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Preface

Previous editions of Tools for teaching logic (TTL) took place as follows. The
first TTL conference took place in 20001. It was the idea of an international group of
logicians that, in 1998, created ARACNE, a European Community ALFA (America
Latina Formación Académica) network. The second conference took place in 2006
(http://logicae.usal.es/SICTTL/), and the third in 2011 (http://logicae.
usal.es/TICTTL/).

Proceedings of the 2000 edition were published in [3] and those of the 2006 were
published in [4]. For the latter edition, a special volume of the Logic Journal of
the IGPL was published in 2007 [5]. Finally, selected contributions to the third
conference were published in Lecture Notes in CS [6]. As we write this, the number
of downloads of the latter are over 16 thousand.

The Fourth International Conference on Tools for Teaching Logic, TTL 2015
(http://ttl2015.irisa.fr/) was held during June 9-12 2015 at Institut de Recherche
en Informatique et Systèmes Aléatoires (IRISA), Rennes, France. This special issue
contains nine papers that have been selected from the 35 papers of the conference
[1]:

1. Anne Zamansky. Teaching Logic to Information Systems Students: a Student-
centric Approach

2. Gilles Dowek. Rules and derivations in an elementary logic course

3. Johan van Benthem An old discipline with a new twist: the course “Logic in
Action”

4. Jørgen Villadsen, Alexander Birch Jensen, Anders Schlichtkrull NaDeA: A
Natural Deduction Assistant with a Formalization in Isabelle

5. María Manzano, Nitsa Movshovitz-Hadar, Diane Resek Leon Henkin: A logi-
cian’s view on mathematics education

6. Ryo Hatano, Katsuhiko Sano and Satoshi Tojo Teaching Modal Logic from
The Linear Algebraic Viewpoint

7. Patrick Blackburn. The New Trivium
1aracne.usal.es/congress/congress.html
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Pinchinat & Schwarzentruber

8. John Slaney. Logic considered fun

9. Jeremy Seligman and Declan Thompson. Teaching natural deduction in the
right order with Natural Deduction Planner

The contributions can be typed according to two main streams that are not
exclusive:

• Teaching logic to a specific audience: 1, 2, 3, 5, 6, 7.

• Softwares for teaching logic: 4, 6, 8, 9.

We thank all the authors who have contributed to this special issue. Each submis-
sion for this special issue were assigned to two reviewers. We are immensely grate-
ful to Giovanna D’Agostino, Carlos Areces, Éric Badouel, Sandrine Blazy, David
Cachera, Susanna Epp, Annie Foret, Tim French, Thomas Genet, Andreas Herzig,
Colin de la Higuera, Josje Lodder, Emiliano Lorini, Étienne Lozes, Valeria de Paiva,
David Pichardie, Ram Ramanujam, Olivier Ridoux, Martin Strecker and Moshe
Vardi for their valuable efforts and support.

We are also very grateful to the Editorial Board of IfCoLog for agreeing in
publishing this volume. Thanks are due to Jane Spurr, M. Antonia Huertas Sánchez,
Dov Gabbay and Michael Gabbay.

We would like to also thank again all the reviewers for the conference TTL 2015
as well as all the members of the organizing committee of TTL2015, M. Antonia
Huertas Sánchez, Joao Marcos, María Manzano and Elisabeth Lebret, for their
valuable help for this volume to exist.

We hope that this volume will inspire teachers so that the way logic is taught
to a wide range of students from undergraduate to postgraduate gets improved, and
thereby make those audiences aware of the tremendously importance of this topic
at the crossing of many established disciplines.

September 2016,
Sophie Pinchinat & François Schwarzentruber
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Teaching Logic to Information Systems
Students: a Student-centric Approach

Anna Zamansky∗

Information Systems Department, University of Haifa, Israel
annazam@is.haifa.ac.il

Abstract

In contrast to Computer Science and Software Engineering, where it’s fun-
damental role is widely recognized, logic plays a practically non-existent role
in information systems (IS) curricula. In this paper we argue that instead of
logic’s exclusion from the IS curriculum, a significant adaptation of the con-
tents, as well as teaching methodologies, is required for an alignment with the
needs of IS practitioners. We present a vision for such adaptation and report on
concrete steps towards its implementation in the design and teaching of a course
for graduate IS students at the University of Haifa. We discuss the course plan
and present a qualitative analysis of feedback provided by students of the course.

Keywords: LOGIC EDUCATION, COMPUTING CURRICULUM.

1 Introduction
Numerous works addressed the role of logic and formal methods in the computing
disciplines curricula. While its importance as a core discipline for computer scien-
tists and software engineers is widely acknowledged (see, e.g., the ACM curriculum
guidelines [19, 13]), there is a growing frustration of educators concerning a poor
alignment of such courses to the needs of practitioners of the computing disciplines.
In [16], J. Makowsky writes: “Teachers of logic in Computer Science are often still
teaching courses which are a mix of formalizing logical reasoning, meta-mathematics
and the fading reverberations of the famous crisis of the foundations of mathemat-
ics. By doing so, they are contributing to the disappearance of their courses from
mainstream undergraduate education in Computer Science. We have to rethink
which aspects of logic matter for the Computer Science undergraduate programs."

∗Supported by The Israel Science Foundation under grant agreement no. 817/15.
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Zamansky

According to J. Wing [22]: “...we still face the educational challenge of teaching
mathematical foundations like logic and discrete mathematics to practicing or as-
piring software engineers. We need to go beyond giving the traditional courses and
think about who the target students are."

While a poor alignment of the logic courses to the needs of practitioners seems
to be acknowledged (see also [3] in this context), works offering student-centric
approaches, i.e., practical advice on how to make logic courses more effective and
relevant for computing practitioners and/or reporting on empirical studies in logic
education are scarce. A notable exception for the latter is the Beseme project ([17]):
in a three-year study, empirical data on the achievements of two student populations
was collected: those who studied discrete mathematics (including logic) through
examples focused on reasoning about software, and those who studied the same
subject illustrated with more traditional examples. An analysis of the data revealed
significant differences in the programming effectiveness of these two populations in
favor of the former.

In this paper1 we take a student-centric approach in the sense of providing practi-
cal advice, supported by student feedback analysis, for a particular target audience,
namely Information Systems students. The (academic) field of information systems
(IS) encompasses two broad areas: (i) acquisition, deployment, and management of
information technology resources and services, and (ii) development and evolution
of infrastructure and systems for use in organization processes. Thus, as opposed to
computer science (CS), IS’s primary focus is on an organization’s mission and objec-
tives and the application of information technology to further these goals. Yet the IS
discipline shares a significant body of knowledge with CS and software engineering
(SE), reflected also in the intersection of the respective study programs’ curricula.
Logic, however, does not appear to be in this intersection – almost none of the IS
undergraduate study programs include such course in their curriculum. As opposed
to the ACM CS [19] and SE [13] curriculum guidelines, the analogous guidelines for
IS [21] do not refer to logic as a core mathematical discipline.

The current state of affairs is suboptimal for several reasons. First of all, most
of the reasons for including logic in the CS/SE curricula still hold in the IS domain.
Secondly, the lack of experience with formal notation forms a major cognitive bar-
rier to the adoption of formal methods by IS practitioners ([28]). This is further
reinforced by the fact that because many IS study programs tend to be marketed as
programs "excluding the hard math", the students come to see the lack of mathemat-
ical courses as a benefit, and express disappointment2 when any formal notations

1This is a revised and extended version of [25] and [24].
2Quoting one of our graduate students who was assigned to read a research paper on formal

methods: “When I see formal definitions, I just want to cry." Notably, she is one of the best students
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Teaching Logic to Information Systems Students

are integrated in the IS core courses – thus creating a vicious circle.
Although a typical IS major may need a less extensive mathematical background

than a CS major, it is our view that rather than excluding logic from the IS cur-
riculum, a significant adaptation is needed to align it with IS objectives. In this
paper we provide some practical suggestions for how to adapt logic courses to the
context of IS by reporting on our experience in designing and teaching the course
"Logic and Formal Specification" to graduate students at the Information Systems
(IS) department at the University of Haifa, which includes a mandatory course on
logic and formal methods in its graduate study program. We discuss our view of
what should be included in the IS logic toolbox (analogously to the CS logic toolbox
of [15]). Finally, we present the results of a pilot study on the students’ own per-
ceptions of the importance and benefits of the course. The study was carried out by
administering an open-ended quesionnaire to 23 students in the years 2013-2014. A
qualitative analysis of the collected data reveals that the course’ benefits reported
by students are mainly perceived as improvements in cognitive processes, such as
analytical and abstract thinking, decomposition of problems and modelling.

2 The IS Logic Toolbox
The main practical objective in teaching logic to IS practitioners is providing them
with the ability to apply formal methods in industry. Application of formal aspects
is particularly important for software quality control, i.e., activities for checking (by
proof, analysis or testing) that a software system meets specifications and that it
fulfills its intended purpose.

Due to the density of the IS curricula, one currently cannot afford to have one
course on pure formal logic and then another on formal methods. This problem is
also discussed in [23] in the context of CS. Therefore, one must develop a mixture
which combines introductory formal logic together with an introduction to the formal
methods relevant for the IS domain. In what follows we briefly survey previous
reflections on the content of logic and formal methods courses that practitioners
really need and their integration into the curricula, and propose how to adapt those
ideas for the context of IS.

2.1 Relevant Approaches
Recently there has been an ongoing discussion about whether the traditional logic
syllabus for CS is relevant for practitioners. We start by briefly outlining some

in her class.
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Zamansky

relevant proposals (mostly in the context of CS), the ideas of which are close in
spirit to the vision we present below.

In [15, 16], J. Makowsky questions the suitability of the standard logic syllabus
to the needs of CS practitioners. He states: “The current syllabus is often justified
more by the traditional narrative than by the practitioner’s needs." He further notes
that most classical logic textbooks follow the narrative of the rise and fall of Hilbert’s
program, emphasizing the following ideas:

• Logic is needed to resolve the paradoxes of set theory;

• First-order logic (FOL) is the most important logic due to its completeness
theorem;

• The main theorems of FOL are the completeness and compactness theorems;

• The tautologies of FOL are not recursive;

• One cannot prove consistency within rich enough systems.

This, according to Makowsky, is not what a CS practitioner needs: “The proof of
the Completeness Theorem is a waste of time at the expense of teaching more the
important skills of understanding the manipulation and meaning of formulas." What
a practitioner needs is to:

• understand the meaning and implications of modeling the environment in
terms of precise mathematical objects and relations;

• understand and be able to distinguish the intended properties of this modeling
and its side-effects;

• be able to discern different level of abstraction, and

• understand what it means to prove properties of modeled objects.

In her papers [23, 22], J. Wing stresses the importance of integrating formal
methods into the existing CS curriculum by teaching their common conceptual el-
ements, including state machines, invariants, abstraction, composition, induction,
specification and verification. She gives discrete mathematics and mathematical
logic as crucial prerequisites.

The above proposals on what to teach are extremely relevant for IS practitioners.
On the question of how to teach, the paper “Integrating Formal Methods into Com-
puter Science Curricula at a University of Applied Science" ([20]) of Tavolato and
Vogt offers some useful insights. It discusses teaching formal methods at universities

8



Teaching Logic to Information Systems Students

of applied sciences, where there are usually limiting factors which are relevant to
the IS context as well: (i) students have very limited theoretical background, and
(ii) they are strongly focused on the direct applicability of what they are taught. In
this context the authors stress the importance of making the practical applicability
of the theory understandable to students, and making use of real industry-inspired
examples.
In what follows, we extend and adapt the above proposals for the context of IS, and
provide our vision on aligning the teaching of logic to the needs of IS practitioners.

2.2 Making Logic Relevant for IS
2.2.1 The What

Logic is a prerequisite for understanding and successfully using formal methods,
which in their turn can significantly contribute to software quality control. We
agree with the view taken in [23] that the main basic formal conceptual elements
with which the students need familiarizing include state machines, abstraction, com-
position, induction, invariants, specification and verification. While the students
encounter the concepts of state machines, abstraction and composition in other IS
courses (such as modeling and design), aspects related to working with formal spec-
ifications are not covered elsewhere in the curriculum. However, an IS practitioner
needs to:

• read, write and understand formal specifications;

• formalize informal specifications;

• analyze specifications and detect sources of incompleteness, inconsistency and
complexity;

• reason about specifications, and

• check a system against a specification.

Thus, by adapting and extending the previous proposals of CS logic education
to the context of IS, we arrive at the following IS logic toolbox:

1. Basic principles for reasoning about sets;

2. Use of induction and invariants;

3. Propositional and first-order logic and their axiomatizations;

4. Formal specification and verification techniques and methodologies.

9
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2.2.2 The How

As to how to teach logic to IS students, i.e., designing concrete teaching methodolo-
gies, the following considerations need to be taken into account:

• Creating links to software domain.
Although it has been believed for some time that studying logic improves
software development skills, this common belief has recently been empirically
validated by a study in [17]. As pointed out by [20], software related examples
are also useful for increasing the motivation of students, who can see the
applications of the studied material in the domain of their interest. In [27] a
particular example of establishing such software-related link is described, in
which teaching sequent calculi was supported via a hands-on assignment in
software testing.

• Integrating education methodologies and tools.
The integration of methodologies and tools from education could be beneficiary
in a number of aspects. First of all, empirical studies show that the use of
formal methods poses objective difficulties for practitioners ([4, 8]). They
are also hypothesized to be a major hindering factor for the acceptance of
formal methods in industry ([28]). The difficulties students experience when
studying logic and formal methods ([20]) could be addressed using studies of
cognition, which could provide insights into students’ mental processes when
studying formal concepts. For instance, several studies analyzed gaps between
students’ intuition and formal thinking in mathematics (see, e.g., [6]) and
students’ difficulties in handling abstraction ([9, 10]).

• Hiding some of the complexity. Exposing the students to the full intricate
complexities of mathematical logic (such as a full proof of the completeness
theorem, or dealing with variables not free for substitution) has the potential
to confuse novices struggling to understand new ideas. However, most IS
practitioners will not encounter these complexities in industry. This is in line
with the research agenda of indirect application of formal methods ([12]), which
calls for hiding intricate complexities behind automatic tools with intuitive user
interface. Similar benefits for programming are also mentioned in [17].

3 Teaching Logic for IS
In this section we demonstrate how the vision presented above has been implemented
in the design of our course “Logic and Formal Specification". The course has been

10
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taught at the IS department at the University of Haifa for several years by the
author3. The course is a mandatory course for graduate students, and its length is
one semester, 4 hours per week.

3.1 Course Description
Below we provide a short description of the course’s main topics, together with text-
books from which the material is adapted. The course is divided into two parts.
The first part covers the basics of formal logic, and includes the following topics:

Part I: Introduction to Logic

• Informal laws of mathematical reasoning

Exercise: Show that for all sets A,B,C: if A ⊆ B and B ⊆ C, then A ⊆ C.

Law 1 - universal statements: If you want to prove a statement about all things
of a certain kind, choose an arbitrary thing and show that the statement holds for it.

Let A,B,C be arbitrary sets.

Law 2 - conditional statements:
If you want to prove a statement of the form “if x then y", assume x and use it to
prove y.

Suppose that A ⊆ B and B ⊆ C. We now prove A ⊆ C...
Figure 1: (Informal) Laws of Reasoning and a Demonstration of their Application

Our starting point is the place where the students left off in discrete mathe-
matics course: basic set-theoretical concepts. However, our primary focus is
not on understanding the concepts themselves, but on reasoning about them
by applying informal logical laws. Accordingly, the students are asked to pro-
vide proofs of basic claims, explaining which laws were used at each stage. A

3Perhaps it is important to mention here the author’s relevant background. She is an associate
professor at the Information Systems Department at the University of Haifa with active research
interests in applied logic and more than 10 years of experience in teaching logic and formal methods
to various student audiences.
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Example question: n processes run a computer program which performs the operation
x++, where x is a variable shared by all processes. The ++ operation is mapped into
three sequential sub-operations:
1. load x to register
2. increment the value in the register
3. store the register value to x

The programmer intended to write a program, such that at the end of its execution
the value of x is n. What other scenarios are possible, given that the processes can
run in parallel?
Figure 2: An Example of Inductive Reasoning for Proving a Program Property

basic example is provided in Figure 1; the students are asked to justify every
step of their proof.
The presentation of the informal laws and other proof tips is adapted from
David Makinson’s textbook “Sets, Logic and Math for Computing" [14], which
is also one of the official textbooks of the course. The informal laws become
explicit at the object level when classical propositional and first-order logic
are introduced to the students (e.g., the law for proving general statements
can be captured by the rule inferring ∀xψ from ψ(x), and the law for proving
conditional statements is captured by the deduction theorem.) At this stage
we revisit the proofs and pinpoint the application of these laws.

• Induction: mathematical, structural and computational induction.
Structural induction is at the heart of a number of formal concepts relevant for
verification and validation of software: fixed point constructions, model check-
ing, program analysis and many more. Therefore a special emphasis is put
on the topic throughout the course. Starting with a motivational example for
an inductive set (by presenting the MU puzzle by Douglas Hofstadter ([11])),
we provide formal definitions of induction and exemplify their use by proving
properties of programs. One example is provided in Figure 2: one can prove,
e.g., that if at the beginning of execution x = 0, then at the end of execution
x may assume at least one of the values 0, 1, ..., n. Other examples presented
in class are adapted from Chapter 2 of Foundations of Computer Science of
Aho and Ullman ([2]).

