
logic and formal methods in its graduate study program. We discuss our view of
what should be included in the IS logic toolbox (analogously to the CS logic toolbox
of [15]). Finally, we present the results of a pilot study on the students’ own per-
ceptions of the importance and benefits of the course. The study was carried out by
administering an open-ended quesionnaire to 23 students in the years 2013-2014. A
qualitative analysis of the collected data reveals that the course’ benefits reported
by students are mainly perceived as improvements in cognitive processes, such as
analytical and abstract thinking, decomposition of problems and modelling.

2 The IS Logic Toolbox

The main practical objective in teaching logic to IS practitioners is providing them
with the ability to apply formal methods in industry. Application of formal aspects
is particularly important for software quality control, i.e., activities for checking (by
proof, analysis or testing) that a software system meets specifications and that it
fulfills its intended purpose.

Due to the density of the IS curricula, one currently cannot afford to have one
course on pure formal logic and then another on formal methods. This problem is
also discussed in [23] in the context of CS. Therefore, one must develop a mixture
which combines introductory formal logic together with an introduction to the formal
methods relevant for the IS domain. In what follows we briefly survey previous
reflections on the content of logic and formal methods courses that practitioners
really need and their integration into the curricula, and propose how to adapt those
ideas for the context of IS.

2.1 Relevant Approaches

Recently there has been an ongoing discussion about whether the traditional logic
syllabus for CS is relevant for practitioners. We start by briefly outlining some

in her class.
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relevant proposals (mostly in the context of CS), the ideas of which are close in
spirit to the vision we present below.

In [15, 16], J. Makowsky questions the suitability of the standard logic syllabus
to the needs of CS practitioners. He states: “The current syllabus is often justified
more by the traditional narrative than by the practitioner’s needs." He further notes
that most classical logic textbooks follow the narrative of the rise and fall of Hilbert’s
program, emphasizing the following ideas:

e Logic is needed to resolve the paradoxes of set theory;

e First-order logic (FOL) is the most important logic due to its completeness
theorem:;

e The main theorems of FOL are the completeness and compactness theorems;
e The tautologies of FOL are not recursive;
e One cannot prove consistency within rich enough systems.

This, according to Makowsky, is not what a CS practitioner needs: “The proof of
the Completeness Theorem is a waste of time at the expense of teaching more the
important skills of understanding the manipulation and meaning of formulas.” What
a practitioner needs is to:

e understand the meaning and implications of modeling the environment in
terms of precise mathematical objects and relations;

e understand and be able to distinguish the intended properties of this modeling
and its side-effects;

e be able to discern different level of abstraction, and
e understand what it means to prove properties of modeled objects.

In her papers [23, 22], J. Wing stresses the importance of integrating formal
methods into the existing CS curriculum by teaching their common conceptual el-
ements, including state machines, invariants, abstraction, composition, induction,
specification and verification. She gives discrete mathematics and mathematical
logic as crucial prerequisites.

The above proposals on what to teach are extremely relevant for IS practitioners.
On the question of how to teach, the paper “Integrating Formal Methods into Com-
puter Science Curricula at a University of Applied Science" ([20]) of Tavolato and
Vogt offers some useful insights. It discusses teaching formal methods at universities
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of applied sciences, where there are usually limiting factors which are relevant to
the IS context as well: (i) students have very limited theoretical background, and
(ii) they are strongly focused on the direct applicability of what they are taught. In
this context the authors stress the importance of making the practical applicability
of the theory understandable to students, and making use of real industry-inspired
examples.

In what follows, we extend and adapt the above proposals for the context of IS, and
provide our vision on aligning the teaching of logic to the needs of IS practitioners.

2.2 Making Logic Relevant for IS

2.2.1 The What

Logic is a prerequisite for understanding and successfully using formal methods,
which in their turn can significantly contribute to software quality control. We
agree with the view taken in [23] that the main basic formal conceptual elements
with which the students need familiarizing include state machines, abstraction, com-
position, induction, invariants, specification and verification. While the students
encounter the concepts of state machines, abstraction and composition in other IS
courses (such as modeling and design), aspects related to working with formal spec-
ifications are not covered elsewhere in the curriculum. However, an IS practitioner
needs to:

e read, write and understand formal specifications;
e formalize informal specifications;

e analyze specifications and detect sources of incompleteness, inconsistency and
complexity;

e reason about specifications, and
e check a system against a specification.

Thus, by adapting and extending the previous proposals of CS logic education
to the context of IS, we arrive at the following IS logic toolbox:

1. Basic principles for reasoning about sets;
2. Use of induction and invariants;
3. Propositional and first-order logic and their axiomatizations;

4. Formal specification and verification techniques and methodologies.
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2.2.2 The How

As to how to teach logic to IS students, i.e., designing concrete teaching methodolo-
gies, the following considerations need to be taken into account:

o (Creating links to software domain.

Although it has been believed for some time that studying logic improves
software development skills, this common belief has recently been empirically
validated by a study in [17]. As pointed out by [20], software related examples
are also useful for increasing the motivation of students, who can see the
applications of the studied material in the domain of their interest. In [27] a
particular example of establishing such software-related link is described, in
which teaching sequent calculi was supported via a hands-on assignment in
software testing.

o Integrating education methodologies and tools.

The integration of methodologies and tools from education could be beneficiary
in a number of aspects. First of all, empirical studies show that the use of
formal methods poses objective difficulties for practitioners ([4, 8]). They
are also hypothesized to be a major hindering factor for the acceptance of
formal methods in industry ([28]). The difficulties students experience when
studying logic and formal methods ([20]) could be addressed using studies of
cognition, which could provide insights into students’ mental processes when
studying formal concepts. For instance, several studies analyzed gaps between
students’ intuition and formal thinking in mathematics (see, e.g., [6]) and
students’ difficulties in handling abstraction ([9, 10]).

e Hiding some of the complexity. Exposing the students to the full intricate
complexities of mathematical logic (such as a full proof of the completeness
theorem, or dealing with variables not free for substitution) has the potential
to confuse novices struggling to understand new ideas. However, most IS
practitioners will not encounter these complexities in industry. This is in line
with the research agenda of indirect application of formal methods ([12]), which
calls for hiding intricate complexities behind automatic tools with intuitive user
interface. Similar benefits for programming are also mentioned in [17].

3 Teaching Logic for IS

In this section we demonstrate how the vision presented above has been implemented
in the design of our course “Logic and Formal Specification". The course has been

10
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taught at the IS department at the University of Haifa for several years by the
author3. The course is a mandatory course for graduate students, and its length is
one semester, 4 hours per week.

3.1 Course Description

Below we provide a short description of the course’s main topics, together with text-
books from which the material is adapted. The course is divided into two parts.
The first part covers the basics of formal logic, and includes the following topics:

Part I: Introduction to Logic

o Informal laws of mathematical reasoning

Ezxercise: Show that for all sets A, B,C: if AC B and B C C, then A C C.

Law 1 - universal statements: If you want to prove a statement about all things
of a certain kind, choose an arbitrary thing and show that the statement holds for it.

Let A, B, C' be arbitrary sets.

Law 2 - conditional statements:
If you want to prove a statement of the form “if x then y", assume x and use it to
prove y.

Suppose that A C B and B C C. We now prove A C C...