• Classical Propositional and First-Order Logic: syntax and semantics, satisfia-
bility and validity, Hilbert-style axiomatization, formalization of natural lan-

12



Teaching Logic to Information Systems Students

guage sentences.
For this part of the course we mostly adapt parts of the standard presenta-
tion of most mathematical logic textbooks. We place a special emphasis on
the inductive definitions of the set of wffs of CPL and the set of theorems of
the Hilbert-style axiomatization, and show several examples of proofs using
induction (including the deduction theorem). This comes at the expense of
omitting the proofs of the completeness and compactness theorems (in line
with the recommendation of [15]).

• Survey of non-classical logics: temporal logic, modal logic, many-valued logic,
fuzzy logic, non-monotonic logic, paraconsistent logic.
This part of the course is implemented by requiring each of the students to
deliver a short presentation on a non-classical logic of his choice. While the
importance of temporal logic in this context is perhaps the most obvious one
due to its well-known applications in verification, other non-classical logics also
have IS-relevant applications (see, e.g., [7, 5, 29]). The goal is to increase the
awareness of the students to the immense variety of logics outside the realm
of classical logics.

Part II: Introduction to Formal Specification
This part of the course builds up on the knowledge obtained at the previous

part. The final aim is for the students to be able to understand and write formal
specifications using the Z notation. For this we have adapted the material from the
textbook [18], covering the basic aspects of Z: types, schemas and reasoning about
Z specifications.

4 Students Feedback Analysis
The course has only been taught in its current form for three years. While making
decisive conclusions about its effectiveness is perhaps premature, an important di-
mension in evaluating such effectiveness is the students’ acceptance and reaction to
it. To gain a better understanding of these factors, a preliminary qualitative study
was undertaken by administering a questionnaire, which was filled by twenty-three
students who took the course in the years 2013-2014.

Recall that the limiting factors typical of the target audience are in many respects
similar to those described in [20]. The first is lack of mathematical background:
the undergraduate IS study program at the University of Haifa does not include
a course in logic, and the majority of students have only a background in discrete
mathematics, where they are taught very basic concepts of set theory. The second

13
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limiting factor is their lack of motivation: the majority of the students return to
graduate school several years after receiving their B.A, while working full-time. They
typically expect the topics to be directly relevant to their IS practice, and usually
exhibit difficulty in coping with the dense and abstract material taught in the course.
In light of these factors, we were expecting some of the students to claim, basically,
that the course was too hard without being helpful for their future as IS practitioners.
However, only one student out of 23 felt the course was not useful for his practice.

In what follows we describe the results of an exploratory study exploring per-
ceptions of twenty three students over the years 2013-2014. This sample included
8 female and 15 male students; 12 students out of 22 had no prior experience in
industry. The questionnaire included the following open-ended questions.

Q1 Is it important for practitioners whose work is related to software development
to study logic and formal methods? Why?

Q2 In what way (if at all) is the course’s content useful for information systems
practitioners?

Q3 What (if at all) were the course’s contributions for you personally?

Q4 How relevant was the background from your Discrete Mathematics course? In
what way (if at all) was it helpful?

Q5 In what ways would you recommend that we improve the course?

In what follows we focus mainly on the answers received to questions Q2 and
Q3. Only three students responded that logic and formal methods are not useful
(Q2):

1. I worked at two different places in industry, and never have I seen the courses’
content put to any use...

2. It is not necessary for software development.

3. It depends on the work environment. I think it’s not useful.

Two of them also thought the course was not useful for them personally (Q3).

Out of those who responded positively to both questions, one of the most strik-
ing observations was the extensive use of formulations related to mental processes,
such as “thinking", in particular “analytical/logical thinking" in answers to both
questions.

E.g., answers to question Q2 included:
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1. It improves thinking about problem modeling.

2. I think that it opens directions for thinking about how things really work under
the surface.

3. The world of software is based on understanding the needs and modeling them in
precise terms. Many such models require logical thinking.

4. The course’s contents develop and deepen ways of thinking.

5. The course helps shaping thinking that can help in programming.

6. The course improves analytical thinking.

7. The course is very helpful in improving thinking that is not necessarily
algorithmic. A different one, out of the box.

8. Of course! Correct and systematic thinking of IS practitioners helps in
requirements specification.

Notably, no participants provided concrete examples of direct use of the courses’
content in answering Q2. Yet several of them took a confident stand when speaking
of their own personal experience in Q3:

1. I have already applied the new skills at work, using truth tables and proofs.

2. It improved my modeling skills. I’m certain!

3. I am now using the tools when reading scientific papers.

4. I was surprised to see how helpful the tools we studied are in practice.

Moreover, when answering question Q3, several participants referred again (im-
plicitly or explicitly) to an improvement in their mental processes:

1. The course introduced order into complex topics. It gave me tools to simplify
complex problems and find easy and efficient solutions.

2. It made me think in a modular way, providing me with the ability to grasp more
complex models.

3. It improved my ability to refer to problems schematically.

4. It provided me with an abstract view on the problems of software design.
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Q2 (general IS practitioner) Q3 (personal experience)
thinking 8 8
understanding 7 8
formulation 5 3
modelling 1 0
research 0 3
general knowledge 0 5

Table 1: Categories emerging from answers to Q2 and Q3 and number of students
using each category

5. It made me realize there are systematic solutions to problems that seem unsolvable
at first.

6. I learned to reduce complex problems to simpler ones.

Table 1 summarizes the main skill categories that emerged during text analysis
of questions Q2 and Q3, providing the number of students that used formulations
related to these categories. We intend to use these categories as a basis for further,
deeper quantitative investigation that will hopefully provide evidence for the benefits
of teaching logic courses to IS future practitioners.

5 Summary and Future Research
While there recently has been quite a lot of discourse on the poor alignment of logic
courses to the practical needs of computing practitioners, practical “field" advice on
how the situation can be improved is still very scarce. The current paper makes a
contribution in this direction in the context of the target population of IS students,
for whom the lack of direct relevance of the traditional logic courses seems to have
led to their (unfortunate) exclusion from the undergraduate curriculum. And yet
logic remains central to IS objectives, as it is the key to applying formal methods in
specification, verification and validation of information systems. Therefore, further
empirical evidence in the spirit of the Beseme project ([1]) is needed to convince
decision makers that such courses are useful for IS practitioners. To be successful this
will involve taking more student-centric approaches, which involve understanding the
impact of teaching logic on students’ achievements, as well as their perceptions and
attitudes. Moreover, overcoming the objective difficulties of students with logic and
formal methods could be made easier by integrating new technologies for enhancing
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education. One step in this direction was taken in [26], where the potential of using
online social networks such as Facebook for teaching logic is explored.

Based on our experience teaching the Logic and Formal Specification course
to graduate IS students, we feel that using software-related and comprehensible
examples, and simplifying logical intricacies contributes to achieving the courses’
objectives. In addition, student feedback showed positive perceptions of the benefits
of taking the course, which are mainly related to general cognitive processes (as
opposed to specific skills and/or tools). Categories which have emerged from a
qualitative analysis of this feedback can be adapted for new and more detailed
survey instruments which we hope will provide decision makers with (much needed)
evidence for the benefits of the inclusion of logic in the IS undergraduate curriculum.

Another planned future research project is an empirical investigation of how to
make formal specification more understandable for students. This question is par-
ticularly interesting due to its direct relation to the more general topic of compre-
hensibility of specifications. In this context we plan to develop a tool for automatic
analysis of Z specifications, which will then be used for empirical evaluations.

We hope that this paper will start a wider discussion on what logical background
is needed for IS practitioners and how it should be taught. We further hope that
this will lead to a logic textbook with an IS-orientation, which would be a welcome
addition to the large existing variety of CS-oriented books.
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When teaching an elementary logic course to students, who have a general scien-
tific background, but have never been exposed to logic, we have to face the problem
that the notions of deduction rule and of derivation are completely new to them,
and are related to nothing they already know, unlike, for instance, the notion of
model, that can be seen as a generalization of the notion of algebraic structure, or
the notion of computable function, that is a particular case of the notion of function.

We present, in this paper, a strategy to introduce these notions: start with the
notion of inductive definition [1], then, the notion of derivation comes naturally. We
also show, with three examples: computability theory, automata theory, and proof
theory, that derivations are pervasive in logic—we could have given more examples
in formal grammars, rewriting, etc. Thus, defining precisely this notion at an early
stage is a good investment to later define other notions. Finally, we show that we
need to distinguish two notions of derivation: that of derivation labeled with elements
and that of derivation labeled with rule names.

In this paper, no proofs are given, and not even precise definitions. These can
be found, for instance, in [2].

1 From inductive definitions to derivations
1.1 A method to define sets: inductive definitions
Inductive definitions are a way to define subsets of a set A. The inductive definition
of a subset P is formed with a family of functions f1, from An1 to A, f2, from An2

to A, etc. These functions are called rules. For example, the function f1 = 〈〉 7→ 0,
from N0 to N, and f2 = 〈x〉 7→ x+ 2, from N1 to N are rules.

Instead of writing these rules f1 = 〈〉 7→ 0 and f2 = 〈x〉 7→ x+ 2, we often write
them

f10
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x
f2x+ 2

But despite this new notation, rules are things the students already know: functions.
These rules define a function F from P(A) to P(A)

F (X) =
⋃

i

{fi(a1, ..., ani) | a1, ..., ani ∈ X}

For example, the two rules above define the function

F (X) = {0} ∪ {x+ 2 | x ∈ X}

and, for instance, F ({4, 5, 6}) = {0, 6, 7, 8}, F (∅) = {0}, F ({0}) = {0, 2}, etc.
The function F is monotonic and continuous. Thus, it has a smallest fixed point

P , which is the inductively defined subset of A. This smallest fixed point can be
defined in two ways

P =
⋂

F (X)⊆X

X =
⋃

i

F i(∅)

The first definition characterizes the set P as the smallest set closed by f1, f2,
etc. the second as the set containing all the elements that can be built with these
functions in a finite number of steps.

The notion of monotonicity and continuity of a function from P(A) to P(A) can
then be introduced and the two fixed point theorems can be proved with mathemat-
ically oriented students. They can be admitted otherwise.

Continuing with our example, the set P of even numbers can be characterized as
the smallest set containing 0 and closed by the function x 7→ x+ 2, or as the union
of the sets ∅, F (∅) = {0}, F 2(∅) = {0, 2}, F 3(∅) = {0, 2, 4}, etc.

1.2 Derivations
A derivation is a tree whose nodes are labeled with elements of A and such that if
a node is labeled with b and its children with a1, ..., an, then there exists a rule
f such that b = f(a1, ..., an). A derivation of an element a is a derivation whose
root is labeled with a. We can then prove, by induction on i, that all the elements
of F i(∅) have a derivation. The property is trivial for i = 0. If it holds for i and
b ∈ F i+1(∅), then by definition b = f(a1, ..., an) for some rule f and a1 ∈ F i(∅), ...,
an ∈ F i(∅), thus, by induction hypothesis, a1, ..., an have derivations. Hence, so
does b.

Thus, from the second property P = ∪iF
i(∅), we get that all elements of P have

derivations. Conversely, all elements that have a derivation are elements of P .

22



Rules and derivations in an elementary logic course

Continuing with our example the number 4 has the derivation

0
2
4

1.3 Rule names

There are several alternative definitions of the notion of derivation. For instance,
when b = f(a1, ..., an), instead of labelling the node just with b, we can label it with
the ordered pair formed with the element b and the name of the rule f . For instance,
the derivation of 4 above would then be the tree

〈0, f1〉
〈2, f2〉
〈4, f2〉

more often written

f10
f22
f24

Such a derivation is easier to check, as checking the node

2
4

requires to find the rule f such that f(2) = 4, while checking the node

2
f24

just requires to apply the rule f2 to 2 and check that the result is 4.
But these rules names are redundant, as soon as the relation ∪ifi is decidable.

So, in general, they can be omitted.
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1.4 Derivations labeled with rule names

Instead of omitting the rule names, it is possible to omit the elements of A. The
derivation of 4 is then the tree

f1
f2
f2

that can also be written
f1.
f2.
f2.

We introduce this way a second kind of derivations labeled with rules names. In
contrast, the previous derivations can be called labeled with objects.

Although it is not explicit in the derivation, the element 4 can be inferred from
this derivation with a top-down conclusion inference algorithm, because the rules fi

are functions. The conclusion of the rule f1 can only be f1(〈〉) = 0, that of the first
rule f2 can only be f2(〈0〉) = 2, and that of the second can only be f2(〈2〉) = 4.

More generally, for each derivation labeled with rule names D, there is at most
one a such that D is a derivation of a, the existence of such an a can be decided
and, when it exists, this a can be computed from D. As a consequence, the set of
ordered pairs D : a such that D is a derivation of a is decidable.

1.5 Proof-terms and type systems

Derivations labeled with rules names are often written as a term, that is in a linear
form. For instance the derivation

f1.
f2.
f2.

is often written f2(f2(f1)). Such a term is called a proof-term.
The decidable set of ordered pairs π : a such that π is a proof-term of a can itself

be defined by an inference system obtained from the original one by replacing each
rule

a1 ... an
R

b

24



Rules and derivations in an elementary logic course

with the rule
π1 : a1 ... πn : an

R
R(π1, ..., πn) : b

In our example, we get the rules
f1f1 : 0

π : a
f2f2(π) : a+ 2

and the ordered pair f2(f2(f1)) : 4 has the derivation

f1 : 0
f2(f1) : 2

f2(f2(f1)) : 4

This second inference system is called a type system. It defines a decidable set—it
is even an automaton in the sense of [4].

Moreover the conclusion inference algorithm transforms into a type inference
algorithm. For each proof-term π, there is at most one a such that π : a is derivable,
the existence of such an a can be decided and, when it exists, this a can be computed
from π.

1.6 Making the rules functional
Natural deduction proofs [6, 5], for instance, are often labeled both with sequents
and rule names, for instance

axiom
P,Q,R ` P axiom

P,Q,R ` Q ∧-intro
P,Q,R ` P ∧Q

but they can be labeled with sequents only

P,Q,R ` P P,Q,R ` Q
P,Q,R ` P ∧Q

and proof-checking is still decidable. They can also be labeled with rule names only,
but we have to make sure that all the deduction rules are functional, which is often
not the case in the usual presentations of Natural deduction. The rule

Γ ` A Γ ` B ∧-introΓ ` A ∧B
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is functional: there is only one possible conclusion for each sequence of premises,
but the axiom rule

axiomΓ, A ` A
is not. To make it functional, we must introduce a different rule axiom〈Γ,A〉 for each
ordered pair 〈Γ, A〉. Thus, the proof above must be written

axiom〈{Q,R},P 〉
P,Q,R ` P axiom〈{P,R},Q〉

P,Q,R ` Q ∧-intro
P,Q,R ` P ∧Q

And from the derivation labeled with rule names

axiom〈{Q,R},P 〉
.

axiom〈{P,R},Q〉
. ∧-intro

.

the conclusion P,Q,R ` P ∧Q can be inferred.
In a linear form, this derivation is ∧-intro(axiom〈{Q,R},P 〉, axiom〈{P,R},Q〉) and its

type, P,Q,R ` P ∧Q, can be inferred.

2 Derivations in elementary computability theory
2.1 A pedagogical problem
The set of computable functions is often defined inductively, as the smallest set
containing the projections, the null functions, and the successor function, and closed
by composition, definition by induction, and minimization.

But to study the computability of properties of computable functions, we need
a secondary notion of program, that is we need a way to express each computable
function with a expression of a finite language, to which a Gödel number can be
assigned. A usual solution is to introduce Turing machines, λ-calculus, or any other
language at this point.

This solution however is not pedagogically satisfying as, while the students are
still struggling to understand the inductive definition of the set of computable func-
tions, we introduce another, that is often based on completely different ideas, letting
them think that logic made of odds and ends. Moreover, the equivalence of the two
definitions requires a tedious proof.

Such a second definition is in fact not needed as the inductive definition itself
already gives a notion of program, through the notion of derivation.
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2.2 Programs already exist
The function x 7→ x+ 2 is computable because it is the composition of the successor
function with itself. But the derivation labeled with objects

x 7→ x+ 1 x 7→ x+ 1
x 7→ x+ 2

cannot be used as a program, because to label its nodes, we would need a language
to express all the functions, and there is, of course, no such language.

But if we use a derivation labeled with rule names instead

Succ
.

Succ
. ◦11.

and write the derivations in a linear form: ◦11(Succ, Succ), we obtain a simple
variable-free functional programming language, to express the programs. We can
introduce this way a symbol πn

i for the n-ary i-th projection, ◦np (f, g1, ...gp) for the
composition of the n-ary functions g1, ..., gp with the p-ary function f , and µn(f)
for the minimization of the n+ 1-ary function f over its last argument, etc.

For instance, introducing a Gödel numbering p.q for these programs, and assum-
ing there is an always defined function h such that

• h(p, q) = 1 if p = pfq and f defined at q

• and h(p, q) = 0 otherwise,

we get a contradiction: the function

k = ◦11(µ1(π2
1), ◦12(h, π1

1, π
1
1))

is defined at pkq if and only if it is not.
We get this way a proof of the undecidability of the halting problem that requires

nothing else than the inductive definition of the set of computable functions.

3 Derivations in elementary automata theory
When introducing the notion of finite automaton, we often introduce new notions,
such as those of transition rules and recognizability. Having introduced the notion
of derivation from the very beginning of the course permits to avoid introducing
these as new notions.
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Consider for instance the finite state automaton

odd
a−−→ even even

a−−→ odd

where the state even is final. In this automaton, the word aaa is recognized in odd.
Indeed

odd
a−−→ even

a−−→ odd
a−−→ even

If, instead of introducing a new notion of transition rule, we just define transition
rules as deduction rules

even a
odd

odd a
even

ε
even

then, the element odd has a derivation

ε
even

a
odd

a
even

a
odd

If we label this derivation with rule names we obtain

ε
.
a

.
a

.
a

.

which can be written in linear form a(a(a(ε))), or aaa. Thus, a word w is recognized
in a state s if and only if it is a derivation, labeled with rule names, of s.

Transforming this inference system into a type system, like in Section 1.5, we
get

w : even a
aw : odd

w : odd a
aw : even ε

ε : even
And a word w is recognized in a state s if and only w : s is derivable.

This example introduces a point that needs to be discussed: the rules

even a
odd

odd a
even

are labeled with the same name. If the automaton is deterministic, we can replace
these two rules with one: a function such that a(even) = odd and a(odd) = even.
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But for non deterministic automata, we either need to extend the notion of rule
name, allowing different rules to have the same name, or to consider two rule names

even a1odd
odd a2even

ε
even

and map the derivation a1(a2(a1(ε))) to the word a(a(a(ε))) with the function |.|
defined by: |ε| = ε, |a1(t)| = a(|t|), and |a2(t)| = a(|t|).

4 Introducing the Brouwer-Heyting-Kolmogorov corre-
spondence

4.1 A radical change in viewpoint?
The Brouwer-Heyting-Kolmogorov interpretation, and its counterpart, the Curry-de
Buijn-Howard correspondence, are often presented as a radical change in viewpoint:
proofs are not seen as trees anymore, but as algorithms.

But, of course, these algorithms must be expressed in some language, often
the lambda-calculus. Thus, proofs are not really algorithms, but terms expressing
algorithms, and such terms are nothing else than trees. So, it is fairer to say that,
in the Brouwer-Heyting-Kolmogorov interpretation, proofs are not derivation trees,
but trees of a different kind. For instance, the tree

P ∧Q ` P ∧Q
P ∧Q ` Q

P ∧Q ` P ∧Q
P ∧Q ` P

P ∧Q ` Q ∧ P
` (P ∧Q)⇒ (Q ∧ P )

is replaced by the tree

x
snd

x
fst

〈, 〉
λx : P ∧Q

often written in linear form: λx : P ∧Q 〈snd(x), fst(x)〉.

4.2 Derivation trees labeled with rule names
Instead of using this idea of expressing proofs as algorithms, let us just try to label
the derivation above with rule names. Five rules are used in this proof. Three of
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them are functional
Γ ` A Γ ` B ∧-introΓ ` A ∧B

Γ ` A ∧B ∧-elim1Γ ` A
Γ ` A ∧B ∧-elim2Γ ` B

Let us just give them shorter names: 〈, 〉, fst, and snd. The rule

Γ, A ` B ⇒-introΓ ` A⇒ B

is functional, as soon as we know which proposition A in the left-hand side of the
antecedent is used. So, we need to supply this proposition A in the rule name, let
us call this rule λA. Finally, the rule

axiomΓ, A ` A

is functional, as soon as we know Γ and A. We could supply Γ and A in the rule
name. However, we shall just supply the proposition A and infer the context Γ. Let
us call this rule [A]. So, the proof above can be written

[P ∧Q]
P ∧Q ` P ∧Q

snd
P ∧Q ` Q

[P ∧Q]
P ∧Q ` P ∧Q

fst
P ∧Q ` P 〈, 〉

P ∧Q ` Q ∧ P
λP ∧Q` (P ∧Q)⇒ (Q ∧ P )

and if we keep rule names only
[P ∧Q]

.
snd

.

[P ∧Q]
.
fst

. 〈, 〉
.
λP ∧Q

.

which, in linear form is the proof-term λP ∧Q 〈snd([P ∧Q]), fst([P ∧Q])〉.
Transforming this inference system into a type system, like in Section 1.5, we

get
Γ ` π : A Γ ` π′ : B ∧-introΓ ` 〈π, π′〉 : A ∧B
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Γ ` π : A ∧B ∧-elim1Γ ` fst(π) : A
Γ ` π : A ∧B ∧-elim2Γ ` snd(π) : B
Γ, A ` π : B ⇒-introΓ ` λA π : A⇒ B

axiomΓ, A ` [A] : A

in which the ordered pair λP ∧Q 〈snd([P ∧Q]), fst([P ∧Q])〉 : (P ∧Q)⇒ (Q ∧ P )
is derivable. This is the scheme representation [3] of this proof.

Let us show that the conclusion can be inferred, although we have not supplied
the context Γ in the axiom rule. The conclusion inference goes in two steps. First
we infer the context bottom-up, using the fact that the conclusion has an empty
context, and that all rules preserve the context, except λA that extends it with the
proposition A

[P ∧Q]
P ∧Q ` .

snd
P ∧Q ` .

[P ∧Q]
P ∧Q ` .

fst
P ∧Q ` . 〈, 〉

P ∧Q ` .
λP ∧Q` .

Then, the right-hand part of the sequent can be inferred with a usual conclusion
top-down inference algorithm, using the fact that the rules are functional

[P ∧Q]
P ∧Q ` P ∧Q

snd
P ∧Q ` Q

[P ∧Q]
P ∧Q ` P ∧Q

fst
P ∧Q ` P 〈, 〉

P ∧Q ` Q ∧ P
λP ∧Q` (P ∧Q)⇒ (Q ∧ P )

4.3 Brouwer-Heyting-Kolmogorov interpretation
In the rule

Γ, A ` B ⇒-introΓ ` A⇒ B

instead of supplying just the proposition A, we can supply the proposition A and a
name x for it. Then, in the axiom rule

axiomΓ, A ` A
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instead of supplying the proposition A, we can just supply the name that has been
introduced lower in the tree for it. We obtain this way the tree

x
.
snd

.

x
.
fst

. 〈, 〉
.
λx : P ∧Q

.

in linear form λx : P ∧Q 〈snd(x), fst(x)〉, which is exactly the representation of the
proof according to the Brouwer-Heyting-Kolmogorov interpretation.

So, the Brouwer-Heyting-Kolmogorov interpretation boils down to use of deriva-
tions labeled with rule names plus two minor modifications: context inference and
the use of variables. These two modifications can be explained by the fact that
Natural deduction does not really deal with sequents and contexts: rather with
propositions, but, following an idea initiated in [7], some rules such as the introduc-
tion rule of the implication dynamically add new rules, named with variables.
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An old discipline with a new twist:
the course “Logic in Action”

Johan van Benthem
University of Amsterdam, Stanford University and Tsinghua University

Abstract

What are the basic logical notions and skills that all beginning students
should learn, and that might stay with them as a useful cultural travel kit for
their lives, even when an overwhelming majority will not become professional
logicians? The course “Logic in Action” http://www.logicinaction.org/ tries to
convey the idea that logic is about reasoning but also much more: including
information and action, both by individuals and in multi-agent settings, studied
by semantic and syntactic tools, and still confirming to the standards of preci-
sion of an exact and mathematized discipline. Viewed in this way, modern logic
sits at a crossroads of academic disciplines where interesting new developments
occur every day. In this light introduction, I explain the main ideas behind the
design of the course, which combines predicate logic with various modal log-
ics, and I lightly discuss its current manifestations and dialects in Amsterdam,
Beijing and the Bay Area, as well as its future as an EdX pilot course.

1 History of the course
There is a thriving international market of new on-line logic courses today, witness
the many projects presented at the successive TTL conferences 1 and the links there
to earlier conferences in this series. Roughly speaking these endeavors fall into
two kinds. Sometimes the new technology is used to create high-tech versions of
largely standard fare in the traditional curriculum with, say, sophisticated graphics
interfaces for classical natural deduction proof systems, like a Latin Mass with rock

I thank the organizers of the Conference on Tools for Teaching Logic, Rennes 2015, for giving me an
opportunity and a forum for reflecting on the course “Logic in Action”. I also thank the members
of the core LiA development team for the course as well as the users that we know of, and finally,
I am grateful to the two referees for this paper for providing very useful critical comments.

1See the website http://ttl2015.irisa.fr of these conferences.
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guitars.2 But sometimes also, there is ideological fervor behind the effort: the course
designers have a special research agenda with their own view of logic, modifying or
changing existing curricula, and they want to export their revolution by by-passing
the academic colleagues and instead of that, influencing the youth.3

The course Logic in Action falls in the second activist category, and we will put
our cards on the table in a moment. The course arose in the education group of the
Spinoza Award project “Logic in Action” (1997–2002; http://www.illc.uva.nl/lia/)
of the Dutch Science Organization, and it received a crucial further push by a grant
from the Dutch Ministry of Economic Affairs in its program Creative Technologies
meant to improve the national information infrastructure.

2 The general idea: a broader scope for logic
Traditional logic courses emphasize the study of correct inference patterns as the
core business of logic, with propositional and predicate logic as paradigms of the
methodology for doing so. Students are trained in basic skills which typically include
translating natural language sentences into formulas, performing validity tests such
as truth tables and tableaux, and often also, calculi for formal deduction.

Some problems with traditional courses In our view, this traditional agenda
is not neutral: it instills a large number of attitudes, often as hidden presuppositions.
Let us identify a few of its subliminal messages.

First, inference is made the central concern of logic – but this move seems quite
debatable. Inference or proof is just one topic in logic, and just as important are
two other main themes: definability and computation, a point made already in the
seminal Beth 1963 reflecting on the history of logic as well as its modern branches
of proof theory, model theory and recursion theory.

Next, there is little reflection on what intellectual assets are actually activated
by training in formula translation or formal proof. It is unclear whether there is any
transfer to broader reasoning skills, and it may be significant that research logicians
themselves never seem to use them in their meta-theory. Criticisms of this didactic
kind have in fact occurred throughout the last century: a modern study of transfer

2This is how I would view, e.g., the popular and very well-designed course “Logic & Proofs” at
Carnegie Mellon University, http://oli.cmu.edu/courses/free-open/logic-proofs-course-details/.

3This activist stance is what I see in the Stanford course “Language, Proof and Logic”
(http://online.stanford.edu/course/language-proof-and-logic) inspired by situation theory, and in
the more logic-programming and resolution-based open-domain CS course “Introduction to Logic”
(https://www.coursera.org/learn/logic-introduction). But their designers may feel very differently!
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of skills also involving experimental cognitive studies is Haskell 2000.4
Next, the usual emphasis on formal proof somehow suggests that mathematical

activities are the highest point of logical intellectual skills, a claim as debatable as
thinking that the best test of someone’s moral fiber is her behavior in church. Rea-
soning in down-to-earth practice, with its open universes of relevant considerations,
tells us much more about what logical rationality a person can bring to bear.

Finally, the standard emphasis on teaching complete logical systems as the locus
of logic is a very peculiar methodology, different even from the problem solving skills
taught in mathematics and science courses. One comes for a logical formula or two
in the store (just as we learn a few crucial and generally helpful algebraic equations),
hoping that it will help us through some crucial steps in a problem-solving argument.
But instead, one finds that one has to buy a system, a huge infinite supply of valid
patterns, and worry about their staying fresh for years.

Broadening the scope Raising the preceding concerns does not mean that there
is something inherently wrong with the traditional curriculum in logic, as far as it
goes – only that the discipline of logic has much wider scope than what this standard
agenda of topics might suggest. The major aim of the course ‘Logic in Action’ is
conveying this broader picture from the start as being much more true to what logic
is today and what its range is across the university and elsewhere. If we do not get
this across at base level, students will either not see what logic is really good for,
or, they will develop a narrow conception of the field which then keeps them locked
afterwards into biased philosophical or mathematical conceptions.

Logic as information handling One way of achieving this mind-opening is by
shifting the emphasis from inference alone to the study of a much broader range of
informational activities as the subject of logic. Besides inference, such logical activ-
ities also include making observations and doing experiments, asking questions and
processing answers to them, and engaging in communication generally. Therefore,
the course ‘Logic in Action’ treats two realms on a par, purely deductive inference,
and intelligent conversation, as highlighted to our students in the following picture
of Euclid’s “Elements” versus Rubens’ painting ‘The Philosophers’:

4An emphasis on isolated formal activities need not be harmless, it may even make enemies.
I have often observed this in interdisciplinary circles where colleagues from other fields who went
through a logic course became firmly convinced of the Scholasticism and irrelevance of our discipline.
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Interestingly, our themes are already present in ancient Chinese logic, witness
a key dictum in the Moist School (500–300 BC; cf. Graham 2003) that knowledge
comes from three sources: hearing from others, demonstration, and experience.

Histories As it happens, while not neglecting the essential Greek origins, this
quotation is highlighted in our course with a side purpose: also make it clear to
students that by learning logic, they become part of a worldwide cultural stream,
not just ancestor worship of Greek Antiquity. The course has many such historical
sidebars, all aiming at installing some more general erudition.

But we also emphasize that inference and observation are information sources on
a par in modern science, where we need the two in tandem to understand our world.
And in more playful mode, to the classical lonely thinker with eyes closed and ears
shut, we juxtapose the detective Sherlock Holmes whose success shows that, far from
the usual view of logic as organized pedantry, logical skills are not just duties that
we perform, but also talents that we appreciate and that even give us pleasure.
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Two strands: structure of the world, structure of human activity Even so,
the course presents no criticism of other views. One general way of thinking about
what is said here goes back to a pervasive feature of logic throughout its history, and
something that even surfaces in many hardcore textbooks. One can think of logic as
describing the most general structure of reality and its inventory of atomic, negative,
or disjunctive facts, individual and general facts. In that metaphysical sense, logic
would be there even if there were no human beings at all, as on the cold and lonely
planets we see in astronomical documentaries. One can soften this perspective a bit
in terms of objective information available about and in the world (another view of
logic that can be found in prominent textbooks, cf. Devlin 1991), but again this
information would be there even if there were no human agents picking it up.

But there is also another stream, right from the ancient Greek origins of the
discipline with Aristotle and Plato (but also prominent in the Chinese tradition), of
logic as manifesting itself in activities of conversation, dialogue and debate, whether
cooperative or competitive. On this agency view, logical laws are about moves and
strategies that agents have toward winning in dialogue games, and the very logical
constants now correspond with structured actions in argumentation or conversation.
On this second view, then, communication and strategic interaction are crucial to
logic, and the patterns described by logical systems may just as well be forms of
rational behavior as forms of language as patterns forming the grooves of our world.
‘Logic in Action’ emphasizes the second view as much as the first. 5

An interdisciplinary cross-roads This view comes with a broad canvas of disci-
plines that modern logic interacts with. While students in many disciplinary courses
taught today, be they mathematicians, philosophers, or linguists, may be told that
logic is typically ‘theirs’ (with only rumors of lapses into other fields), the reality of
the field today is that it interacts with, feeds into, and is inspired by contacts with
the old interfaces of philosophy and mathematics, but just as much with computer
science, linguistics, and in recent years also some cognitive science. Probably most
logic research today takes place in computer science, including some of the most in-
novative frontiers. Thus, in this course, computation in a broad sense is highlighted
as a core concern of logic, and a running theme next to proof or definability.

5Of course, the two views are not in conflict. In the end, structured activity that does not fit
the structure of the world may not have much of a chance from an evolutionary perspective.
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This is the intellectual environment that we convey to students in this course.
Logic is one’s ticket to broadmindedness, not to one particular disciplinary lifestyle.

3 And so: teaching a broader range of logical skills
In terms of paradigmatic logical acts, then, the basic repertoire to be taught gets
extended. Say, a question is as basic a logical act as an inference. And likewise, an
interactive strategy is as important as a proof, say, as a way of guiding communica-
tion or argumentation. But how do we make all this concrete to students?6

New standard example: Three Cards An appealing aspect of this multi-agent
interactive view is that set pieces of logical reasoning to be taught now become
much more interesting and appealing to students (and adults) than the usual simple
syllogisms about Socrates’ mortality or Boolean inferences about which box the keys
are in. Here is a typical challenge, somewhat of a classic by now. Much of our basic
reasoning in daily life is not just about the facts, but it also crucially involves what
we know about what others do or do not know. Here is a scenario that was once
played out with real children in the Amsterdam science museum “NEMO”.

“The Cards”. Three cards ‘red’, ‘white’, ‘blue’ are given to three children:
1, 2, 3, one to each. This fact is common knowledge in the whole group.

6A stream of research on ‘dynamic-epistemic logic’ forms the backdrop to this line in the course:
cf. van Ditmarsch, van der Hoek & Kooi 2007, van Benthem 2011, and van Benthem 2014.
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The children see their own cards, not those of the others. The actual
distribution over 1, 2, 3 is ‘red, white, blue’ (written rwb. Now a conver-
sation takes place. Child 2 asks 1: “Do you have the blue card?” Then
1 answers truthfully: “No”. Who knows what during this conversation?