Figure 1: (Informal) Laws of Reasoning and a Demonstration of their Application

Our starting point is the place where the students left off in discrete mathe-
matics course: basic set-theoretical concepts. However, our primary focus is
not on understanding the concepts themselves, but on reasoning about them
by applying informal logical laws. Accordingly, the students are asked to pro-
vide proofs of basic claims, explaining which laws were used at each stage. A

3Perhaps it is important to mention here the author’s relevant background. She is an associate
professor at the Information Systems Department at the University of Haifa with active research
interests in applied logic and more than 10 years of experience in teaching logic and formal methods
to various student audiences.

11
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Ezxample question: n processes run a computer program which performs the operation
x T, where x is a variable shared by all processes. The ++ operation is mapped into
three sequential sub-operations:

1. load x to register
2. increment the value in the register
3. store the register value to x

The programmer intended to write a program, such that at the end of its execution
the value of x is n. What other scenarios are possible, given that the processes can
run in parallel?

Figure 2: An Example of Inductive Reasoning for Proving a Program Property

basic example is provided in Figure 1; the students are asked to justify every
step of their proof.

The presentation of the informal laws and other proof tips is adapted from
David Makinson’s textbook “Sets, Logic and Math for Computing" [14], which
is also one of the official textbooks of the course. The informal laws become
explicit at the object level when classical propositional and first-order logic
are introduced to the students (e.g., the law for proving general statements
can be captured by the rule inferring Va1 from ¢ (x), and the law for proving
conditional statements is captured by the deduction theorem.) At this stage
we revisit the proofs and pinpoint the application of these laws.

o Induction: mathematical, structural and computational induction.

Structural induction is at the heart of a number of formal concepts relevant for
verification and validation of software: fixed point constructions, model check-
ing, program analysis and many more. Therefore a special emphasis is put
on the topic throughout the course. Starting with a motivational example for
an inductive set (by presenting the MU puzzle by Douglas Hofstadter ([11])),
we provide formal definitions of induction and exemplify their use by proving
properties of programs. One example is provided in Figure 2: one can prove,
e.g., that if at the beginning of execution x = 0, then at the end of execution
x may assume at least one of the values 0,1, ...,n. Other examples presented
in class are adapted from Chapter 2 of Foundations of Computer Science of
Aho and Ullman ([2]).

e (lassical Propositional and First-Order Logic: syntax and semantics, satisfia-
bility and validity, Hilbert-style axiomatization, formalization of natural lan-

12
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guage sentences.

For this part of the course we mostly adapt parts of the standard presenta-
tion of most mathematical logic textbooks. We place a special emphasis on
the inductive definitions of the set of wifs of CPL and the set of theorems of
the Hilbert-style axiomatization, and show several examples of proofs using
induction (including the deduction theorem). This comes at the expense of
omitting the proofs of the completeness and compactness theorems (in line
with the recommendation of [15]).

o Survey of non-classical logics: temporal logic, modal logic, many-valued logic,
fuzzy logic, non-monotonic logic, paraconsistent logic.
This part of the course is implemented by requiring each of the students to
deliver a short presentation on a non-classical logic of his choice. While the
importance of temporal logic in this context is perhaps the most obvious one
due to its well-known applications in verification, other non-classical logics also
have IS-relevant applications (see, e.g., [7, 5, 29]). The goal is to increase the
awareness of the students to the immense variety of logics outside the realm
of classical logics.

Part II: Introduction to Formal Specification

This part of the course builds up on the knowledge obtained at the previous
part. The final aim is for the students to be able to understand and write formal
specifications using the Z notation. For this we have adapted the material from the
textbook [18], covering the basic aspects of Z: types, schemas and reasoning about
7 specifications.

4 Students Feedback Analysis

The course has only been taught in its current form for three years. While making
decisive conclusions about its effectiveness is perhaps premature, an important di-
mension in evaluating such effectiveness is the students’ acceptance and reaction to
it. To gain a better understanding of these factors, a preliminary qualitative study
was undertaken by administering a questionnaire, which was filled by twenty-three
students who took the course in the years 2013-2014.

Recall that the limiting factors typical of the target audience are in many respects
similar to those described in [20]. The first is lack of mathematical background:
the undergraduate IS study program at the University of Haifa does not include
a course in logic, and the majority of students have only a background in discrete
mathematics, where they are taught very basic concepts of set theory. The second

13
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limiting factor is their lack of motivation: the majority of the students return to
graduate school several years after receiving their B.A, while working full-time. They
typically expect the topics to be directly relevant to their IS practice, and usually
exhibit difficulty in coping with the dense and abstract material taught in the course.
In light of these factors, we were expecting some of the students to claim, basically,
that the course was too hard without being helpful for their future as IS practitioners.
However, only one student out of 23 felt the course was not useful for his practice.

In what follows we describe the results of an exploratory study exploring per-
ceptions of twenty three students over the years 2013-2014. This sample included
8 female and 15 male students; 12 students out of 22 had no prior experience in
industry. The questionnaire included the following open-ended questions.

Q1 Is it important for practitioners whose work is related to software development
to study logic and formal methods? Why?

Q2 In what way (if at all) is the course’s content useful for information systems
practitioners?

Q3 What (if at all) were the course’s contributions for you personally?

Q4 How relevant was the background from your Discrete Mathematics course? In
what way (if at all) was it helpful?

Q5 In what ways would you recommend that we improve the course?

In what follows we focus mainly on the answers received to questions Q2 and
Q3. Only three students responded that logic and formal methods are not useful

(Q2):

1. | worked at two different places in industry, and never have | seen the courses’
content put to any use...

2. It is not necessary for software development.

3. It depends on the work environment. | think it's not useful.
Two of them also thought the course was not useful for them personally (Q3).

Out of those who responded positively to both questions, one of the most strik-
ing observations was the extensive use of formulations related to mental processes,
such as “thinking', in particular “analytical/logical thinking" in answers to both
questions.

E.g., answers to question Q2 included:
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. It improves thinking about problem modeling.

. | think that it opens directions for thinking about how things really work under
the surface.

. The world of software is based on understanding the needs and modeling them in
precise terms. Many such models require logical thinking.

. The course's contents develop and deepen ways of thinking.
. The course helps shaping thinking that can help in programming.
. The course improves analytical thinking.

The course is very helpful in improving thinking that is not necessarily
algorithmic. A different one, out of the box.

. Of course! Correct and systematic thinking of IS practitioners helps in
requirements specification.

Notably, no participants provided concrete examples of direct use of the courses’
content in answering Q2. Yet several of them took a confident stand when speaking
of their own personal experience in QQ3:

1

2

3

4

. | have already applied the new skills at work, using truth tables and proofs.
. It improved my modeling skills. I'm certain!
. I am now using the tools when reading scientific papers.

. | was surprised to see how helpful the tools we studied are in practice.

Moreover, when answering question Q3, several participants referred again (im-
plicitly or explicitly) to an improvement in their mental processes:

1.

The course introduced order into complex topics. It gave me tools to simplify
complex problems and find easy and efficient solutions.

. It made me think in a modular way, providing me with the ability to grasp more
complex models.

. It improved my ability to refer to problems schematically.

It provided me with an abstract view on the problems of software design.

15
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Q2 (general IS practitioner) | Q3 (personal experience)
thinking 8 8
understanding 7 8
formulation ) 3
modelling 1 0
research 0 3
general knowledge 0 )

Table 1: Categories emerging from answers to Q2 and Q3 and number of students
using each category

5. It made me realize there are systematic solutions to problems that seem unsolvable
at first.

6. | learned to reduce complex problems to simpler ones.

Table 1 summarizes the main skill categories that emerged during text analysis
of questions Q2 and Q3, providing the number of students that used formulations
related to these categories. We intend to use these categories as a basis for further,
deeper quantitative investigation that will hopefully provide evidence for the benefits
of teaching logic courses to IS future practitioners.