This scenario always generates classroom interaction, including mistaken claims.
Here is the logical answer. Assuming that questions and answers are sincere (not
unrealistic with children), 2 indicates that she does not know the answer, and so she
cannot have the blue card. This tells 1 at once what the deal was. But 3 did not
learn, since he already knew that 2 does not have blue. When 1 says she does not
have blue, this now tells 2 the deal. 3 still does not know the deal; but since he can
perform the reasoning just given, he knows that the others know it.

Humans often go through this sort of reasoning, with different knowledge for
different agents acting as the driving force for communication. Indeed, puzzles like
this pose challenges that people worldwide find interesting, witness the discussion of
the solution of the ‘Cheryl Birthday Puzzle’,7 a knowledge problem that went viral
in the spring of 2015 after having appeared on a talk-show in Singapore.

A new feature: modeling skills This is logic in action at a challenging level,
including inferences, questions and answers. And it involves a further important skill
not usually taught in introductions to logic, namely, the ability to model a given
scenario in a concrete semantic manner. Indeed, it is not hard to make students see
that we can model the initial situation for the Three Cards as a set of six alternatives
(the possible deals of the cards), related by easily drawable labeled uncertainty lines
for players, as in the leftmost diagram of the following sequence:

7See https://en.wikipedia.org/wiki/Cheryl27s_Birthday for details.
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With this direct visual structure, child 2 cannot tell rwb and bwr apart if she
finds herself in either of these deals, but when in those same situations, child 1 and 3
can. The information flow in the preceding example can then be made very concrete
in terms of updates, leading to the next two diagrams in the picture:

2’s question removes rbw, wbr, reducing the range to four options.
Then 1’s answer removes bwr, brw, and we are left with a final diagram
rwb, wrb, in which it is directly visible that 1 and 2 know the cards,
3 does not, though 3 does know that the others know. The last fact is
non-trivial information in itself, of a more social interactive nature.8

Extended desiderata What skills and insights do we expect students to learn in
the wider world of this course? Certainly, we do not want to give up on classical
topics, since propositional and predicate logic with their standard agenda are still
at the core of the field. Also, there is of course nothing wrong with the traditional
virtues of logic education that come with this, such as increasing precision, appre-
ciating the architecture of logical systems, and acquiring a sense of the beauty of
abstract mathematical formulations. Indeed, such learning experiences also have to
be, and can be, supplied for the further tasks mentioned here. This includes an
understanding of the systematic theory behind the examples we have given.

But in addition, we want new topics that reflect the wider world of informational
activities that we sketched, dealing with the logic of information, update, and inter-
action. And didactically, this set of topics requires modeling skills beyond the usual
core. For instance, we do not want routine ‘translation’ of the natural language text
of the Three Cards scenario into formulas, the way we drill students in a standard
course to become little text processors. Such translations mix details of syntax with
essentials for the task at hand – and true logical ability consists, more creatively, in

8Teaching unusual material like this challenges students in new ways. Recently, one observed
that Child 1 does not even need to answer the question, but only has to say that he now knows the
cards, and then Child 2 will know the cards as well. This then raised interesting general discussion
in class about how epistemic information can replace factual information in communication.
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picking out the important features only. In brief, we want a paraphrase into essential
formulas, the way we also use just a handful of mathematical equations to model
physics problems. And preferably, we want a semantic model or diagram for the
setting, and based on that, an understanding of the relevant information flow.

And finally, in an information society like ours, the world of human reasoning
is entangled ever more with computing technology, whose origins go back to logic
in other historical channels. Accordingly, in terms of preparing them for life, we
want the students to understand some basics of the computational structure and
complexity of the informational processes that form the topic of this course.

Next, we say a bit more about the course resulting from all these desiderata.

4 Contents and chapter structure
How can we teach the above enlarged set of themes and skills? Perhaps the most
obvious approach is to merely extend today’s standard curriculum. In a way, our
course has that feature. ‘Logic in Action’ has the following two main parts, with a
third as a supplement for a more ambitious version.

Part I The first part of the course contains the basics of propositional logic, then
the syllogistic as a first, historically but also systematically important, extension
toward reasoning about objects and predicates, and finally, full first-order logic with
quantifiers. These systems are presented as progressively richer ways of describing
the world, be it physical space or conceptual space. The way we do this has a few new
twists (see the description of our recurrent chapter structure given below), but we
largely follow the standard agenda of basic topics. This part covers the descriptive
dimension of logic that we mentioned in Section 2. Next, we turn to the activity
dimension that we saw as a complementary view of what logic is about.

Part II The second part of the course is then devoted to the main ingredients of
information-driven agency. A first chapter on epistemic logic focuses on semantic
modeling of information, including knowledge that agents have about facts and about
knowledge of other agents. Next to get at the dynamics of the actions involved in
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communication, and agency in general, a chapter on dynamic logic of programs, and
structured action generally, gives a standard base logic of structured computation.
Finally, the two strands of information and action are brought together in a chapter
on logic and games, as a grand finale where preferences come into the picture, as
well as the fundamental notions of strategy and equilibrium.

Available materials This brief survey article is not the place to give precise de-
tails of these six chapters, for which we refer the reader to the public-domain website

http://www.logicinaction.org/

and the free textbook “Logic in Action” and further download materials there:

http://www.logicinaction.org/docs/lia.pdf.

Part III There is also a third optional part in the course, with technical material
on major methods for proof and computation: semantic tableaux, natural deduction,
and resolution. This is meant for students or teachers who have time to spare, or
who just cannot let go of traditional themes. We also envisage adding a chapter on
basic meta-theory offering acquaintance with proving important facts about logical
systems, both classical and epistemic-dynamic. This material is more traditional
again, emphasizing once more that we have no quarrel with standard curricula, and
that the new systems in Part II still fall under a standard methodology.

Extension implies pruning In all this, a choice had to be made in setting am-
bitions. If we keep the usual content of the first standard chapters the same, then a
course like this will become top-heavy, and also, we miss an opportunity to remove
historical clutter from the old curriculum. But if we rethink things more radically,
then hard and perhaps controversial choices must be made. Do we still teach trans-
lation from natural language to formulas, with the usual drill? Do we teach formal
deduction in detail, despite legitimate concerns about its broader transfer value to
reasoning skills, or its adequacy as a model for what mathematical proof really is?
If we stick to the standard course size, something has got to give. 9

In our course, we have economized mainly on extensive translation drill, and on
proof skills, though they are not gone completely. In particular, we have kept some
axiomatic calculi to at least familiarize the students with the important intellectual
idea of a symbolic uninterpreted systems view of deduction. Moreover, precisely

9This pruning may also have a positive value. People often forget that dropping worn-out topics
from a curriculum can yield as much progress in a field as adding new ones.
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because axiomatic proofs may involve surprising twists and shortcuts via lemmas
undreamed of in more placid proof search environments like tableaux or sequent
calculi, these pose more creative challenges to students. We have also economized
on the usual formal set-theoretic presentation of model-theoretic semantics for first-
order logic, which is often a stumbling block for students anyway, and which can also
be questioned on technical logical grounds (Andréka, van Benthem, Bezhanishvili &
Németi 2014). This set-theoretic garb also has the disadvantage of making first-order
truth, which students already understand intuitively, look weird and exotic.

Note that the course does not become easier in this way, since the content struc-
ture for these topics in Part I now carries over to the new topics of Part II.

Coherence and chapter design Our broader agenda does have a didactic down
side. The expanded set of topics runs a risk of incoherence and incongruity since
its scope is so wide. Hence, to increase a sense of uniformity for the student, all
chapters, no matter how different their topics, have been set up in a similar manner:

As illustrated in the displayed picture, each chapter repeats the same pattern
of sections – called Motivation, Language, Semantics, Axiomatic System, Update,
Mathematical Theory, and Further Windows, where the latter are illustrations ori-
ented toward the broader intellectual environment of logic in computation, cognition,
language, and philosophy. Let us describe the generic structure of a few chapters,
with less or more standard topics, to illustrate how this set-up works.

Chapter 1 In the chapter on propositional logic, ‘motivations’ are classifying of
structure in the world as well as finding patterns in argumentation, ‘language’ in-
troduces the idea of abstract symbolic syntax as a major historical achievement,
and ‘models’ are of course the evergreen of truth tables. For an ‘axiomatic system’
we teach some Hilbert-style formula manipulation, which also gets students used to
idea that finding proofs is not trivial. A new feature is teaching ‘update’ where new
information decreases a current range of options, and where we show how some puz-
zles can be solved naturally either by deduction or by update to one single remaining
option. This shows the semantics at work in a way that students find appealing,
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while the harmony of semantics and proof theory also features concretely. Next, in
a section on ‘mathematical theory’ we introduce definability of connectives, as well
as the notions of soundness and completeness for logical systems. Finally, ‘further
windows’ in this case are toward the usual logic puzzles, but beyond that, mainly
toward computation: networks for Boolean algebra, and complexity, including the
P = NP problem. After all, propositional logic is deeply connected with the emer-
gence of computer science. Of course, the chosen illustrations in such windows can,
and will touch on different disciplines in other chapters.

Chapter 4 Now the very same structure is also used, say, in the chapter on epis-
temic logic. We motivate the issues by means of simple informational scenarios
concerning questions and answers that students immediately find appealing.10 Intro-
ducing a language with knowledge operators allows them to state significant things
about the agents involved in such scenarios in a concise manner, and finding models
for this language that match a given intuitive scenario then turns out to be an at-
tractive non-trivial task. Thus, instead of routine drill, we now emphasize the ‘Art
of Modeling’. Axiomatic systems such as modal S5 now stand for significant (if of-
ten controversial, and always discussion-generating in class) properties of knowledge,
and making concrete deductions shows surprising connections. Update is the way
of solving puzzles like the Three Cards, discussed earlier, in a satisfying systematic
manner. Mathematical theory includes again completeness, or, more ambitiously
qua abstract ideas, an introduction to the notion of bisimulation as an invariance
between information or process models. In terms of further outlooks, epistemic logic
is well-suited to discussing basic themes in philosophy (say, adding belief, and then
discussing the surplus of real knowledge over belief) and cognitive science, where
interactive social ‘Theory of Mind’ is considered a typical human skill.

10In particular – referring to the first picture displayed here – normally, my asking you in a
Beijing street whether the structure depicted is the ceremonial Central Gate of Tsinghua University
tells you several important epistemic social things: (a) I do not know the answer, (b) I want to
know the answer, and (c) I think that you may know the answer.
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Chapters 5 and 6 In a similar manner, we structure the next chapter on dy-
namic logic as a stream-lined abstract modal version of the basic Hoare Calculus of
structured programs and actions, and at the same time, as a natural companion to
the epistemic logic chapter for the purpose of describing information dynamics. The
perspectives of Chapters 4 and 5 then come together once more in the chapter on
games, along two lines. We introduce logic games for earlier tasks of formula evalu-
ation or proof, and we define game logics as revealing basic structures in reasoning
about, and inside, social interaction. We also show some mathematical background
such as Zermelo’s Theorem and broader connections with game theory.

Windows and the range of logic As for the intended interdisciplinary range
discussed in Section 2: our windows at the end of these chapters include topics such
as computational content of logics (say, satisfiability checking as computation), in-
formation and the internet, natural language (for instance, generalized quantifiers
are a window after the chapter on the syllogistic), cognitive science (the Wason Card
Task and difficulties in actual reasoning, confronting logical systems with ’natural
logic’ in cognitive architecture), and some history of logic in other cultures, espe-
cially in China. Finally, we keep emphasizing the value of the mathematical aspects
of logic, none of which are meant to be endangered by this course: precision in
formulation, abstraction, systematicity, and the beauty of meta-theory. 11

Having concluded our description of content and structure, let us now look at
some issues of didactic implementation and concrete practical experiences with the
course ‘Logic in Action’. Does the above really work?

11Of course we cannot cover every technical aspect. For instance, most modal logics of Part II
can be systematically translated into (decidable fragments of) the first-order logic of Part I. But
even though, technically, this generates further coherence to the course, we feel that this translation
theme would probably only confuse students at this early stage of their logical education.
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5 The spirit and the letter of the course
The spirit There are various ways of looking at this course. Our educational goal
is to teach the students modern ideas and skills they may find helpful in further
academic professions, or even beyond in society. We try to strike many chords in
doing so. At a basic level, we try to show that logic is fun, using classic puzzles
as well as newer items such as Sudoku or the Cheryl Birthday Puzzle. It is just a
simple fact that many people enjoy exercising logical thinking skills, and students
are no exception. Next, we try to teach the students what we genuinely think are the
core topics of the field: deduction, computation, information, and interaction, using
a broadened set of topics that we hope will become standard. To us, an example
like the Cards puzzle is as genuinely logical as worrying about Socrates’ mortality.
In addition, we try to convey an appealing picture of logic as a broad and lively
evolving field that connects between many disciplines, or put more negatively: we
try to combat widespread narrow exclusive views of logic by opening interdisciplinary
and cross-cultural windows. In doing so, we also try to convey that logic still has
a great future ahead of it, given that so much has kept happening over the last
century. Finally, perhaps more silently, we also hope to convey a less utilitarian idea
to the students: that logic has a cultural value in itself that enriches them.

The letter These are the high-sounding ideals. In subsequent sections we will
discuss what happens when these meet educational practice. But right here, let us
also state another perspective: if you wish, ‘the letter’ of this course, that seems
to be what remains on many working colleagues’ radar when they use the material
presented here. Take away the above ideals, and just look at what has to be taught,
the bottom-line of all courses in academic reality. One way of describing our curricu-
lum is simply this: we add modal logic to the traditional topics of propositional and
predicate logic. The rationale for this terse description is that modal logic is indeed
the technical core underlying our added chapters on epistemic and dynamic logic.
While this mathematical formulation is an outrageously one-dimensional projection
of what is contained in the course, and a misleading one in several ways, it does
have the virtue of being short and intelligible. Moreover, since the connections of
modal logic to classical systems are well-understood, the addition fits very nicely, so
hard-bitten illusion-free teachers can just see this as their task.

6 The internet dimension
As stated at the start, the original impetus for making this course happen (and
a major motivation for its funding) was an initiative toward creating free courses
available on the internet, and supported by new technology. Where do we stand?
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On what there is Our material is freely available on our public website mentioned
above: http://www.logicinaction.org/, in the form of a textbook, slides supporting
class sessions, videos, and exercises from various sources with worked-out answers.

Overreach? Still, the ambitions in our team were much higher when the project
started. We wanted to create a complete e-book with live links to background mate-
rial, applets for specific tasks or demonstrations, and clickable windows for stepping
right into the field of logic, from interfaces with automated deduction systems to
more theoretical sources. A few chapters of this sort are indeed available on the
above website, drawing on the innovative material developed by Jan Jaspars, a pio-
neer in computer-supported logic teaching in The Netherlands – for more samples,
see, e.g., this website of the Dutch Open University:

https://www.ou.nl/web/logica-in-actie

Ideally, this electronic paradise would allow for complete self-study of ‘Logic
in Action’ by worldwide users of the course, helped along by equally automated
self-tests after chapters, without any interaction with human designers or teachers,
except perhaps in the form of filmed lectures or video clips. In 2014, a more modest
pilot version of this course, taught at Stanford University, was indeed formatted for
the EdX platform in a preliminary way.12

None of this broader internet agenda has materialized seriously so far. We will
discuss in Section 8 why this is so, and how much of a bad or good thing this is.

12See the material at http://explorecourses.stanford.edu/search;jsessionid=1uudpox4o4m9v13p6
nh1froldi?q=PHIL+150E%3A+Logic+in+Action%3A+A+New+Introduction+to+Logic&view=
catalog&filter-coursestatus-Active=on&academicYear=20132014.
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7 Experiences so far
This course has been taught in since 2008 in various classroom versions, mostly at
an undergraduate level, at universities in Amsterdam, Beijing, Berkeley, Maynooth,
Seville, and Stanford. Moreover, shorter versions of ‘Logic in Action’ have been
taught occasionally elsewhere for more diverse audiences, including the 2011 ESSLLI
Summer School in Ljubljana. An adapted version is also a standard part of the
curriculum of the Stanford On-Line High School.

This fits the intended range as originally envisaged for this course material: from
advanced high school level onward to lower university levels.

Except for the usual short-term student evaluations, there has been no systematic
pedagogical evaluation yet of ‘Logic in Action’, which would have to involve a longer-
term study of the intended lasting effects qua skills and attitudes.

Instead, what follows here are just a few more anecdotal quotes from teachers of
the course about their didactic experiences.

Dora Achourioti (Amsterdam University College). “ ‘Logic in Action’ is not a con-
ventional logic text-book. The conventional introduction to logic would teach the
technical material first and then study its applications (if applications are at all
meant to be part of the picture). In LiA, logic rarely features in its own, outside
of the real life practices where it is most naturally embedded. For the teacher, this
presents a challenge. The conventional road is straightforward. But this one is not
clear how to follow. How do you make sure to reach the mathematical precision that
you do not want to compromise? How do you make sure that by complementing the
material on the technical side you do not thereby take away from the richness and
breadth of the subject and its various connections with other disciplines as high-
lighted in the book? It is important to work with a text that allows questions to be
asked and teaching to develop, rather than enforcing a rigorous attitude that leaves
no room for flexibility and hence no room for improvement. At AUC we have tried
to make the most out of this flexibility, using the book more as a rich source of
inspiration, rather than a book of instructions on how to do logic.”
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Wesley Holliday (University of California at Berkeley). “The last time I taught
with ‘Logic in Action’ was in the Spring of 2012 at Stanford University. Nothing
from that experience seems in conflict with any of the written impressions in this
article. Since then I have used the ‘Logic in Action’ text as my go-to recommendation
for students in my modal logic course and my first-order meta-theory course who
want another text for review or to strengthen their understanding. (Incidentally,
my text for modal logic is “Modal Logic for Open Minds”, and my text for first-
order meta-theory last time was Chiswell and Hodges’ “Mathematical Logic”, plus
selections from Enderton, van Dalen, and Hodges’ “Elementary Predicate Logic.”)
Student evaluations have been very positive. My plan is that when I am assigned
the introductory logic course at Berkeley (with about 100 students), I will use ‘Logic
in Action’, and then I will have a lot more to say.”

Tomohiro Hoshi (Stanford On-Line High School). “The material that ‘Logic in Ac-
tion’ provides matches the pedagogical spirit of the Stanford Online High School
very well. We believe that active and live engagement of our students is essential
for learning processes and have tried to represent this spirit in our online environ-
ment. We often feel that some of the most technologically advanced materials with
lots of automated support for students do not fit the above goals. By contrast,
‘Logic in Action’ makes its material accessible to a wide variety of our students, not
only by having the text and associated supplementary material free online, but also
by grounding technical materials that are often challenging to students of our age
groups to fields of study that they can more readily relate to, while still providing
great opportunities for our students to experience what we believe is a true learning
experience by “getting their hands dirty” with the material they are provided.”

Fenrong Liu (Tsinghua University Beijing) “I have used the textbook ‘Logic in Ac-
tion’ at Tsinghua, for undergraduate teaching over several years now. It is a one
semester course, 48 hours in total. I usually cover propositional logic, first-order
logic, epistemic logic and dynamic logic, and sometimes a bit of logic and games.
The message of logic as a interdisciplinary subject is well received: this is also
confirmed by the structure of the audience, as my students are from mathematics,
computer science, philosophy, physics, and engineering. The students found the tra-
ditional part of first order logic still rather difficult, but get very excited when we
start epistemic logic and dynamic logic. They can easily connect what they learned
in class with how they reason with information in real life.”

These statements from hands-on teachers largely speak for themselves. Even so,
in the following section, I identify some further difficulties as I see them.
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8 From plan to reality: difficulties
Self-study is a bridge too far In the confrontation of this new type of course
with reality, several things can be noted. First, there is a big gap between a course
taught at institutions by teachers interacting with students and an internet course
for pure self-study. Simply put, apart from a few scattered positive reactions from
visitors to our website, the second goal does not seem to have been realized at all.

So, let us consider experiences in more standard academic environments. Here,
too, much can be noted that leads to serious questions about realizing the intended
goals as explained in the above. We list several difficulties, though these do not
mean that the ‘Logic in Action’ spirit is not appreciated!

Emergence of dialects One thing that is very noticeable is the immediate diver-
gence in the way the course has been used, depending on the teachers’ experiences,
or their own views on the subject. It seems fair to say that ‘Logic in Action’ has as
many dialects as it has geographical locations. One striking phenomenon is an urge
to just add new material to old courses, retaining all the old standard topics such
as natural deduction, so that the course loses its more radical character, and rather
becomes the addition of, say, some epistemic logic to a relatively standard logic
course. Two major emerging dialects that can be discerned are as follows: teach a
sequence ‘propositional logic, modal logic (in a more formal style), first-order logic’,
or teach things in the order ‘propositional logic, first-order logic, modal logic’.

There may be various reasons for this minimal modus operandi, in whatever
order it is done. Perhaps teachers are happy with the standard material in logic
introductions, but do not object to adding a few topics to round it out, or make
it more up to date. Some teachers have also complained that the course does not
provide enough abstract mathematical material and training, which they consider
the backbone of logic education: technique first, erudition and broad-mindedness
later. Perhaps also, student audiences want more focus, finding the wide spread of
topics disorienting. Living in a wide open world is not for everyone.

The target audience It may also be the case, and this is a perennial issue with
introductory logic teaching, that broad audience courses do not work as well as
specialized courses catering to the needs, and prejudices, of students from specific
disciplines. Moreover, there may still be a perceived bias in our material, despite
the intended broad scope. Anecdotal responses to the course have been that it is too
much computer science oriented, and too little toward, say, philosophy. Somewhat
ironically, a traditional very formal skills-oriented logic course may generate less
resistance from specific disciplines. Since these skills do not apply to anything in
particular, such a course treats everything equally, having no favorites.
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But also, to continue with an earlier observation, university students fall into
very different categories. There are ‘open-system types’ who like flexibility and
change, and ‘closed-system types’ thriving only in well-defined communities with
strict norms for what is ‘good’ and what is not (the ‘bad’ is often: what is done
in other disciplines or paradigms). This division is clearly observable in graduate
schools, where one has to cater for the sensitivities of both types of student – and it
may well be that a course like this, with its broad range of topics and open windows
to the university at large, will rub closed-systems types exactly the wrong way.

Supporting training But beyond these larger perspectives, there are also simpler
down to earth issues with teaching the material in its current form. One difficulty
is finding good exercises that test understanding of new topics and new skills. Tra-
ditional logic courses have had at least a century of honing test questions in their
main fare, while in a new course like this, we need to find a new repertoire to train
and test students in understanding the working of questions and other informational
acts. This is a serious creative challenge requiring additional investment.

Likewise, our recurrent computational thread raises issues: should not this in-
volve real training in programming or other hands-on computational skills? Some
members of our team think so, and therefore, it should be noted that the ‘Logic in
Action’ webpage also has a Part IV, still under development, with concrete program-
ming materials. However, other teachers find this emphasis alienating for students
who want a general logic course, not one biased toward computer science.

ICT form or good old content? As for the intended transformative internet
and technology aspects of the course when it started, our main experience has been
that this is not a decisive factor in the success of the course as taught. It may
be an asset for some students, but given the level of sophistication in the world of
education today, a course like this does not offer any creative technology that would
give it an advantage over any other. To get ahead in this race, presumably, huge
development efforts would be needed. But it is very unclear right now what realistic
and desirable goal would justify such an effort (see also Section 9 on this issue).

Practical reasoning and social impact Finally, returning to the ideal of a self-
study logic course with benefits for everyone, it seems clear by now that ‘Logic in
Action’ really functions as an upper-level high school or under-graduate-level univer-
sity course, and one that is directed mostly toward logic in its academic form. One
could also have the goal of improving actual thinking and argumentation practice,
but this would require an effort that we have not made. In fact, it is not clear yet
if there can be a happy mixture of the abstract intellectual approach in this course
and hands-on courses on argumentation theory or critical thinking.
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This is not to say that striving for practical impact of logic courses is an endeavor
without value. Even more traditional logicians like Evert Willem Beth, a founding
father of the Amsterdam ILLC environment, explicitly stated his ideal that logic
should improve the level of argumentation and reasonable interaction in our society.
But realizing such an ambition seems a challenging separate task.

9 Conclusion: where to go from here

We conclude with a few thoughts on where the course ‘Logic in Action’ might go.

Given the above observations, our current thinking has become more moderate
and laissez-faire. The material that we have produced seems a natural and coherent
set. Beyond that, it may not be a good idea to impose much ideological uniformity
on a course like this, and in any case, enforcing it across the globe is impossible
in practice. Moreover, given the fast developments in the academic role of logic,
flexibility is needed to accommodate further changes.

The material for a broad logic course in the style described here remains available
in the on-line textbook, which will be updated periodically. In addition, we will add
teaching tools as they come our way, including course slides and new exercises. We
are also thinking of adding a ‘best practices forum’ where users of the website can
meet. Finally, our team is thinking of ‘teaching the teachers’, offering courses at
suitable venues for people considering to use this course.

As for the internet ambitions, it turns out that no harm has been done by pro-
crastinating. The world of education actually seems to have reached a phase where,
worldwide, initial expectations about slick on-line courses have been downgraded to
much more realistic levels. The current trend toward ‘blended learning’ (cf. Bersin
2004) emphasizes the indispensable educational role of real teacher-student interac-
tions, over and above what a textbook or website can give. Our course material can
help with blended learning, but trying to ‘can the course’ will not work.

To go further, and find out what really happens with users of our course, we
may also consider creating a ‘logic garden’ – on the analogy of the innovative web-
site ‘math garden’ created by Han van der Maas at the University of Amsterdam:

http://www.rekentuin.nl/

This would be a site where a wide variety of visitors can experiment with the material
presented here, leaving traces that we can use to improve our course, and learn more
about what it is to learn logic.
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But all these desiderata do not detract from what we see as our main contri-
bution. The course ‘Logic in Action’ was designed to enrich what students learn
in their first encounter with logic. In addition to content of any introduction to a
field, there is also a spirit: a modus operandi and even an intellectual value system
gets transmitted. Ours has been to make the scope of logic broad, and in line with
that, also the students’ view of its position in the university arena. While we are
not expecting a revolution, given our material and teaching experiences so far, we
do believe in the power of small steps in creating large beneficial attitude changes.
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1 Introduction

In this paper we present the NaDeA software tool. First, we provide the motivation
and a short description. We then present the natural deduction system as it is done
in a popular textbook [15] and as is it done in NaDeA by looking at its formalization
in Isabelle. This illustrates the differences between the two approaches. We also
present the semantics of first-order logic as formalized in Isabelle. Thereafter we
explain how NaDeA is used to construct a natural deduction proof. After that,
we explain the soundness proof of the natural deduction proof system in Isabelle.
Lastly, we compare NaDeA to other natural deduction assistants and consider how
NaDeA could be improved.

1.1 Motivation

We have been teaching a bachelor logic course — with logic programming — for
a decade using a textbook with emphasis on tableaux and resolution [1]. We have
started to use the proof assistant Isabelle [2] and refutation proofs are less preferable
here. The proof system of natural deduction [3, 4, 5, 15] with the introduction
and elimination rules as well as a discharge mechanism seems more suitable. The
natural deduction proof system is widely known, used and studied among logicians
throughout the world. However, our experience shows that many of our computer
science bachelor students struggle to understand the most difficult aspects.

This also goes for other proof systems. We find that teaching logic to com-
puter science bachelor students can be hard because in our case they do not have
a strong theoretical mathematical background. Instead, most students are good
at understanding concrete computer code in a programming language. The syntax
used in Isabelle is in many ways similar to a programming language. A clear and
explicit formalization of first-order logic and a proof system may help the students
in understanding important details.

We find it important to teach both the semantics of first-order logic and the
soundness proof to bachelor students. In the present course the formal semantics
as well as the soundness proof in Isabelle are presented to the students. The for-
malization is also available online in NaDeA and the entire Isabelle file is available
in NaDeA too. However, in the present course the students are not expected to be
able to construct such a formalization in Isabelle from scratch.

The proof assistant Isabelle is different from a programming language because
the expressions are not necessarily computable. For instance, quantifications over
infinite domains are possible.
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1.2 The Tool
We present the natural deduction assistant NaDeA with a formalization of its proof
system in the proof assistant Isabelle. It can be used directly in a browser without
any further installation and is available here:

http://nadea.compute.dtu.dk/

NaDeA is open source software developed in TypeScript / JavaScript and stored on
GitHub. The formalization of its proof system in Isabelle is available here:

http://logic-tools.github.io/

Once NaDeA is loaded in the browser — about 250 KB with the jQuery Core library
— no internet connection is required. Therefore NaDeA can also be stored locally.

We present the proof in an explicit code format that is equivalent to the Isabelle
syntax, but with a few syntactic differences to make it easier to understand for some-
one trying to learn Isabelle. In this format, we present the proof in a style similar
to that of Fitch’s diagram proofs. We avoid the seemingly popular Gentzen’s tree
style to focus less on a visually pleasing graphical representation that is presumably
much more challenging to implement.

We find that the following requirements constitute the key ideals for any natural
deduction assistant. It should be:

– Easy to use.

– Clear and explicit in every detail of the proof.

– Based on a formalization that can be proved at least sound, but preferably
also complete.

Based on this, we saw an opportunity to develop NaDeA which offers help for
new users, but also serves to present an approach that is relevant to the advanced
users.

In a paper considering the tools developed for teaching logic over the last decade
[14, p. 137], the following is said about assistants (not proof assistants like Isabelle
but tools for learning/teaching logic):

Assistants are characterized by a higher degree of interactivity with the
user. They provide menus and dialogues to the user for interaction pur-
poses. This kind of tool gives the students the feeling that they are being
helped in building the solution. They provide error messages and hints
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in the guidance to the construction of the answer. Many of them usually
offer construction of solution in natural deduction proofs. [...] They are
usually free licensed and of open access.

We think that this characterization in many ways fits NaDeA. While NaDeA might
not bring something new to the table in the form of delicate graphical features, we
emphasize the fact that it has some rather unique features such as a formalization
of its proof system in Isabelle.

2 Natural Deduction in a Textbook
We consider natural deduction as presented in a popular textbook on logic in com-
puter science [15]. First, we take a look at substitution, which is central to the
treatment of quantifiers in natural deduction.

2.1 On Substitution
The following definition for substitution is used in [15, p. 105 top]:

Given a variable x, a term t and a formula φ we define φ[t/x] to be the
formula obtained by replacing each free occurrence of variable x in φ
with t.

The usual side conditions that come with rules using this substitution seem to be
omitted, but we are shortly after [15, p. 106 top] given the following definition of
what it means that ’t must be free for x in φ’:

Given a term t, a variable x and a formula φ, we say that t is free for x
in φ if no free x leaf in φ occurs in the scope of ∀y or ∃y for any variable
y occurring in t.

The following quote [15, p. 106 bottom] emphasizes the side conditions:

It might be helpful to compare ’t is free for x in φ’ with a precondition
of calling a procedure for substitution. If you are asked to compute
φ[t/x] in your exercises or exams, then that is what you should do; but
any reasonable implementation of substitution used in a theorem prover
would have to check whether t is free for x in φ and, if not, rename some
variables with fresh ones to avoid the undesirable capture of variables.

In our formalization such notions and their complications become easier to explain
because all side conditions of the rules are very explicitly stated. We see it as one
of the major advantages of presenting this formalization to students.
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2.2 Natural Deduction Rules
We now present the natural deduction rules as described in the literature, again
using [15]. The first 9 are rules for classical propositional logic and the last 4 are
for first-order logic. Intuitionistic logic can be obtained by omitting the rule PBC
(proof by contradiction, called “Boole” later) and adding the ⊥-elimination rule
(also known as the rule of explosion) [16]. The rules are as follows:

¬φ
...
⊥
φ

PBC
φ φ→ ψ

ψ
→ E

φ
...
ψ

φ→ ψ
→ I

φ ∨ ψ

φ
...
χ

ψ
...
χ

χ ∨E
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2

φ ∧ ψ
φ

∧E1
φ ∧ ψ
ψ

∧E2
φ ψ

φ ∧ ψ ∧I

∃xφ

x0 φ [x0/x]
...
χ

χ ∃E
φ [t/x]
∃xφ ∃I

∀xφ
φ [t/x] ∀E

x0
...

φ [x0/x]
∀xφ ∀I

Side conditions to rules for quantifiers:

∃E: x0 does not occur outside its box (and therefore not in χ).
∃I: t must be free for x in φ.
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∀E: t must be free for x in φ.
∀I: x0 is a new variable which does not occur outside its box.

In addition there is a special copy rule [15, p. 20]:

A final rule is required in order to allow us to conclude a box with a
formula which has already appeared earlier in the proof. [...] The copy
rule entitles us to copy formulas that appeared before, unless they depend
on temporary assumptions whose box has already been closed.

The copy rule is not needed in our formalization due to the way it manages a list of
assumptions.

As it can be seen, there are no rules for truth, negation or biimplication, but the
following equivalences can be used:

> ≡ ⊥ → ⊥
¬A ≡ A→ ⊥

A↔ B ≡ (A→ B) ∧ (B → A)

The symbols A and B are arbitrary formulas.

3 Natural Deduction in NaDeA
One of the unique features of NaDeA is that it comes with a formalization in Isabelle
of the natural deduction proof system, including a proof in Isabelle of the soundness
theorem for the proof system. In this section we present the definitions necessary for
expressing the soundness theorem and the proof in Isabelle is presented in section 5.

3.1 Syntax for Terms and Formulas
The terms and formulas of the first-order logic language are defined as the datatypes
term and formula (later abbreviated tm and fm, respectively). The type identifier
represents predicate and function symbols (later abbreviated id).

identifier := string
term := Var nat | Fun identifier [term, ..., term]
formula := Falsity | Pre identifier [term, ..., term] | Imp formula formula |

Dis formula formula | Con formula formula |
Exi formula | Uni formula

60



NaDeA: A Natural Deduction Assistant

Truth, negation and biimplication are abbreviations. In the syntax of our formal-
ization, we refer to variables by use of the de Bruijn indices. That is, instead of
identifying a variable by use of a name, usually x, y, z etc., each variable has an
index that determines its scope. The use of de Bruijn indices instead of named
variables allows for a simple definition of substitution. Furthermore, it also serves
the purpose of teaching the students about de Bruijn indices. Note that we are
not advocating that de Bruijn indices replace the standard treatment of variables in
general. It arguably makes complex formulas harder to read, but the pedagogical
advantage is that the notion of scope is practiced.