5 Summary and Future Research

While there recently has been quite a lot of discourse on the poor alignment of logic
courses to the practical needs of computing practitioners, practical “field" advice on
how the situation can be improved is still very scarce. The current paper makes a
contribution in this direction in the context of the target population of IS students,
for whom the lack of direct relevance of the traditional logic courses seems to have
led to their (unfortunate) exclusion from the undergraduate curriculum. And yet
logic remains central to IS objectives, as it is the key to applying formal methods in
specification, verification and validation of information systems. Therefore, further
empirical evidence in the spirit of the Beseme project ([1]) is needed to convince
decision makers that such courses are useful for IS practitioners. To be successful this
will involve taking more student-centric approaches, which involve understanding the
impact of teaching logic on students’ achievements, as well as their perceptions and
attitudes. Moreover, overcoming the objective difficulties of students with logic and
formal methods could be made easier by integrating new technologies for enhancing
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education. One step in this direction was taken in [26], where the potential of using
online social networks such as Facebook for teaching logic is explored.

Based on our experience teaching the Logic and Formal Specification course
to graduate IS students, we feel that using software-related and comprehensible
examples, and simplifying logical intricacies contributes to achieving the courses’
objectives. In addition, student feedback showed positive perceptions of the benefits
of taking the course, which are mainly related to general cognitive processes (as
opposed to specific skills and/or tools). Categories which have emerged from a
qualitative analysis of this feedback can be adapted for new and more detailed
survey instruments which we hope will provide decision makers with (much needed)
evidence for the benefits of the inclusion of logic in the IS undergraduate curriculum.

Another planned future research project is an empirical investigation of how to
make formal specification more understandable for students. This question is par-
ticularly interesting due to its direct relation to the more general topic of compre-
hensibility of specifications. In this context we plan to develop a tool for automatic
analysis of Z specifications, which will then be used for empirical evaluations.

We hope that this paper will start a wider discussion on what logical background
is needed for IS practitioners and how it should be taught. We further hope that
this will lead to a logic textbook with an IS-orientation, which would be a welcome
addition to the large existing variety of CS-oriented books.
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GILLES DOWEK
Inria and ENS Cachan
61, avenue du Président Wilson 94235 Cachan Cedex, France.
gilles.dowek@ens-cachan.fr

When teaching an elementary logic course to students, who have a general scien-
tific background, but have never been exposed to logic, we have to face the problem
that the notions of deduction rule and of derivation are completely new to them,
and are related to nothing they already know, unlike, for instance, the notion of
model, that can be seen as a generalization of the notion of algebraic structure, or
the notion of computable function, that is a particular case of the notion of function.

We present, in this paper, a strategy to introduce these notions: start with the
notion of inductive definition [1], then, the notion of derivation comes naturally. We
also show, with three examples: computability theory, automata theory, and proof
theory, that derivations are pervasive in logic—we could have given more examples
in formal grammars, rewriting, etc. Thus, defining precisely this notion at an early
stage is a good investment to later define other notions. Finally, we show that we
need to distinguish two notions of derivation: that of derivation labeled with elements
and that of derivation labeled with rule names.

In this paper, no proofs are given, and not even precise definitions. These can
be found, for instance, in [2].

1 From inductive definitions to derivations

1.1 A method to define sets: inductive definitions

Inductive definitions are a way to define subsets of a set A. The inductive definition
of a subset P is formed with a family of functions fi, from A™ to A, fs, from A™2
to A, etc. These functions are called rules. For example, the function f; = () — 0,
from N° to N, and fo = (z) — = + 2, from N! to N are rules.

Instead of writing these rules fi = () — 0 and fa = (x) — = + 2, we often write
them

5 h
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T
T+ 2

f2

But despite this new notation, rules are things the students already know: functions.
These rules define a function F from P(A) to P(A)

FLK%:LHﬁQhVMam)|ahm¢mi€X}

For example, the two rules above define the function
FX)={0}u{z+2|ze X}

and, for instance, F'({4,5,6}) = {0,6,7,8}, F(@) = {0}, F({0}) = {0, 2}, etc.
The function F' is monotonic and continuous. Thus, it has a smallest fixed point
P, which is the inductively defined subset of A. This smallest fixed point can be

defined in two ways '
P= (N X=|F\(o)
F(X)CX i

The first definition characterizes the set P as the smallest set closed by fi1, fo,
etc. the second as the set containing all the elements that can be built with these
functions in a finite number of steps.

The notion of monotonicity and continuity of a function from P(A) to P(A) can
then be introduced and the two fixed point theorems can be proved with mathemat-
ically oriented students. They can be admitted otherwise.

Continuing with our example, the set P of even numbers can be characterized as
the smallest set containing 0 and closed by the function z — x + 2, or as the union
of the sets @, F(@) = {0}, F?(2) = {0,2}, F3(2) = {0,2,4}, etc.

1.2 Derivations

A derivation is a tree whose nodes are labeled with elements of A and such that if
a node is labeled with b and its children with aq, ..., a,, then there exists a rule
f such that b = f(aq,...,a,). A derivation of an element a is a derivation whose
root is labeled with a. We can then prove, by induction on 7, that all the elements
of () have a derivation. The property is trivial for i = 0. If it holds for i and
b € F'*1(2), then by definition b = f(ay, ..., ay) for some rule f and a; € F{(2), ...,
a, € F'(2), thus, by induction hypothesis, a1, ..., a, have derivations. Hence, so
does b.

Thus, from the second property P = U; F(@), we get that all elements of P have
derivations. Conversely, all elements that have a derivation are elements of P.
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Continuing with our example the number 4 has the derivation

NN R e)

1.3 Rule names

There are several alternative definitions of the notion of derivation. For instance,
when b = f(ay,...,ay), instead of labelling the node just with b, we can label it with
the ordered pair formed with the element b and the name of the rule f. For instance,
the derivation of 4 above would then be the tree

more often written

Such a derivation is easier to check, as checking the node
2
4
requires to find the rule f such that f(2) = 4, while checking the node
2
1h

just requires to apply the rule fs to 2 and check that the result is 4.

But these rules names are redundant, as soon as the relation U; f; is decidable.
So, in general, they can be omitted.
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1.4 Derivations labeled with rule names

Instead of omitting the rule names, it is possible to omit the elements of A. The
derivation of 4 is then the tree

N

I3

f2

that can also be written

—h
= fo
= fo

We introduce this way a second kind of derivations labeled with rules names. In
contrast, the previous derivations can be called labeled with objects.

Although it is not explicit in the derivation, the element 4 can be inferred from
this derivation with a top-down conclusion inference algorithm, because the rules f;
are functions. The conclusion of the rule f; can only be fi({)) = 0, that of the first
rule fy can only be f2((0)) = 2, and that of the second can only be f>((2)) = 4.

More generally, for each derivation labeled with rule names D, there is at most
one a such that D is a derivation of a, the existence of such an a can be decided
and, when it exists, this a can be computed from D. As a consequence, the set of
ordered pairs D : a such that D is a derivation of a is decidable.

1.5 Proof-terms and type systems

Derivations labeled with rules names are often written as a term, that is in a linear
form. For instance the derivation

—h
= f
= f

is often written fo(f2(f1)). Such a term is called a proof-term.
The decidable set of ordered pairs 7 : a such that 7 is a proof-term of a can itself
be defined by an inference system obtained from the original one by replacing each

rule
aj ... n

b R
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with the rule
T Qa1 ... Ty @ Ap

R(my,...,my) 1 b R
In our example, we get the rules
foh
T a
fo(m):a+2 f2

and the ordered pair fo(f2(f1)) : 4 has the derivation

f1:0

fa(f1) 2 2
f2(fa(f1)) - 4

This second inference system is called a type system. It defines a decidable set—it
is even an automaton in the sense of [4].