3.2 Natural Deduction Rules
Provability in NaDeA is defined inductively as follows (OK p zmeans that the formula
p follows from the list of assumptions z and member p z means that p is a member
of the list z):

member p z
OK p z Assume

OK Falsity ((Imp p Falsity) # z)
OK p z Boole

OK (Imp p q) z OK p z
OK q z Imp_E

OK q (p # z)
OK (Imp p q) z Imp_I

OK (Dis p q) z OK r (p # z) OK r (q # z)
OK r z Dis_E

OK p z
OK (Dis p q) z Dis_I1 OK q z

OK (Dis p q) z Dis_I2

OK (Con p q) z
OK p z Con_E1

OK (Con p q) z
OK q z Con_E2

OK p z OK q z
OK (Con p q) z Con_I

OK (Exi p) z OK q ((sub 0 (Fun c []) p) # z) news c (p#q#z)
OK q z Exi_E

OK (sub 0 t p) z
OK (Exi p) z Exi_I

OK (Uni p) z
OK (sub 0 t p) z Uni_E

OK (sub 0 (Fun c []) p) z news c (p # z))
OK (Uni p) z Uni_I
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Instead of writing OK p z we could also use the syntax z ` p, even in Isabelle, but
we prefer a more programming-like approach.

The operator # is between the head and the tail of a list. news c l checks if the
identifier c does not occur in any of the formulas in the list l and sub n t p returns
the formula p where the term t has been substituted for the variable with the de
Bruijn index n.

Note that new constants instead of variables not occuring in the assumptions are
used in the existential elimination rule and in the universal introduction rule.

In the types we use⇒ for function spaces. We include the definitions of member,
news and sub because they are necessary for the soundness theorem and also for the
formalization in section 5:

member :: fm ⇒ fm list ⇒ bool
member p [ ] = False
member p (q # z) = (if p = q then True else member p z)

new_term :: id ⇒ tm ⇒ bool
new_term c (Var n) = True
new_term c (Fun i l) = (if i = c then False else new_list c l)

new_list :: id ⇒ tm list ⇒ bool
new_list c [ ] = True
new_list c (t # l) = (if new_term c t then new_list c l else False)

new :: id ⇒ fm ⇒ bool
new c Falsity = True
new c (Pre i l) = new_list c l
new c (Imp p q) = (if new c p then new c q else False)
new c (Dis p q) = (if new c p then new c q else False)
new c (Con p q) = (if new c p then new c q else False)
new c (Exi p) = new c p
new c (Uni p) = new c p

news :: id ⇒ fm list ⇒ bool
news c [ ] = True
news c (p # z) = (if new c p then news c z else False)
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inc_term :: tm ⇒ tm
inc_term (Var n) = Var (n + 1)
inc_term (Fun i l) = Fun i (inc_list l)

inc_list :: tm list ⇒ tm list
inc_list [ ] = [ ]
inc_list (t # l) = inc_term t # inc_list l

sub_term :: nat ⇒ tm ⇒ tm ⇒ tm
sub_term v s (Var n) = (if n < v then Var n else if n = v then s else Var (n – 1))
sub_term v s (Fun i l) = Fun i (sub_list v s l)

sub_list :: nat ⇒ tm ⇒ tm list ⇒ tm list
sub_list v s [ ] = [ ]
sub_list v s (t # l) = sub_term v s t # sub_list v s l

sub :: nat ⇒ tm ⇒ fm ⇒ fm
sub v s Falsity = Falsity
sub v s (Pre i l) = Pre i (sub_list v s l)
sub v s (Imp p q) = Imp (sub v s p) (sub v s q)
sub v s (Dis p q) = Dis (sub v s p) (sub v s q)
sub v s (Con p q) = Con (sub v s p) (sub v s q)
sub v s (Exi p) = Exi (sub (v + 1) (inc_term s) p)
sub v s (Uni p) = Uni (sub (v + 1) (inc_term s) p)

3.3 Semantics for Terms and Formulas

To give meaning to formulas and to prove NaDeA sound we need a semantics of the
first-order logic language. We present the semantics below. e is the environment,
i.e. a mapping of variables to elements. f maps function symbols to the maps they
represent. These maps are from lists of elements of the universe to elements of the
universe. Likewise, g maps predicate symbols to the maps they represent. ’a is a
type variable that represents the universe. It can be instantiated with any type.
For instance, it can be instantiated with the natural numbers, the real numbers or
strings.
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semantics_term :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ tm ⇒ ’a
semantics_term e f (Var n) = e n
semantics_term e f (Fun i l) = f i (semantics_list e f l)

semantics_list :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ tm list ⇒ ’a list
semantics_list e f [ ] = [ ]
semantics_list e f (t # l) = semantics_term e f t # semantics_list e f l

semantics :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ bool) ⇒
fm ⇒ bool

semantics e f g Falsity = False
semantics e f g (Pre i l) = g i (semantics_list e f l)
semantics e f g (Imp p q) = (if semantics e f g p then semantics e f g q else True)
semantics e f g (Dis p q) = (if semantics e f g p then True else semantics e f g q)
semantics e f g (Con p q) = (if semantics e f g p then semantics e f g q else False)
semantics e f g (Exi p) =

(? x. semantics (% n. if n = 0 then x else e (n – 1)) f g p)
semantics e f g (Uni p) =

(! x. semantics (% n. if n = 0 then x else e (n – 1)) f g p)

Most of the cases of semantics should be self-explanatory, but the Uni case is com-
plicated. The details are not important here, but in the case for Uni it uses the
universal quantifier (!) of Isabelle’s higher-order logic to consider all values of the
universe. It also uses the lambda abstraction operator (%) to keep track of the
indices of the variables. Likewise, the case for Exi uses the existential quantifier (?)
of Isabelle’s higher-order logic.

We have proved soundness of the formalization in Isabelle (shown here as a
derived rule):

OK p [ ]
semantics e f g p Soundness

This result makes NaDeA interesting to a broader audience since it gives confidence
in the formulas proved using the tool. The proof in Isabelle of the soundness theorem
is presented in section 5.

4 Construction of a Proof
We show here how to build and edit proofs in NaDeA. Furthermore, we describe the
presentation of proofs in NaDeA.
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In order to start a proof, you have to start by specifying the goal formula, that is,
the formula you wish to prove. To do so, you must enable editing mode by clicking
the Edit button in the top menu bar. This will show the underlying proof code and
you can build formulas by clicking the red ¤ symbol. Alternatively, you can load a
number of tests by clicking the Load button.

At all times, once you have fully specified the conclusion of any given rule, you
can continue the proof by selecting the next rule to apply. Again you can do this
by clicking the red ¤ symbol. Furthermore, NaDeA allows for undoing and redoing
editing steps with no limits.

All proofs are conducted in backward-chaining mode. That is, you must start by
specifying the formula that you wish to prove. You then apply the rules inductively
until you reach a proof — if you can find one. The proof is finished by automatic
application of the Assume rule once the conclusion of a rule is found in the list of
assumptions.

To start over on a new proof, you can load the blank proof by using the Load
button, or you can refresh the page.

In NaDeA we present any given natural deduction proof (or an attempt at one)
in two different types of syntax. One syntax follows the rules as defined in section 3
and is closely related to the formalization in Isabelle, but with a simplified syntax
that makes it suitable for teaching purposes. The proof is not built as most often
seen in the literature about natural deduction. Usually, for each rule the premises
are placed above its conclusion separated by a line. We instead follow the procedure
of placing each premise of the rule on separate lines below its conclusion with an
additional level of indentation. Here is a screenshot followed by the proof tree:
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p ∧ (p→ q)
(1)

p→ q
p ∧ (p→ q)

(1)

p
q

p ∧ (p→ q)→ q
(1)

The above proof can also be written in terms of the OK syntax as follows:
1 OK (Imp (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" []))) (Pre "Q" [])) [] Imp_I
2 OK (Pre "Q" []) [(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Imp_E
3 OK (Imp (Pre "P" []) (Pre "Q" []))

[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Con_E2
4 OK (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))

[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Assume
5 OK (Pre "P" []) [Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Con_E1
6 OK (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))

[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Assume

So in a way we have the two presentation styles. However, the standard form
displayed in the screenshot is always presented and the programming style with the
OK syntax is switched on and off with a single click in the browser. The programming
style is mandatory when a formula must be entered. We find that the students in
general prefer the standard form but also that the switch to the programming style
when necessary is rather unproblematic.

For a small but quite interesting example of a proof of a first-order formula
consider the following screenshot:
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The line with the * in the proof is for the side condition that requires that the
constant c’ is new. By clicking on the proof the check is displayed in the OK syntax
as follows:

news (Fun ”c*” []) [(Uni (Dis (Pre ”P” [Var 0]) (Pre ”Q” [Var 0]))),
(Dis (Uni (Pre ”P” [Var 0])) (Uni (Pre ”Q” [Var 0])))]

The constant c’ is written as ”c*” here.

5 Formalization in Isabelle
Formalizations in Isabelle are written in a language that combines functional pro-
gramming and logic. Our computer science bachelor students know programming
from an introductory programming course and are introduced to logic in our course.
This makes Isabelle a well suited way to present a sound proof system compared
to a more abstract and mathematical approach. Furthermore, the language used
in Isabelle is somewhat close to English, which also aids the intuitions of the stu-
dents. Isabelle also allows the students to interactively inspect the different states
of the proof and get an overview of the lemmas and theorems that are used in the
steps – all in one screen. In this section we present the soundness proof using our
formalization and show the concepts known from programming and logic.

5.1 An Overview

We first give an overview of the formalization in Isabelle. In the overview we see a
number of datatypes tm and fm, that represent the objects that we want to reason
about. We also see a primitive recursive function member which is used in the
inductive definition OK of the proof system. Lastly, we see the soundness theorem
of the proof system. We will explain these concepts as well as show and elaborate
on the parts of the formalization that we did not put in the overview.

theory NaDeA imports Main begin

type_synonym id = "char list"

datatype tm = Var nat | Fun id "tm list"

datatype fm = Falsity | Pre id "tm list" | Imp fm fm | Dis fm fm | Con fm fm |
Exi fm | Uni fm
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primrec
member :: "fm ⇒ fm list ⇒ bool"

where
"member p [] = False" |
"member p (q # z) = (if p = q then True else member p z)"

(∗ More primitive recursive functions as included in the previous sections ∗)
inductive

OK :: "fm ⇒ fm list ⇒ bool"
where
Assume:

"member p z =⇒ OK p z" |
Boole:

"OK Falsity ((Imp p Falsity) # z) =⇒ OK p z" |
Imp_E:

"OK (Imp p q) z =⇒ OK p z =⇒ OK q z" |
Imp_I:

"OK q (p # z) =⇒ OK (Imp p q) z" |
(∗ More rules as included in the previous sections ∗)
(∗ A proof of soundness’ is included in the following sections ∗)
theorem soundness: "OK p [] =⇒ semantics e f g p"
proof (simp add: soundness’) qed

end

5.2 Terms and Formulas
Terms are defined by a datatype tm. Datatypes are a well-known concept from func-
tional programming. A term is either a variable or a function application. Therefore,
we have a constructor Var which constructs a variable from a nat representing its
de Bruijn index. Likewise, we have a constructor Fun which constructs a function
application from an id which is its function identifier and a "tm list" which represents
its subterms.

When we introduce a datatype in Isabelle, we implicitly state that all terms
can be constructed from its constructors. We also implicitly state that if two terms
are equal then they must have been constructed from the same constructor and
arguments. [18]

Formulas are also formalized as a datatype fm. It has a constructor for each
operator and quantifier of our first-order logic.
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5.3 Membership and Other Primitive Recursive Functions

List membership is defined as a primitive recursive function member over lists. The
constructor for lists is # which separates the head of the list from the tail. The
member function is primitive recursive because it removes a constructor from one
of its arguments in every recursive call [2]. In Isabelle, primitive recursive functions
are defined in much the same way as in functional programming, namely by stating
cases for the different constructors.

The intuition of the function is that member p z returns true if the formula p
is found in the list of formulas z and false otherwise. The function considers two
cases: either the list is empty or it has a head and a tail. In the first case it is clear
that the formula is not a member of the list. In the second case, we use the pattern
(q # z) where q is the head of the list and z is the tail. If the head is equal to p it
is true that p is a member of the list. Otherwise, we continue by looking in the tail
of the list.

Other primitive recursive functions used in the theory are semantics_term,
semantics_list, semantics, new, news, inc_term, inc_list, sub_term, sub_list and
sub. These functions define the semantics, increasing the de Bruijn indices of a term,
a constant being new to an expression, and substitution.

5.4 Proof System

Our proof system is defined by an inductive predicate. Each of the rules of the
system is a case in the inductive predicate. For instance, consider the following rule:

Assume: "member p z =⇒ OK p z"

The rule means that OK p z follows from member p z. Another case is the more
complex rule:

Imp_E: "OK (Imp p q) z =⇒ OK p z =⇒ OK q z"

It states that OK q z follows from OK (Imp p q) z and OK p z. This corresponds
to the usual notation for inference rules:

OK (Imp p q) z OK p z
OK q z Imp_E

That a predicate is inductive means that it holds exactly when it can be derived
using the given cases.
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5.5 Proof of Soundness
We are now ready for the proof of soundness.
fun

put :: "(nat ⇒ ’a) ⇒ nat ⇒ ’a ⇒ nat ⇒ ’a"
where

"put e v x = (λn. if n < v then e n else if n = v then x else e (n − 1))"
The function put updates an environment by mapping variable v to value x.

This is used in the definition of the quantifiers, but always for the outermost bound
variable. Existing variables greater than v are pushed one position up, i.e. variable
i now points to the value of variable i − 1 in the old environment.

We use fun to declare many different functions without being restricted to the
primitive recursive form. The operator λ is for lambda abstraction applied to oc-
currences of the parameter value and is known from functional programming. More
informally, if E is some expression in Isabelle then λx. E x is the function that takes
an input, for instance y, and returns E y.
lemma "put e 0 x = (λn. if n = 0 then x else e (n − 1))" proof simp qed
This lemma shows that put is a generalization of the expression

λn. if n = 0 then x else e (n − 1)

which appears in the semantics. We use this generalization to prove properties of
putting that we use in our soundness proof. The lemma is followed by a proof. In
this case, the proof is performed automatically by the simplifier simp. The beginning
of the proof is marked by proof and the end is marked by qed. The proof method
simp works by applying simplification rules [18]. It contains rules that are generated
from definitions of functions, datatypes, etc., in addition to simplification rules from
the Isabelle library.
lemma increment:

"semantics_term (put e 0 x) f (inc_term t) = semantics_term e f t"
"semantics_list (put e 0 x) f (inc_list l) = semantics_list e f l"

proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed simp_all
The lemma increment shows that we preserve the semantics of a term when we
increment its de Bruijn indices while putting a value x at index 0. The reason is
that putting pushes the values one index up in the environment. The proof is by
induction on t and l, which is stated as

induct t and l rule: semantics_term.induct semantics_list.induct
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and it generates four proof goals; one for each of the cases in semantics_term and
semantics_list. These goals can be inspected in the Isabelle editor by placing the
cursor right after

(induct t and l rule: semantics_term.induct semantics_list.induct)

and looking in the so-called state panel. The proof method simp_all applies the
simplifier to all available proof goals [18]. We place simp_all after qed in order to
finish the proof and to allow inspection of the proof state interactively in Isabelle.

lemma commute: "put (put e v x) 0 y = put (put e 0 y) (v + 1) x"
proof force qed

The lemma commute shows that the function put commutes. More precisely, we
want to put a value at position v+ 1 in the environment and one at position 0, and
the theorem shows that the order in which we do this does not matter, as long as
we are careful with the indices.