Moreover the conclusion inference algorithm transforms into a type inference
algorithm. For each proof-term 7, there is at most one a such that 7 : a is derivable,
the existence of such an a can be decided and, when it exists, this a can be computed
from 7.

1.6 Making the rules functional

Natural deduction proofs [6, 5], for instance, are often labeled both with sequents
and rule names, for instance

axiom =5~ axiom

P.Q,RF P P.QRFQ "™
P.Q.RFPAQ ~Hro

but they can be labeled with sequents only

PQ.RFP PQ.RFQ
P.Q.RFPAQ

and proof-checking is still decidable. They can also be labeled with rule names only,
but we have to make sure that all the deduction rules are functional, which is often
not the case in the usual presentations of Natural deduction. The rule

'rA T'HB

TEAAB A-Intro
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is functional: there is only one possible conclusion for each sequence of premises,
but the axiom rule

T, AT 4 o
is not. To make it functional, we must introduce a different rule axiomr 4, for each

ordered pair (I', A). Thus, the proof above must be written

axiom<{Q7R},p> axiom<{p7R}7Q>

P,Q,R-P P,Q,RI—Q/\,t
PQ,RFPAQ THITo
And from the derivation labeled with rule names
_ aXiOH1<{Q7R}’p> _ axiom<{pyR}7Q>

— A-intro

the conclusion P,Q, R F P A @ can be inferred.
In a linear form, this derivation is /\-intro(axiom({Q’RLp), axiom<{p7R}7Q>) and its
type, P,Q,RF P A Q, can be inferred.

2 Derivations in elementary computability theory

2.1 A pedagogical problem

The set of computable functions is often defined inductively, as the smallest set
containing the projections, the null functions, and the successor function, and closed
by composition, definition by induction, and minimization.

But to study the computability of properties of computable functions, we need
a secondary notion of program, that is we need a way to express each computable
function with a expression of a finite language, to which a Go6del number can be
assigned. A usual solution is to introduce Turing machines, A-calculus, or any other
language at this point.

This solution however is not pedagogically satisfying as, while the students are
still struggling to understand the inductive definition of the set of computable func-
tions, we introduce another, that is often based on completely different ideas, letting
them think that logic made of odds and ends. Moreover, the equivalence of the two
definitions requires a tedious proof.

Such a second definition is in fact not needed as the inductive definition itself
already gives a notion of program, through the notion of derivation.
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2.2 Programs already exist

The function z — x + 2 is computable because it is the composition of the successor
function with itself. But the derivation labeled with objects

r—x+1 r—x+1
T+ 2

cannot be used as a program, because to label its nodes, we would need a language
to express all the functions, and there is, of course, no such language.
But if we use a derivation labeled with rule names instead

— Suce — Suce

-1
o1

and write the derivations in a linear form: o}(Succ, Succ), we obtain a simple
variable-free functional programming language, to express the programs. We can
introduce this way a symbol 7} for the n-ary i-th projection, op(f, g1,...gp) for the
composition of the n-ary functions g1, ..., g, with the p-ary function f, and p"(f)
for the minimization of the n 4 l-ary function f over its last argument, etc.

For instance, introducing a G6del numbering ™. for these programs, and assum-
ing there is an always defined function h such that

e hip,q)=1if p="f"and f defined at ¢
e and h(p,q) = 0 otherwise,
we get a contradiction: the function
k = oi(u'(ni), o3(h, my, 1))

is defined at "k if and only if it is not.
We get this way a proof of the undecidability of the halting problem that requires
nothing else than the inductive definition of the set of computable functions.

3 Derivations in elementary automata theory

When introducing the notion of finite automaton, we often introduce new notions,
such as those of transition rules and recognizability. Having introduced the notion
of derivation from the very beginning of the course permits to avoid introducing
these as new notions.
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Consider for instance the finite state automaton
odd -5 even even - odd

where the state even is final. In this automaton, the word aaa is recognized in odd.
Indeed
odd -+ even —%= odd —*~ even

If, instead of introducing a new notion of transition rule, we just define transition
rules as deduction rules

even odd
—=—a — a €
odd even even

then, the element odd has a derivation

€
even
odd
a
even

odd *

If we label this derivation with rule names we obtain

—€
—a
—a
—a

which can be written in linear form a(a(a(e))), or aaa. Thus, a word w is recognized
in a state s if and only if it is a derivation, labeled with rule names, of s.
Transforming this inference system into a type system, like in Section 1.5, we

get
w: even w : odd c
aw : odd aw : even € : even

And a word w is recognized in a state s if and only w : s is derivable.
This example introduces a point that needs to be discussed: the rules

even odd
odd even

are labeled with the same name. If the automaton is deterministic, we can replace
these two rules with one: a function such that a(even) = odd and a(odd) = even.
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But for non deterministic automata, we either need to extend the notion of rule
name, allowing different rules to have the same name, or to consider two rule names

even odd
—5 a1 a 15
odd even even

and map the derivation aq(az(ay(g))) to the word a(a(a(e))) with the function |[.|
defined by: |e] = &, |a1(1)] = a([t]), and |as(2)| = a(Jt]).

4 Introducing the Brouwer-Heyting-Kolmogorov corre-
spondence

4.1 A radical change in viewpoint?

The Brouwer-Heyting-Kolmogorov interpretation, and its counterpart, the Curry-de
Buijn-Howard correspondence, are often presented as a radical change in viewpoint:
proofs are not seen as trees anymore, but as algorithms.

But, of course, these algorithms must be expressed in some language, often
the lambda-calculus. Thus, proofs are not really algorithms, but terms expressing
algorithms, and such terms are nothing else than trees. So, it is fairer to say that,
in the Brouwer-Heyting-Kolmogorov interpretation, proofs are not derivation trees,
but trees of a different kind. For instance, the tree

PAQFPAQ PAQFPAQ
PAQFQ PAQFP
PAQFQAP
F(PAQ)= (QAP)

is replaced by the tree

z
snd fst
(;)
e PAQ

often written in linear form: Az : P A Q (snd(x), fst(x)).

4.2 Derivation trees labeled with rule names

Instead of using this idea of expressing proofs as algorithms, let us just try to label
the derivation above with rule names. Five rules are used in this proof. Three of
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them are functional

'-rA I'HB
I'-AAB

'HAAB
r-A

'-AAB
I'tB

A-intro
A-elim1

A-elim?2

Let us just give them shorter names: (,), fst, and snd. The rule

LAFB ..
TFA=p ™o

is functional, as soon as we know which proposition A in the left-hand side of the
antecedent is used. So, we need to supply this proposition A in the rule name, let
us call this rule AA. Finally, the rule

L,AF A42%om
is functional, as soon as we know I' and A. We could supply I" and A in the rule
name. However, we shall just supply the proposition A and infer the context I'. Let
us call this rule [A]. So, the proof above can be written

rrgrrig M9 Prgrrig ¢
PrOFQ S PAQFP<f
PAOF QAP )

—PAQ) > QAP PN

and if we keep rule names only
—[PAQ] —[PArQ]
— snd — fst

: =)

ZAPAQ

which, in linear form is the proof-term AP A Q (snd([P A Q)), fst([P A Q])).
Transforming this inference system into a type system, like in Section 1.5, we
get
'nm:A TkF7':B
Lk (ma'): ANB

A-intro
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I'Fn:AANB
'k fst(m): A

I'Fn:AANB
I'F snd(m) : B
I'N'A+7n:B
I'Mr7:A= B

A-elim1

A-elim?2

=-intro

T,AF [A]: A 2¥iom

in which the ordered pair AP A Q (snd([P AQ)), fst([PAQ])): (PANQ)= (QAP)
is derivable. This is the scheme representation [3] of this proof.

Let us show that the conclusion can be inferred, although we have not supplied
the context I' in the axiom rule. The conclusion inference goes in two steps. First
we infer the context bottom-up, using the fact that the conclusion has an empty
context, and that all rules preserve the context, except AA that extends it with the
proposition A

o= ENC] [ o)
: <>
P/\l_Ql—.)\P/\Q

Then, the right-hand part of the sequent can be inferred with a usual conclusion
top-down inference algorithm, using the fact that the rules are functional

prorpag LMY P/\QI—P/\Q[Pt/\Q]
“PrQrq ™ PAQrP
PAOFQAP )
T PA ) = QAP TN

4.3 Brouwer-Heyting-Kolmogorov interpretation

In the rule
I''AFB

Tr A= p o ntro

instead of supplying just the proposition A, we can supply the proposition A and a
name x for it. Then, in the axiom rule

axiom

T,AF A
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instead of supplying the proposition A, we can just supply the name that has been
introduced lower in the tree for it. We obtain this way the tree

— =z —x
— snd — fst
' ~(,)

A PAQ

in linear form Az : PAQ (snd(x), fst(x)), which is exactly the representation of the
proof according to the Brouwer-Heyting-Kolmogorov interpretation.

So, the Brouwer-Heyting-Kolmogorov interpretation boils down to use of deriva-

tions labeled with rule names plus two minor modifications: context inference and
the use of variables. These two modifications can be explained by the fact that
Natural deduction does not really deal with sequents and contexts: rather with
propositions, but, following an idea initiated in [7], some rules such as the introduc-
tion rule of the implication dynamically add new rules, named with variables.
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AN OLD DISCIPLINE WITH A NEW TWIST:
THE COURSE “LoOGIC IN ACTION”

JOHAN VAN BENTHEM
University of Amsterdam, Stanford University and Tsinghua University

Abstract

What are the basic logical notions and skills that all beginning students
should learn, and that might stay with them as a useful cultural travel kit for
their lives, even when an overwhelming majority will not become professional
logicians? The course “Logic in Action” http://www.logicinaction.org/ tries to
convey the idea that logic is about reasoning but also much more: including
information and action, both by individuals and in multi-agent settings, studied
by semantic and syntactic tools, and still confirming to the standards of preci-
sion of an exact and mathematized discipline. Viewed in this way, modern logic
sits at a crossroads of academic disciplines where interesting new developments
occur every day. In this light introduction, I explain the main ideas behind the
design of the course, which combines predicate logic with various modal log-
ics, and I lightly discuss its current manifestations and dialects in Amsterdam,
Beijing and the Bay Area, as well as its future as an EdX pilot course.

1 History of the course

There is a thriving international market of new on-line logic courses today, witness
the many projects presented at the successive TTL conferences ! and the links there
to earlier conferences in this series. Roughly speaking these endeavors fall into
two kinds. Sometimes the new technology is used to create high-tech versions of
largely standard fare in the traditional curriculum with, say, sophisticated graphics
interfaces for classical natural deduction proof systems, like a Latin Mass with rock

I thank the organizers of the Conference on Tools for Teaching Logic, Rennes 2015, for giving me an
opportunity and a forum for reflecting on the course “Logic in Action”. I also thank the members
of the core LiA development team for the course as well as the users that we know of, and finally,
I am grateful to the two referees for this paper for providing very useful critical comments.

'See the website http://tt12015.irisa.fr of these conferences.
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guitars.? But sometimes also, there is ideological fervor behind the effort: the course
designers have a special research agenda with their own view of logic, modifying or
changing existing curricula, and they want to export their revolution by by-passing
the academic colleagues and instead of that, influencing the youth.?

The course Logic in Action falls in the second activist category, and we will put
our cards on the table in a moment. The course arose in the education group of the
Spinoza Award project “Logic in Action” (1997-2002; http://www.illc.uva.nl/lia/)
of the Dutch Science Organization, and it received a crucial further push by a grant
from the Dutch Ministry of Economic Affairs in its program Creative Technologies
meant to improve the national information infrastructure.

2 The general idea: a broader scope for logic

Traditional logic courses emphasize the study of correct inference patterns as the
core business of logic, with propositional and predicate logic as paradigms of the
methodology for doing so. Students are trained in basic skills which typically include
translating natural language sentences into formulas, performing validity tests such
as truth tables and tableaux, and often also, calculi for formal deduction.

Some problems with traditional courses In our view, this traditional agenda
is not neutral: it instills a large number of attitudes, often as hidden presuppositions.
Let us identify a few of its subliminal messages.

First, inference is made the central concern of logic — but this move seems quite
debatable. Inference or proof is just one topic in logic, and just as important are
two other main themes: definability and computation, a point made already in the
seminal Beth 1963 reflecting on the history of logic as well as its modern branches
of proof theory, model theory and recursion theory.

Next, there is little reflection on what intellectual assets are actually activated
by training in formula translation or formal proof. It is unclear whether there is any
transfer to broader reasoning skills, and it may be significant that research logicians
themselves never seem to use them in their meta-theory. Criticisms of this didactic
kind have in fact occurred throughout the last century: a modern study of transfer

2This is how I would view, e.g., the popular and very well-designed course “Logic & Proofs” at
Carnegie Mellon University, http://oli.cmu.edu/courses/free-open/logic-proofs-course-details/ .

3This activist stance is what I see in the Stanford course “Language, Proof and Logic”
(http://online.stanford.edu/course/language-proof-and-logic) inspired by situation theory, and in
the more logic-programming and resolution-based open-domain CS course “Introduction to Logic”
(https://www.coursera.org/learn/logic-introduction). But their designers may feel very differently!
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of skills also involving experimental cognitive studies is Haskell 2000.4

Next, the usual emphasis on formal proof somehow suggests that mathematical
activities are the highest point of logical intellectual skills, a claim as debatable as
thinking that the best test of someone’s moral fiber is her behavior in church. Rea-
soning in down-to-earth practice, with its open universes of relevant considerations,
tells us much more about what logical rationality a person can bring to bear.

Finally, the standard emphasis on teaching complete logical systems as the locus
of logic is a very peculiar methodology, different even from the problem solving skills
taught in mathematics and science courses. One comes for a logical formula or two
in the store (just as we learn a few crucial and generally helpful algebraic equations),
hoping that it will help us through some crucial steps in a problem-solving argument.
But instead, one finds that one has to buy a system, a huge infinite supply of valid
patterns, and worry about their staying fresh for years.

Broadening the scope Raising the preceding concerns does not mean that there
is something inherently wrong with the traditional curriculum in logic, as far as it
goes — only that the discipline of logic has much wider scope than what this standard
agenda of topics might suggest. The major aim of the course ‘Logic in Action’ is
conveying this broader picture from the start as being much more true to what logic
is today and what its range is across the university and elsewhere. If we do not get
this across at base level, students will either not see what logic is really good for,
or, they will develop a narrow conception of the field which then keeps them locked
afterwards into biased philosophical or mathematical conceptions.