The proof is automatic and uses the proof method force, which works by simpli-
fication and classical reasoning [2].

fun
all :: "(fm ⇒ bool) ⇒ fm list ⇒ bool"

where
"all b z = (∀p. if member p z then b p else True)"

The function all checks if the predicate b is true for all formulas in a list. The ∀
operator is for universal quantification.

lemma allhead: "all b (p # z) =⇒ b p" proof simp qed

lemma alltail: "all b (p # z) =⇒ all b z" proof simp qed

lemma allnew: "all (new c) z = news c z"
proof (induct z) qed (simp, simp, metis)

The lemma allhead states that if b holds for the entire list, then it holds for the head
of the list in particular. The lemma alltail is similar, but for the tail of the list.
Finally, the lemma allnew shows the equivalence between news and all combined
with new. The proof uses the proof methods simp and metis in the order they are
written, i.e. simp the first proof goal generated by the structural induction on z.
Then simp simplifies the second proof goal which is afterwards proved by metis. The
metis proof method is a resolution theorem prover [17].
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lemma map’:
"new_term c t =⇒ semantics_term e (f(c := m)) t = semantics_term e f t"
"new_list c l =⇒ semantics_list e (f(c := m)) l = semantics_list e f l"

proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed (simp, simp, metis, simp, simp, metis)

lemma map:
"new c p =⇒ semantics e (f(c := m)) g p = semantics e f g p"

proof (induct p arbitrary: e)
qed (simp, simp, metis map’(2), simp, metis, simp, metis, simp, metis, simp_all)

lemma allmap:
"news c z =⇒ all (semantics e (f(c := m)) g) z = all (semantics e f g) z"

proof (induct z) qed (simp, simp, metis map)
The lemma map’ shows that we preserve the semantics of a term if we map a constant
that is new to the term to another value. Here, f(c := m) maps function identifier
c to m in the function map f. Because the lemma is quite obvious it can be proved
automatically. The first and third goals are proved by simp, and the second and
fourth are simplified by simp and then proved by metis. The lemma map shows that
the property of map’ can be extended to also hold for formulas. This can also be
proved automatically. There are seven proof goals of the induction corresponding to
each of the formula constructors. We use simp to discharge of the first proof goal,
then simp followed by metis for the next four. This time we use metis map’(2) to
prove the case for predicates. This works by applying metis with the addition of the
second part of map’ as a fact with which it can reason. The last two proof goals
are proved with the simplifier using simp_all. The lemma allmap further extends
the property of the lemma map’ to also hold for lists of formulas. We prove it using
simp and metis map.
lemma substitute’:

"semantics_term e f (sub_term v s t) =
semantics_term (put e v (semantics_term e f s)) f t"

"semantics_list e f (sub_list v s l) =
semantics_list (put e v (semantics_term e f s)) f l"

proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed simp_all

The lemma substitute’ is the famous substitution lemma for terms. This lemma
shows a relation between the world of syntax and the world of semantics. More
specifically, the relation is between the syntactical operation of substitution and the
semantic notion of variable environments. The two are related because a substitution
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instantiates a variable with a term, and this term represents a value. Thus we get
the same semantics of the term if we instead of substitution put the value directly
at the index of the variable in the environment. The proof is by induction and
simp_all.

lemma substitute:
"semantics e f g (sub v t p) = semantics (put e v (semantics_term e f t)) f g p"

proof (induct p arbitrary: e v t)
fix i l e v t
show "semantics e f g (sub v t (Pre i l)) =

semantics (put e v (semantics_term e f t)) f g (Pre i l)"
proof (simp add: substitute’(2)) qed

next
fix p e v t assume ∗: "semantics e’ f g (sub v’ t’ p) =

semantics (put e’ v’ (semantics_term e’ f t’)) f g p" for e’ v’ t’
have "semantics e f g (sub v t (Exi p)) =

(∃x. semantics (put (put e 0 x) (v + 1)
(semantics_term (put e 0 x) f (inc_term t))) f g p)"

using ∗ proof simp qed
also have "... =

(∃x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)"
using commute increment(1) proof metis qed

finally show "semantics e f g (sub v t (Exi p)) =
semantics (put e v (semantics_term e f t)) f g (Exi p)" proof simp qed

have "semantics e f g (sub v t (Uni p)) =
(∀x. semantics (put (put e 0 x) (v + 1)

(semantics_term (put e 0 x) f (inc_term t))) f g p)"
using ∗ proof simp qed

also have "... =
(∀x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)"

using commute increment(1) proof metis qed
finally show "semantics e f g (sub v t (Uni p)) =

semantics (put e v (semantics_term e f t)) f g (Uni p)" proof simp qed
qed simp_all

The lemma substitute extends the substitution lemma to hold also for formulas.
The proof is by induction on a formula p. In the proof we write arbitrary: e v t
because then e, v and t are also arbitrary in the induction hypothesis. This more
general induction hypothesis is necessary for the proof. Most cases can be proven
by the simplifier without any instructions, but we prove the cases for predicates Pre,
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existential quantification Exi and universal quantification Uni more explicitly. For
the predicates, we only need instruct the simplifier to use substitute’(2) as a simpli-
fication rule by writing (simp add: substitute’(2)). For the existential quantification
we make an explicit proof. We fix the subformula p of an existential quantification
for which we want to prove the property. As said, we want to prove it with an
arbitrary variable environment e, an arbitrary variable v, and an arbitrary term t so
we fix those as well. We then state the induction hypothesis ∗ which says that for
the subformula p of our existential quantification we can put the value of the term
t in the environment instead of doing substitution with t:

assume ∗: "semantics e’ f g (sub v’ t’ p) =
semantics (put e’ v’ (semantics_term e’ f t’)) f g p" for e’ v’ t’

The for keyword ensures that e’, v’, and t’ are arbitrary as we wished. We wish to
prove the substitution lemma for the existential quantification Exi p, i.e. that

semantics e f g (sub v t (Exi p)) =
semantics (put e v (semantics_term e f t)) f g (Exi p)

The keyword also together with finally is used to make a proof from left to right
of the equality of two expressions. This is what we want to do, and thus we start
from the left-hand side:

semantics e f g (sub v t (Exi p))

and realize that by the definition of substitution and the semantics of Exi we just
need a single value x for which the semantics of sub (v + 1) (inc_term t) p is true
under the environment put e 0 x. At the same time, we realize that we can now
use the induction hypothesis. Therefore, instead of considering the semantics of
sub (v + 1) (inc_term t) p under put e 0 x, we equivalently consider the semantics
of p under the variable environment which is put e 0 x with the value of t put on
index v + 1. We must thus continue our proof from

(∃x. semantics (put (put e 0 x) (v + 1)
(semantics_term (put e 0 x) f (inc_term t))) f g p)

We can make this expression much simpler by using commute and increment(1).

(∃x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)

We finish our proof using the semantics of Exi, as well as the fact that put generalizes
putting at index 0, and we get the right-hand side we were looking for:

semantics (put e v (semantics_term e f t)) f g (Exi p)

74



NaDeA: A Natural Deduction Assistant

Then follows a proof of substitution for the universal quantification Uni since
it has the same induction hypothesis. The proof is very similar. Finally we write
qed simp_all to prove the remaining cases by simplification.

lemma soundness’: "OK p z =⇒ all (semantics e f g) z =⇒ semantics e f g p"
proof (induct arbitrary: f rule: OK.induct)
fix f p z assume "all (semantics e f g) z"

"all (semantics e f’ g) (Imp p Falsity # z) =⇒
semantics e f’ g Falsity" for f’

then show "semantics e f g p" proof force qed
next
fix f p q z r assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Dis p q)"
"all (semantics e f’ g) (p # z) =⇒ semantics e f’ g r"
"all (semantics e f’ g) (q # z) =⇒ semantics e f’ g r" for f’

then show "semantics e f g r" proof (simp, metis) qed
next
fix f p q z assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Con p q)" for f’
then show "semantics e f g p" "semantics e f g q"
proof (simp, metis, simp, metis) qed

next
fix f p z q c assume ∗: "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Exi p)"
"all (semantics e f’ g) (sub 0 (Fun c []) p # z) =⇒ semantics e f’ g q"
"news c (p # q # z)" for f’

obtain x where "semantics (λn. if n = 0 then x else e (n − 1)) f g p"
using ∗(1) ∗(2) proof force qed

then have "semantics (put e 0 x) f g p" proof simp qed
then have "semantics (put e 0 x) (f(c := λw. x)) g p"
using ∗(4) allhead allnew map proof blast qed

then have "semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)"
proof (simp add: substitute) qed

moreover have "all (semantics e (f(c := λw. x)) g) z"
using ∗(1) ∗(4) alltail allnew allmap proof blast qed

ultimately have "semantics e (f(c := λw. x)) g q" using ∗(3) proof simp qed
then show "semantics e f g q" using ∗(4) allhead alltail allnew map
proof blast qed

next
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fix f z t p assume "all (semantics e f g) z"
"all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 t p)" for f’

then have "semantics (put e 0 (semantics_term e f t)) f g p"
proof (simp add: substitute) qed
then show "semantics e f g (Exi p)" proof (simp, metis) qed

next
fix f z t p assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Uni p)" for f’
then show "semantics e f g (sub 0 t p)" proof (simp add: substitute) qed

next
fix f c p z assume ∗: "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 (Fun c []) p)"
"news c (p # z)" for f’

have "semantics (λn. if n = 0 then x else e (n − 1)) f g p" for x
proof −
have "all (semantics e (f(c := λw. x)) g) z"
using ∗(1) ∗(3) alltail allnew allmap proof blast qed

then have "semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)"
using ∗(2) proof simp qed

then have "semantics (λn. if n = 0 then x else e (n − 1))
(f(c := λw. x)) g p"

proof (simp add: substitute) qed
then show "semantics (λn. if n = 0 then x else e (n − 1)) f g p"
using ∗(3) allhead alltail allnew map proof blast qed

qed
then show "semantics e f g (Uni p)" proof simp qed

qed simp_all

The lemma soundness’ shows the soundness of the proof system. It is done by
rule induction on the rules of the proof system. We have to prove that assuming that
the derivations in the premises follow logically, then so does the derivation in the
conclusion. For the rules Boole, Dis_E, Con_E1, Con_E2 and Uni_E we state the
induction hypothesis, and the assumption that the premises are satisfied. We then
do the proof by automation. For Uni_I, Exi_E and Exi_I we write out the proofs
explicitly because they are more complicated. We prove the remaining rules sound
by automation with the substitution lemma as simplification rule. The keyword
next is used to separate the different cases.

Let us look at how we proved Uni_I sound. The ∗ states our induction hypothesis
which states that if our assumptions z are satisfied by any function map then so is
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p with a constant Fun c [] substituted for 0.

all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 (Fun c []) p)

We additionally assume that the side condition that c is new to p#z.

news c (p # z)

Since we want to prove the derivation from z to Uni p sound we also assume that
the premises z are satisfied by a fixed f and a fixed g.

all (semantics e f g) z

We then wish to prove that so is Uni p. Since the premises are satisfied by f and
since c is new to them they must also be satisfied by f(c := λw. x).

all (semantics e (f(c := λw. x)) g) z

In this step we used the proof method blast which is a tableau prover [17]. Then it
follows by our induction hypothesis that also p with c substituted for 0 is satisfied.

semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)

We then use the substitution lemma to add the value of t to the environment instead
of doing the substitution.

semantics (λn. if n = 0 then x else e (n − 1)) (f(c := λw. x)) g p

Since c is new to p we might as well evaluate it in f instead of f(c := λw. x) and this
concludes the proof.

semantics (λn. if n = 0 then x else e (n − 1)) f g p

5.6 A Consistency Corollary to the Soundness Theorem
Soundness is the main theorem about the formalization of the natural deduction
proof system. As a corollary we immediately prove the following consistency result
about the proof system:

Something, but not everything, can be proved.

In Isabelle we can prove it using the simplifier (simp), some simple rules and Isabelle’s
prover for intuitionistic logic (iprover), although a classical prover (say, metis) would
work too, of course:
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corollary "∃p. OK p []" "∃p. ¬OK p []"
proof −
have "OK (Imp p p) []" for p proof (rule Imp_I, rule Assume, simp) qed
then show "∃p. OK p []" proof iprover qed
have "¬ semantics (e :: nat ⇒ unit) f g Falsity" for e f g proof simp qed
then show "∃p. ¬OK p []" using soundness proof iprover qed

qed

Recall that ∃ is the existential quantifier in Isabelle. The symbol ¬ is negation in
Isabelle. The first part (∃p. OK p [] for p) follows from a simple proof of p → p
(for an arbitrary formula p in first-order logic). The second part (∃p. ¬OK p [])
follows from the proof of soundness and from the fact that the semantics of Falsity
is always false (for simplicity we consider universes with just one element, provided
by the unit type).

5.7 Style of the Proof

When you do a proof in Isabelle, you need to choose how close you want the steps of
the proof to be to each other. On one hand the proof should be understandable, but
on the other hand you do not want the readers to get lost in small details. Larger
steps also allow the reader to think for himself instead of having everything spelled
out in detail. If a student wants to gain more insight, she can expand it, and let
Isabelle check if the details she added were correct. Isabelle also has tools that allow
its users to see which steps simp used to prove a result.

The notation we chose to use is close to that of programming rather than that of
mathematics and set theory. Isabelle, however, also supports a more classical nota-
tion. Our motivation for the choice is our students’ background from programming,
as well as to show that a very well-defined structure lies beneath the logical symbols
both at the object and the meta levels.

We use the formal semantics and soundness proof in our teaching. Among other
things the students can make calculation using the formal semantics in Isabelle and
also make changes to the formal semantics (for example, replacing the if-then-else
with logical operators in Isabelle, or adding negation to the logic).

6 Related Work

Formalizations of model theory and proof theory of first-order logic are rare, for
example [6, 7, 11, 20, 21].
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Throughout the development of NaDeA we have considered some of the natural
deduction assistants currently available. Several of the tools available share some
common flaws. They can be hard to get started with, or depend on a specific
platform. However, there are also many tools that each bring something useful and
unique to the table. One of the most prominent is Panda, described in [13]. Panda
includes a lot of graphical features that make it fast for the experienced user to
conduct proofs, and it helps the beginners to tread safely. Another characteristic
of Panda is the possibility to edit proofs partially before combining them into a
whole. It definitely serves well to reduce the confusion and complexity involved
in conducting large proofs. However, we still believe that the way of presenting
the proof can be more explicit. In NaDeA, every detail is clearly stated as part of
the proof code. In that sense, the students should become more aware of the side
conditions to rules and how they work.

Another tool that deserves mention is ProofWeb [10] which is open source soft-
ware for teaching natural deduction. It provides interaction between some proof
assistants (Coq, Isabelle, Lego) and a web interface. The tool is highly advanced in
its features and uses its own syntax. Also, it gives the user the possibility to display
the proof in different formats. However, the advanced features come at the cost of
being very complex for bachelor students and require that you learn a new syntax.
It serves as a great tool for anyone familiar with natural deduction that wants to
conduct complex proofs that can be verified by the system. It may, on the other
hand, prove less useful for teaching natural deduction to beginners since there is
no easy way to get started. In NaDeA, you are free to apply any (applicable) rule
to a given formula, and thus, beginners have the freedom to play around with the
proof system in a safe way. Furthermore, the formalized soundness result for the
proof system of NaDeA makes it relevant for a broader audience, since this gives
confidence in that the formulas proved with the tool are actually valid.

7 Further Work

In NaDeA there is support for proofs in propositional logic as well as first-order logic.
We would also like to extend to more complex logic languages, the most natural step
being higher-order logic. This could be achieved using the CakeML approach [8].

Other branches of logic would also be interesting. Apart from just extending the
natural deduction proof system to support other branches of logic, another option
is to implement other proof systems as well.

Because the NaDeA tool has a formalization in Isabelle of its proof system, we
would like to provide features that allow for a more direct integration with Isabelle.
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For instance, we would like to allow for proofs to be exported to a format suitable
for Isabelle such that Isabelle could verify the correctness of the proofs. A formal
verification of the implementation would require much effort, but perhaps it could be
reimplemented on top of Isabelle (although probably not in TypeScript / JavaScript)
or using Isabelle’s code generation facility.

We would like to extend NaDeA with more features in order to help the user
in conducting proofs and in understanding logic. For example, the tool could be
extended with step-by-step execution of the auxiliary primitive recursive functions
used in the side conditions of the natural deduction rules.

NaDeA has been successfully classroom tested in a regular course with around
70 bachelor students in computer science each year. The students find the formal
semantics and the proof of the soundness theorem relevant and instructive. We have
extended NaDeA with a so-called ProofJudge system [19] which allows students to
submit solutions and get feedback. We are in the process of adding to NaDeA a
simple automated theorem prover [20, 21], verified by the Isabelle proof assistant
and developed using Isabelle’s code generation facility, in order to make it possible
to better guide the students if for example sub-proofs are started and there is in fact
no possible proof.
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1 Some of Henkin’s expository papers
1.1 Leon Albert Henkin
Leon Albert Henkin (April 19, 1921, Brooklyn, New York - November 1, 2006,
Oakland, California) was a logician at the University of California, Berkeley. His
first degree was in mathematics and philosophy from Columbia College, in 1941.
He was a doctoral student of Alonzo Church at Princeton University, receiving his
Ph.D. in 1947. He became Professor of Mathematics at the University of California,
Berkeley, where he had a position from 1953. He received the 1964 Chauvenet Prize
for exposition. He was a collaborator of Alfred Tarski, and an ally in promoting logic.
In 1990 he was the first recipient of the Mathematical association of America’s Gung
and Hu Award for Distinguished Service to Mathematics.1

His writings became influential from the very start of his career with his doctoral
thesis, The completeness of formal systems. He then published two papers in the
Journal of Symbolic Logic, the first, on completeness for first order logic, in 1949,
and the second devoted to completeness in type theory, in 1950.

Henkin was an extraordinary insightful professor of mathematics specializing in
logic and interested also in mathematics education. He was blessed with unusual
writing and speech capabilities and he devoted considerable effort to writing ex-
pository papers. Four groups of them are described below in more details, trying
to convince you to read them with your graduate students as a source of mutual
inspiration.

1.2 Are Logic and Mathematics Identical?
This is the title of a wonderful expository paper [11], which Leon Henkin published
in Science in 1962, and subtitled: An old thesis of Russell’s is reexamined in the
light of subsequent developments in mathematical logic.

You may wish to give this paper to your graduate students, not only because
the historical view provided is comprehensive and synthetic but also because it
shows Henkin’s characteristic style; namely, his ability to strongly catch the reader’s
attention from the beginning.

How does he achieve it? you might wonder. In that particular paper, Henkin
tells us that his interest in logic began at the age of 16, ‘One day I was browsing in the
library and came across a little volume of Bertrand Russell entitled Mysticism and
Logic’.2 In the introduction Henkin cites Russell’s radical thesis, that ‘mathematics

1For more information about Leon Henkin read [22], pages 2-22.
2All the quotes in this paragraph come from [11], page 788.
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was nothing but logic’ together with the companion thesis ‘that logic is purely
tautological’, and he describes the strong reaction against his thesis by the academic
community: ‘Aux armes, citoyens du monde mathématique!’