Logic as information handling One way of achieving this mind-opening is by
shifting the emphasis from inference alone to the study of a much broader range of
informational activities as the subject of logic. Besides inference, such logical activ-
ities also include making observations and doing experiments, asking questions and
processing answers to them, and engaging in communication generally. Therefore,
the course ‘Logic in Action’ treats two realms on a par, purely deductive inference,
and intelligent conversation, as highlighted to our students in the following picture
of Euclid’s “Elements” versus Rubens’ painting ‘The Philosophers’:

4An emphasis on isolated formal activities need not be harmless, it may even make enemies.
I have often observed this in interdisciplinary circles where colleagues from other fields who went
through a logic course became firmly convinced of the Scholasticism and irrelevance of our discipline.
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Logic: Proof and Conversation

Euclid’ s Elements Plato’ s Dialogues

Interestingly, our themes are already present in ancient Chinese logic, witness
a key dictum in the Moist School (500-300 BC; cf. Graham 2003) that knowledge

comes from three sources: hearing from others, demonstration, and experience.

Chinese Logic: Three Sources

Zhi: Wen, Shuo, Qin A | W OE

Knowledge: hearing from others, proof, experience

Logic and agency, includes social dimension.

Issue: how much of such ‘culture” in a course?

Histories As it happens, while not neglecting the essential Greek origins, this
quotation is highlighted in our course with a side purpose: also make it clear to
students that by learning logic, they become part of a worldwide cultural stream,
not just ancestor worship of Greek Antiquity. The course has many such historical
sidebars, all aiming at installing some more general erudition.

But we also emphasize that inference and observation are information sources on
a par in modern science, where we need the two in tandem to understand our world.
And in more playful mode, to the classical lonely thinker with eyes closed and ears
shut, we juxtapose the detective Sherlock Holmes whose success shows that, far from
the usual view of logic as organized pedantry, logical skills are not just duties that
we perform, but also talents that we appreciate and that even give us pleasure.
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Two strands: structure of the world, structure of human activity FEven so,
the course presents no criticism of other views. One general way of thinking about
what is said here goes back to a pervasive feature of logic throughout its history, and
something that even surfaces in many hardcore textbooks. One can think of logic as
describing the most general structure of reality and its inventory of atomic, negative,
or disjunctive facts, individual and general facts. In that metaphysical sense, logic
would be there even if there were no human beings at all, as on the cold and lonely
planets we see in astronomical documentaries. One can soften this perspective a bit
in terms of objective information available about and in the world (another view of
logic that can be found in prominent textbooks, cf. Devlin 1991), but again this
information would be there even if there were no human agents picking it up.

But there is also another stream, right from the ancient Greek origins of the
discipline with Aristotle and Plato (but also prominent in the Chinese tradition), of
logic as manifesting itself in activities of conversation, dialogue and debate, whether
cooperative or competitive. On this agency view, logical laws are about moves and
strategies that agents have toward winning in dialogue games, and the very logical
constants now correspond with structured actions in argumentation or conversation.
On this second view, then, communication and strategic interaction are crucial to
logic, and the patterns described by logical systems may just as well be forms of
rational behavior as forms of language as patterns forming the grooves of our world.
‘Logic in Action’ emphasizes the second view as much as the first. °

An interdisciplinary cross-roads This view comes with a broad canvas of disci-
plines that modern logic interacts with. While students in many disciplinary courses
taught today, be they mathematicians, philosophers, or linguists, may be told that
logic is typically ‘theirs’ (with only rumors of lapses into other fields), the reality of
the field today is that it interacts with, feeds into, and is inspired by contacts with
the old interfaces of philosophy and mathematics, but just as much with computer
science, linguistics, and in recent years also some cognitive science. Probably most
logic research today takes place in computer science, including some of the most in-
novative frontiers. Thus, in this course, computation in a broad sense is highlighted
as a core concern of logic, and a running theme next to proof or definability.

50f course, the two views are not in conflict. In the end, structured activity that does not fit
the structure of the world may not have much of a chance from an evolutionary perspective.
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Logic and Informatics

PHILOSOPHY
INFORMATION

This is the intellectual environment that we convey to students in this course.
Logic is one’s ticket to broadmindedness, not to one particular disciplinary lifestyle.

3 And so: teaching a broader range of logical skills

In terms of paradigmatic logical acts, then, the basic repertoire to be taught gets
extended. Say, a question is as basic a logical act as an inference. And likewise, an
interactive strategy is as important as a proof, say, as a way of guiding communica-
tion or argumentation. But how do we make all this concrete to students?%

New standard example: Three Cards An appealing aspect of this multi-agent
interactive view is that set pieces of logical reasoning to be taught now become
much more interesting and appealing to students (and adults) than the usual simple
syllogisms about Socrates’ mortality or Boolean inferences about which box the keys
are in. Here is a typical challenge, somewhat of a classic by now. Much of our basic
reasoning in daily life is not just about the facts, but it also crucially involves what
we know about what others do or do not know. Here is a scenario that was once
played out with real children in the Amsterdam science museum “NEMO”.

Three Card Game
John, Mary, Paul get one card each:

John Red Mary White Paul Blue
Mary asks John: Do you have the blue card?
Who knows what now?

John answers: No.
Who knows what now?

“The Cards” Three cards ‘red’, ‘white’, ‘blue’ are given to three children:
1, 2, 3, one to each. This fact is common knowledge in the whole group.

6 A stream of research on ‘dynamic-epistemic logic’ forms the backdrop to this line in the course:
cf. van Ditmarsch, van der Hoek & Kooi 2007, van Benthem 2011, and van Benthem 2014.
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The children see their own cards, not those of the others. The actual
distribution over 1, 2, 3 is ‘red, white, blue’ (written rwb. Now a conver-
sation takes place. Child 2 asks 1: “Do you have the blue card?” Then
1 answers truthfully: “No”. Who knows what during this conversation?

This scenario always generates classroom interaction, including mistaken claims.
Here is the logical answer. Assuming that questions and answers are sincere (not
unrealistic with children), 2 indicates that she does not know the answer, and so she
cannot have the blue card. This tells 1 at once what the deal was. But 3 did not
learn, since he already knew that 2 does not have blue. When 1 says she does not
have blue, this now tells 2 the deal. 3 still does not know the deal; but since he can
perform the reasoning just given, he knows that the others know it.

Humans often go through this sort of reasoning, with different knowledge for
different agents acting as the driving force for communication. Indeed, puzzles like
this pose challenges that people worldwide find interesting, witness the discussion of
the solution of the ‘Cheryl Birthday Puzzle’,” a knowledge problem that went viral
in the spring of 2015 after having appeared on a talk-show in Singapore.

G Rliv]el+ Ko

Cheryl's birthday is one of 10 possible dates.
May15 May 16 May19
June17 June18
July14 July16
Augusti4  August1i5 August17

themonth to Albertand the day toBerna

When Is Cheryl’s Birthday?
Answer To Viral Math Puzzle

A new feature: modeling skills This is logic in action at a challenging level,
including inferences, questions and answers. And it involves a further important skill
not usually taught in introductions to logic, namely, the ability to model a given
scenario in a concrete semantic manner. Indeed, it is not hard to make students see
that we can model the initial situation for the Three Cards as a set of six alternatives
(the possible deals of the cards), related by easily drawable labeled uncertainty lines
for players, as in the leftmost diagram of the following sequence:

"See https://en.wikipedia.org/wiki/Cheryl27s_ Birthday for details.
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Information Change and Updates

e

brw 2 wrb brw 2 wrb wrb

John and Mary know the cards, Paul does not.
But Paul knows that they know, and in fact,

this is common knowledge in the group.

With this direct visual structure, child 2 cannot tell rwb and bwr apart if she
finds herself in either of these deals, but when in those same situations, child 1 and 3
can. The information flow in the preceding example can then be made very concrete
in terms of updates, leading to the next two diagrams in the picture:

2’s question removes rbw, wbr, reducing the range to four options.
Then 1’s answer removes bwr, brw, and we are left with a final diagram
rwb, wrb, in which it is directly visible that 1 and 2 know the cards,
3 does not, though 3 does know that the others know. The last fact is

non-trivial information in itself, of a more social interactive nature.®

Extended desiderata What skills and insights do we expect students to learn in
the wider world of this course? Certainly, we do not want to give up on classical
topics, since propositional and predicate logic with their standard agenda are still
at the core of the field. Also, there is of course nothing wrong with the traditional
virtues of logic education that come with this, such as increasing precision, appre-
ciating the architecture of logical systems, and acquiring a sense of the beauty of
abstract mathematical formulations. Indeed, such learning experiences also have to
be, and can be, supplied for the further tasks mentioned here. This includes an
understanding of the systematic theory behind the examples we have given.

But in addition, we want new topics that reflect the wider world of informational
activities that we sketched, dealing with the logic of information, update, and inter-
action. And didactically, this set of topics requires modeling skills beyond the usual
core. For instance, we do not want routine ‘translation’ of the natural language text
of the Three Cards scenario into formulas, the way we drill students in a standard
course to become little text processors. Such translations mix details of syntax with
essentials for the task at hand — and true logical ability consists, more creatively, in

8Teaching unusual material like this challenges students in new ways. Recently, one observed
that Child 1 does not even need to answer the question, but only has to say that he now knows the
cards, and then Child 2 will know the cards as well. This then raised interesting general discussion
in class about how epistemic information can replace factual information in communication.
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picking out the important features only. In brief, we want a paraphrase into essential
formulas, the way we also use just a handful of mathematical equations to model
physics problems. And preferably, we want a semantic model or diagram for the
setting, and based on that, an understanding of the relevant information flow.

And finally, in an information society like ours, the world of human reasoning
is entangled ever more with computing technology, whose origins go back to logic
in other historical channels. Accordingly, in terms of preparing them for life, we
want the students to understand some basics of the computational structure and
complexity of the informational processes that form the topic of this course.

Next, we say a bit more about the course resulting from all these desiderata.

4 Contents and chapter structure

How can we teach the above enlarged set of themes and skills? Perhaps the most
obvious approach is to merely extend today’s standard curriculum. In a way, our
course has that feature. ‘Logic in Action’ has the following two main parts, with a
third as a supplement for a more ambitious version.

II

+Logic of Knowledge
+Logic of Action (dy

nd Gas

Part I The first part of the course contains the basics of propositional logic, then
the syllogistic as a first, historically but also systematically important, extension
toward reasoning about objects and predicates, and finally, full first-order logic with
quantifiers. These systems are presented as progressively richer ways of describing
the world, be it physical space or conceptual space. The way we do this has a few new
twists (see the description of our recurrent chapter structure given below), but we
largely follow the standard agenda of basic topics. This part covers the descriptive
dimension of logic that we mentioned in Section 2. Next, we turn to the activity
dimension that we saw as a complementary view of what logic is about.

Part II The second part of the course is then devoted to the main ingredients of
information-driven agency. A first chapter on epistemic logic focuses on semantic
modeling of information, including knowledge that agents have about facts and about
knowledge of other agents. Next to get at the dynamics of the actions involved in
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communication, and agency in general, a chapter on dynamic logic of programs, and
structured action generally, gives a standard base logic of structured computation.
Finally, the two strands of information and action are brought together in a chapter
on logic and games, as a grand finale where preferences come into the picture, as
well as the fundamental notions of strategy and equilibrium.

Available materials This brief survey article is not the place to give precise de-
tails of these six chapters, for which we refer the reader to the public-domain website

http://www.logicinaction.org/
and the free textbook “Logic in Action” and further download materials there:
http://www.logicinaction.org/docs/lia.pdf.

Part III There is also a third optional part in the course, with technical material
on major methods for proof and computation: semantic tableaux, natural deduction,
and resolution. This is meant for students or teachers who have time to spare, or
who just cannot let go of traditional themes. We also envisage adding a chapter on
basic meta-theory offering acquaintance with proving important facts about logical
systems, both classical and epistemic-dynamic. This material is more traditional
again, emphasizing once more that we have no quarrel with standard curricula, and
that the new systems in Part II still fall under a standard methodology.

Extension implies pruning In all this, a choice had to be made in setting am-
bitions. If we keep the usual content of the first standard chapters the same, then a
course like this will become top-heavy, and also, we miss an opportunity to remove
historical clutter from the old curriculum. But if we rethink things more radically,
then hard and perhaps controversial choices must be made. Do we still teach trans-
lation from natural language to formulas, with the usual drill? Do we teach formal
deduction in detail, despite legitimate concerns about its broader transfer value to
reasoning skills, or its adequacy as a model for what mathematical proof really is?
If we stick to the standard course size, something has got to give. 9

In our course, we have economized mainly on extensive translation drill, and on
proof skills, though they are not gone completely. In particular, we have kept some
axiomatic calculi to at least familiarize the students with the important intellectual
idea of a symbolic uninterpreted systems view of deduction. Moreover, precisely

9This pruning may also have a positive value. People often forget that dropping worn-out topics
from a curriculum can yield as much progress in a field as adding new ones.
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because axiomatic proofs may involve surprising twists and shortcuts via lemmas
undreamed of in more placid proof search environments like tableaux or sequent
calculi, these pose more creative challenges to students. We have also economized
on the usual formal set-theoretic presentation of model-theoretic semantics for first-
order logic, which is often a stumbling block for students anyway, and which can also
be questioned on technical logical grounds (Andréka, van Benthem, Bezhanishvili &
Németi 2014). This set-theoretic garb also has the disadvantage of making first-order
truth, which students already understand intuitively, look weird and exotic.

Note that the course does not become easier in this way, since the content struc-
ture for these topics in Part I now carries over to the new topics of Part II.

Coherence and chapter design Our broader agenda does have a didactic down
side. The expanded set of topics runs a risk of incoherence and incongruity since
its scope is so wide. Hence, to increase a sense of uniformity for the student, all
chapters, no matter how different their topics, have been set up in a similar manner:

Generic Chapter Set Up

* Motivation
Language
Semantics

Axiomatic system
* Information update
Mathematical theory
* Further windows:

computation, cognition, language, philosophy

As illustrated in the displayed picture, each chapter repeats the same pattern
of sections — called Motivation, Language, Semantics, Axiomatic System, Update,
Mathematical Theory, and Further Windows, where the latter are illustrations ori-
ented toward the broader intellectual environment of logic in computation, cognition,
language, and philosophy. Let us describe the generic structure of a few chapters,
with less or more standard topics, to illustrate how this set-up works.

Chapter 1 In the chapter on propositional logic, ‘motivations’ are classifying of
structure in the world as well as finding patterns in argumentation, ‘language’ in-
troduces the idea of abstract symbolic syntax as a major historical achievement,
and ‘models’ are of course the evergreen of truth tables. For an ‘axiomatic system’
we teach some Hilbert-style formula manipulation, which also gets students used to
idea that finding proofs is not trivial. A new feature is teaching ‘update’ where new
information decreases a current range of options, and where we show how some puz-
zles can be solved naturally either by deduction or by update to one single remaining
option. This shows the semantics at work in a way that students find appealing,
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while the harmony of semantics and proof theory also features concretely. Next, in
a section on ‘mathematical theory’ we introduce definability of connectives, as well
as the notions of soundness and completeness for logical systems. Finally, ‘further
windows’ in this case are toward the usual logic puzzles, but beyond that, mainly
toward computation: networks for Boolean algebra, and complexity, including the
P = NP problem. After all, propositional logic is deeply connected with the emer-
gence of computer science. Of course, the chosen illustrations in such windows can,
and will touch on different disciplines in other chapters.

Sample: Epistemic Logic

What in the new topics is ‘core teachable’ ?

ion flow, multi-agent
* Art of modeling: significant examples
Basic language
Semantic models
Axiomatic system
Update by elimination

‘Windows: common knowledge, belief, public announcement logic

Chapter 4 Now the very same structure is also used, say, in the chapter on epis-
temic logic. We motivate the issues by means of simple informational scenarios
concerning questions and answers that students immediately find appealing.'? Intro-
ducing a language with knowledge operators allows them to state significant things
about the agents involved in such scenarios in a concise manner, and finding models
for this language that match a given intuitive scenario then turns out to be an at-
tractive non-trivial task. Thus, instead of routine drill, we now emphasize the ‘Art
of Modeling’ Axiomatic systems such as modal S5 now stand for significant (if of-
ten controversial, and always discussion-generating in class) properties of knowledge,
and making concrete deductions shows surprising connections. Update is the way
of solving puzzles like the Three Cards, discussed earlier, in a satisfying systematic
manner. Mathematical theory includes again completeness, or, more ambitiously
qua abstract ideas, an introduction to the notion of bisimulation as an invariance
between information or process models. In terms of further outlooks, epistemic logic
is well-suited to discussing basic themes in philosophy (say, adding belief, and then
discussing the surplus of real knowledge over belief) and cognitive science, where
interactive social ‘Theory of Mind’ is considered a typical human skill.

10T particular — referring to the first picture displayed here — normally, my asking you in a
Beijing street whether the structure depicted is the ceremonial Central Gate of Tsinghua University
tells you several important epistemic social things: (a) I do not know the answer, (b) I want to
know the answer, and (c) I think that you may know the answer.
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Chapters 5 and 6 In a similar manner, we structure the next chapter on dy-
namic logic as a stream-lined abstract modal version of the basic Hoare Calculus of
structured programs and actions, and at the same time, as a natural companion to
the epistemic logic chapter for the purpose of describing information dynamics. The
perspectives of Chapters 4 and 5 then come together once more in the chapter on
games, along two lines. We introduce logic games for earlier tasks of formula evalu-
ation or proof, and we define game logics as revealing basic structures in reasoning
about, and inside, social interaction. We also show some mathematical background
such as Zermelo’s Theorem and broader connections with game theory.

Basic Dynamic Logic It Comes Together: Games Game Theory and Logic
Nobel Prize economics 2006: Robert Aumann

Motivation: from computation to general action g e e

Modal language of actions argumentation  Zermelo’s Theorem computation

Complex programs E.
&
Semantics on process graphs

Axiomatic system

Expressive power

‘Windows: Hoare correctness calculus, bisimulation

Jaakko Hintikka

Windows and the range of logic As for the intended interdisciplinary range
discussed in Section 2: our windows at the end of these chapters include topics such
as computational content of logics (say, satisfiability checking as computation), in-
formation and the internet, natural language (for instance, generalized quantifiers
are a window after the chapter on the syllogistic), cognitive science (the Wason Card
Task and difficulties in actual reasoning, confronting logical systems with ’'natural
logic’ in cognitive architecture), and some history of logic in other cultures, espe-
cially in China. Finally, we keep emphasizing the value of the mathematical aspects
of logic, none of which are meant to be endangered by this course: precision in
formulation, abstraction, systematicity, and the beauty of meta-theory. !

Having concluded our description of content and structure, let us now look at
some issues of didactic implementation and concrete practical experiences with the
course ‘Logic in Action’ Does the above really work?

1 Of course we cannot cover every technical aspect. For instance, most modal logics of Part IT
can be systematically translated into (decidable fragments of) the first-order logic of Part I. But
even though, technically, this generates further coherence to the course, we feel that this translation
theme would probably only confuse students at this early stage of their logical education.
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5 The spirit and the letter of the course

The spirit There are various ways of looking at this course. Our educational goal
is to teach the students modern ideas and skills they may find helpful in further
academic professions, or even beyond in society. We try to strike many chords in
doing so. At a basic level, we try to show that logic is fun, using classic puzzles
as well as newer items such as Sudoku or the Cheryl Birthday Puzzle. It is just a
simple fact that many people enjoy exercising logical thinking skills, and students
are no exception. Next, we try to teach the students what we genuinely think are the
core topics of the field: deduction, computation, information, and interaction, using
a broadened set of topics that we hope will become standard. To us, an example
like the Cards puzzle is as genuinely logical as worrying about Socrates’ mortality.
In addition, we try to convey an appealing picture of logic as a broad and lively
evolving field that connects between many disciplines, or put more negatively: we
try to combat widespread narrow exclusive views of logic by opening interdisciplinary
and cross-cultural windows. In doing so, we also try to convey that logic still has
a great future ahead of it, given that so much has kept happening over the last
century. Finally, perhaps more silently, we also hope to convey a less utilitarian idea
to the students: that logic has a cultural value in itself that enriches them.

The letter These are the high-sounding ideals. In subsequent sections we will
discuss what happens when these meet educational practice. But right here, let us
also state another perspective: if you wish, ‘the letter’ of this course, that seems
to be what remains on many working colleagues’ radar when they use the material
presented here. Take away the above ideals, and just look at what has to be taught,
the bottom-line of all courses in academic reality. One way of describing our curricu-
lum is simply this: we add modal logic to the traditional topics of propositional and
predicate logic. The rationale for this terse description is that modal logic is indeed
the technical core underlying our added chapters on epistemic and dynamic logic.
While this mathematical formulation is an outrageously one-dimensional projection
of what is contained in the course, and a misleading one in several ways, it does
have the virtue of being short and intelligible. Moreover, since the connections of
modal logic to classical systems are well-understood, the addition fits very nicely, so
hard-bitten illusion-free teachers can just see this as their task.

6 The internet dimension

As stated at the start, the original impetus for making this course happen (and
a major motivation for its funding) was an initiative toward creating free courses
available on the internet, and supported by new technology. Where do we stand?
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On what there is Our material is freely available on our public website mentioned
above: http://www.logicinaction.org/, in the form of a textbook, slides supporting
class sessions, videos, and exercises from various sources with worked-out answers.

Enhancements by Demos Supporting Slide Set

Overreach? Still, the ambitions in our team were much higher when the project
started. We wanted to create a complete e-book with live links to background mate-
rial, applets for specific tasks or demonstrations, and clickable windows for stepping
right into the field of logic, from interfaces with automated deduction systems to
more theoretical sources. A few chapters of this sort are indeed available on the
above website, drawing on the innovative material developed by Jan Jaspars, a pio-
neer in computer-supported logic teaching in The Netherlands — for more samples,
see, e.g., this website of the Dutch Open University:

https://www.ou.nl/web/logica-in-actie

Ideally, this electronic paradise would allow for complete self-study of ‘Logic
in Action’ by worldwide users of the course, helped along by equally automated
self-tests after chapters, without any interaction with human designers or teachers,
except perhaps in the form of filmed lectures or video cl