Henkin then devotes the first section of the paper to elaborate on the two main
ideas that could help explain how Russell arrived at his conclusion. The first one
was the lengthy effort to achieve a ‘systematic reduction of all concepts of mathe-
matics to a small number of them’,3 and the second one was ‘the systematic study
by mathematical means of the laws of logic which entered into mathematical proofs’.4
Henkin relates the work of Frege, Peirce, Boole and Schröder, during the second half
of the nineteenth century, to the two efforts mentioned above, and identifies them
as the primary raison d’etre of Principia Mathematica.

In the following section, entitled From Russell to Gödel, Henkin explains the
introduction of semantic notions by Tarski, as well as the formulation and proof of
the completeness theorem for propositional logic by Post and for first-order logic by
Gödel. ‘This result of Gödel’s is among the most basic and useful theorems we have in
the whole subject of mathematical logic’.5 But, Henkin also explains how, in 1931, the
hope of further extension of this kind of completeness was ‘dashed by Gödel himself
[...] (he) was able to demonstrate that the system of Principia Mathematica,
taken as a whole was incomplete’.6 Immediately after, and anticipating what the
reader might be thinking, Henkin banished the hope of finding new axioms to repair
the incompleteness phenomenon.

In the section entitled Consistency and the Decision Problem, Henkin analyzes
these important notions and also explains how they are related.

Indeed, in that same 1931 paper to which I have previously referred,
Gödel was able to show that the questions of consistency and complete-
ness were very closely linked to one another. He was able to show that
if a system such as the Principia were truly consistent, then in fact it
would not be possible to produce a sound proof of this fact!’.

(Henkin 1962 [11], p. 791)

In the following section, named Logic after 1936, Henkin describes how Alonzo
Church proved that no decision procedure is available for first-order logic, and he
devotes the rest of the paper to set theory, recursive functions, and algebraic logic.
The results he cites takes us only to the 1960’s. Of course, much has happened in

3See [11] page 788.
4See [11] page 789.
5See [11] page 790.
6See [11] page 790.
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the field since that time. However, Henkin’s description of the field between 1936
and 1962 is quite interesting.

The paper ends in a section where Henkin analyzes Russell’s Thesis in Perspec-
tive. He concludes that if one considers that set theory is a part of logic, the basic
concepts of mathematics can “be expressed in terms of logic.” In this respect, the
‘adult’ Henkin agrees with Russell. He concludes, however:

The fact that certain concepts are selected for investigation, from
among all logically possible notions definable in set theory, is of the
essence. A true understanding of mathematics must involve an expla-
nation of which set-theory notions have “mathematical content,” and
this question is manifestly not reducible to a problem of logic, however,
broadly conceived.

Logic, rather than being all of mathematics, seems to be but one
branch. But it is a vigorous and growing branch, and there is reason
to hope that it may in time provide an element of unity to oppose the
fragmentation which seems to beset contemporary mathematics —and
indeed every branch of scholarship.

(Henkin 1962 [11], pp. 793-794)

Henkin was awarded the Chauvenet Prize in 1964 for this paper. The prize is
described as a Mathematical Association of America award to the author of an out-
standing expository article on a mathematical topic by a member of the Association.

1.2.1 Bertrand Russell’s request

In April 1, 1963, Henkin received a rather unusual letter from Bertrand Russell. In
it, Russell thanked Henkin for ‘your letter of March 26 and for the very interesting
paper which you enclosed.’ Right at the beginning Russell declared:

It is fifty years since I worked seriously at mathematical logic and
almost the only work that I have read since that date is Gödel’s. I
realized, of course, that Gödel’s work is of fundamental importance, but
I was puzzled by it. It made me glad that I was no longer working at
mathematical logic. If a given set of axioms leads to a contradiction, it
is clear that at least one of the axioms is false. Does this apply to school-
boys’ arithmetic, and if so, can we believe anything that we were taught
in youth? Are we to think that 2+2 is not 4, but 4.001? Obviously, this
is not what is intended.

(Reproduced in: Grattan-Guiness [6], p. 592)
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Russell then went on explaining7 his ‘state of mind’ while Whitehead and he
were doing the Principia ‘What I was attempting to prove was, not the truth of
the propositions demonstrated, but their deducibility from the axioms. And, apart
from proofs, what struck us as important was the definitions’ and he added: ‘Both
Whitehead and I were disappointed that the Principia was almost wholly considered
in connection with the question whether mathematics is logic.’

Russell ended the letter: ‘If you can spare the time, I should like to know, roughly,
how, in your opinion, ordinary mathematics —or, indeed, any deductive system—
is affected by Gödel’s work.’

According to Annellis:8 ‘Henkin replied to Russell at length with an explanation
of Gödel’s incompleteness results, in a letter of July 1963, specifically explaining that
Gödel’s showed, not the inconsistency, but the incompleteness of the [Principia]
system.’

1.3 On Mathematical Induction
On Mathematical Induction is the title of another expository paper [9], which Henkin
published in 1960. In a personal communication to María Manzano, Henkin wrote:
‘[...] my little paper on induction models from 1960, which has always been my fa-
vorite among my expository papers.’ In this paper Henkin examined the crucial
concept of definition by mathematical induction in the framework of Peano’s Arith-
metic. To reach that objective, the relationship between the induction axiom and
recursive definitions is studied in depth.

In many ways, it is the best paper on logic to offer students as a first reading of
a “real-life” article. In what follows we will try to support this judgement. Lets us
quote some paragraphs from Henkin’s introduction:

According to modern standards of logical rigor, each branch of pure
mathematics must be founded in one of two ways: either its basic con-
cepts must be defined in terms of the concepts of some prior branch of
mathematics, in which case its theorems are deduced from those of the
prior branch of mathematics with the aid of these definitions, or else its
basic concepts are taken as undefined and its theorems are deduced from
a set of axioms involving these undefined terms.

The natural numbers, 0, 1, 2, 3,..., are among those mathematical
entities about which we learn at the earliest age, and our knowledge of
these numbers and their properties is largely of an intuitive character.

7The quotes in this paragraph come from [6], pp. 592-593.
8See [3], p. 89, footnote 3.
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Nevertheless, if we wish to establish a precise mathematical theory of
these numbers, we cannot rely on unformulated intuition as the basis of
the theory but must found the theory in one of the two ways mentioned
above. Actually, both ways are possible. Starting with pure logic and
the most elementary portions of the theory of sets as prior mathematical
sciences, the German mathematician Frege showed how the basic notions
of the theory of numbers can be defined in such a way as to permit a full
development of this theory. On the other hand the Italian mathematician
Peano, taking natural number, zero and successor as primitive undefined
concepts, gave a system of axioms involving these terms which were
equally adequate to allow a full development of the theory of natural
numbers. In the present paper we shall examine the concept of definition
by mathematical induction within the framework of Peano’s ideas.

(Henkin 1960 [9], p. 323)

In the first section of On Mathematical Induction, entitledModels and the axioms
of Peano, Henkin not only introduces Peano’s axioms9 and the use of the wordmodel,
but also what he terms induction models, namely, models of the induction axiom
P3.

P3. If G is any subset of N such that (a) 0 ∈ G, and (b) whenever
x ∈ G then also Sx ∈ G, then G = N .

Henkin gives some examples of induction models appart from the obvious Peano
models. It seems that Henkin’s introduction of induction models in this paper had
a pedagogical motivation, as we will see below.

In the following section, entitled Operations defined by mathematical induction,
Henkin recalls that although the axioms for the theory of natural numbers are very
important, the most interesting theorems of the theory did not stem from them
alone because in most of the theorems, operations of addition, multiplication, etc.
are used. As a first example Henkin poses the definition of addition by the usual
equations:

1.1. x+ 0 = x

9There is no universal agreement about whether to include zero in the set of natural numbers.
Some authors begin the natural numbers with 0, corresponding to the non-negative integers 0, 1,
2, 3, ..., (as Henkin did) whereas others start with 1, corresponding to the positive integers 1, 2, 3, ....
because they find it quite odd to include 0 in the natural numbers as history showed how unnatural
the concept of zero as a number was to mankind.

88



Leon Henkin and Math Education

1.2. x+ Sy = S(x+ y)

He then poses the question: ‘But in what sense do the equations constitute a def-
inition of addition? In particular, does the definition hold only for natural numbers,
or for arbitrary Peano models as well?’

He then considers a more general problem, that of the introduction of new op-
erations in a Peano model.

The introduction of an operation by means of the pair of equations
1.1. and 1.2. is an example of what is called definition by mathematical
induction. To describe the concept in general terms we must consider a
Peano model 〈N, 0, S〉 and in addition a second model 〈N1, 01, S1〉 which,
however, is not required to be a Peano model (or even an induction
model). Being given these two models we say that the pair of equations

2.1. h(0) = 01
2.2. h(Sy) = S1(hy)
defines (by mathematical induction) a function h: a function which

maps N into N1 and satisfies 2.1. and 2.2. for all y ∈ N .
(Henkin 1960 [9], p. 325)

However, this definition must be justified by a theorem in which the existence
of a unique operation that will satisfy the previous equations must be established.
Henkin proceeds by presenting an argument to prove the existence of such a function
h, and he adds his critical judgment of it being a poor one, as follows:

Clearly (the argument goes), h is defined for 0, since h0 = 01 by 2.1.
Furthermore, if h is defined for an element y of N then h is also defined
for Sy since h(Sy) = S1(hy) by 2.2. Thus if we let G be the set of
all those y ∈ N for which h is defined, we see that (a) 0 ∈ G, and (b)
whenever y ∈ G then also Sy ∈ G. Applying Axiom P3 we conclude
that G = N . Thus h is defined for all y ∈ N .

At first sight this argument may seem convincing, but a moment’s
reflection will suffice to raise doubts. For in this argument we refer to
a certain function h. But what is h? Apparently it is a function which
satisfies 2.1. and 2.2. Recall, however, that the argument is designed to
establish the existence of such a function; clearly, then, it is incorrect to
assume in the course of the argument that we have such a function.

(Henkin 1960 [9], p. 327)
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In 1982 Leon Henkin was an honorary guest of the Department of Logic, History
and Philosophy of Science of the University of Barcelona,10 and he gave two talks;
one on mathematical induction the other on cylindric algebras. These algebras were
designed as an algebraic approach to first-order logic, much as Boolean algebras
provide an algebraic approach to propositional logic. The second talk was especially
interesting because Henkin described to the audience something that would never
appear in a formal article: his motivation. In particular, induction models were
originaly defined in that paper to show ‘that the axiom of mathematical induction
does not itself justity definitions by mathematical induction’.

Henkin told the audience how he was trying to convince a colleague that the
above argument was completely wrong, even though at first sight it might seem
convincing. Henkin made him see that in the proof only the third axiom was used
and that, if correct, the same reasoning could be used not only for models that
satisfy all Peano axioms, but also for those that satisfy only the induction one.
Henkin proved that in induction models not all recursive operations are definable.
For example, exponentiation fails.

Henkin begins the section entitled The relation between Peano models and in-
duction models with the question: ‘Why is it that the operations of addition and
multiplication exist in every induction model, while the existence of an exponen-
tial operation can be guaranteed only for Peano models? To answer this, we must
first understand the relation which holds between Peano models and more general
induction models.’11

The definitive answer comes in the form of Theorem IV from which categoricity
of Peano’s arithmetic easily follows.

Theorem IV. Let N = 〈N, 0, S〉 be a Peano model and N1 =
〈N1, 01, S1〉 an arbitrary model. A necessary and sufficient condition that
N1 be a homomorphic image of N is that N1 be an induction model.

[...]
Theorem V Any two Peano models are isomorphic.
(Henkin 1960 [9], p. 333)

Induction models turn out to have a fairly simple mathematical structure: there
are standard ones —that is, isomorphic to natural numbers— but also non-standard
ones. The latter also have a simple structure: either they are cyclic, in particular Z

10A review was published in [19] by María Manzano. During the academic year 1977-1978 she
was a Postdoctoral Fulbright student in The Group in Logic and the Methodology of Science at the
University of California, Berkeley. Leon Henkin acted as her advisor.

11See [9], page 333.
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modulo n, or they are what Henkin called “spoons” in his Barcelona presentation;
the name came from their special structure, as they have a handle followed by
a cycle. The reason is that the induction axiom is never fulfilled alone, since it
requires Peano’s first or second axiom. This does not mean that Peano’s axioms are
redundant, as it is well known that they are formally independent; i.e., each one is
independent of the other two.

In the last section, A characterization of Peano models, Henkin proves a ‘char-
acteristic for Peano models: these are the only models in which all definitions by
mathematical induction are justified.’

1.4 Identity as a Logical Primitive
This is the title of an expository paper Henkin wrote in the seventies. In this paper
the crucial role played by the identity relation is analyzed in depth. At the very
beginning he declares: ‘By the relation of identity we mean that binary relation
which holds between any object and itself and which fails to hold between any two
distinct objects’.12

As logicians we often pose the following questions: Why do we take identity as
a logical primitive concept in first order logic? Is there a formula ϕ defining it?

Henkin explains why the answer to the second question is negative, even in the
best scenario where we only have a finite set of non-logical predicate constants. In
this situation we can express that x and y cannot be distinguished in our formal
language by defining a binary relation that obeys the usual rules for equality.

For instance, if the only non-logical constants of a given theory are
a binary predicate symbol G and a unary predicate symbol U , then the
relation E is defined by specifying that Exy holds if an only if, the
formula

∀z(Gxz ≡ Gyz) ∧ ∀z(Gzx ≡ Gzy) ∧ (Ux ≡ Uy)

holds.
(Henkin 1975 [16], p. 31)

However, the definition is not semantically adequate as there are models where
the relation defined by this formula is not identity. The formula is the nearest we can
come up with in first order logic to formalize Leibniz’s principle of indiscernibles
saying that two objects are identical when there is no property able to distinguish

12See Henkin [16], p. 31.
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them. ‘On the other hand, higher-order systems are well known to admit such a
definition. E.g. we can define x = y by the formula ∀G(Gx ≡ Gy)’.13 This formula
can be used to define identity for individuals as the relation defined by it is “genuine”
identity in any standard second order structure.

Due to the central role the notion of identity plays in logic, you can either be
interested in how to define it using other logical concepts, or else, in the opposite
direction, namely using identity to define other concepts. In the first case, you
investigate what kind of logic is required. In the second one, you become interested
in the definition of the other logical concepts (connectives and quantifiers) in terms
of the identity relation, using also abstraction. In this paper Henkin is concerned
primarily with definitions in the second direction.

The biconditional connective is usually defined using other connectives, but the
main question here is the reverse one: how to use identity to obtain the rest. In
this particular case, the answer is obvious: ‘The identity relation on the set of
truth values, T and F , serves as the denotation of the biconditional connective (in
extensional logic, to which we restrict ourself)’.14 We know that in propositional
logic we are not able to define connectives, such as conjunction, the truth table
of which shows a value T on an odd number of lines, not even with equality and
negation. The easy explanation is given by Henkin:

If we take any formula built up from propositional variables with bi-
conditional as the sole connective, or for that matter if we allow negation
as well as biconditional, its truth table will be found to have the value
T on an even number of lines.

(Henkin 1975 [16], p. 32)

Henkin goes on explaining how we can allow quantification over propositional
variables of all types (including at least second order propositional variables) and
then all connectives are defined with equality and quantifier. This is not the end of
the story, as Henkin asks:

But what about quantifiers —can they in turn be defined in terms of
equality? Quine was the first to observe that this is possible in a system
where a variable-binding abstractor is present.

(Henkin 1975 [16], p. 33)

We know that the idea of reducing the other logical concepts to identity is an
old one which was tackled with some success in 1923 by Tarski [27], who solved the

13Henkin 1975 [16], p. 32.
14Henkin 1975 [16], p. 32.
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case for connectors; three years later, Ramsey [26] raised the whole subject; it was
Quine [25] who introduced quantifiers in 1937. It was finally answered in 1963 by
Henkin [13], in an article where he developed a system of propositional type theory.
His paper was followed by Andrews’ improvement [1]: A reduction of the axioms for
the theory of propositional types.15 In [16] Henkin presents his definition with some
details but, for pedagogical reasons, instead of using lambda notation he uses set
abstraction.

The use of Church’s λ-notation for functional abstraction is not as
widely known as the notions of set —and relational— abstraction made
familiar by Russell and Whitehead through the Principia. It has there-
fore seemed to me worthwhile to sketch below a “translation” of the ideas
of my earlier paper (as improved by Andrews), setting now in the context
of a formulation of simple type theory based on equality and relational
abstraction.

(Henkin 1975 [16], pp. 33-34)

In this paper Henkin uses a relational type theory covering all types built up
from individual as well as propositional types:

In addition to variables, the language L is to be provided with con-
stants. For each type symbol a there is a constant symbol Q(aa) used to
denote the element of D(aa) which is the equality relation over Da.

Finally, the language is to contain three improper symbols, {,}, and
|, to be used in forming notations for relational abstracts, as described
below.

(Henkin 1975 [16], p. 34)

In this formal language, Henkin introduces by ‘conventions of abbreviation with
respect to formulas of L ’, the common connectives as well as the universal quanti-
fier:

15Andrew wrote (in [2], page 69) a very touching story telling about this improvement:

‘On several occasions, I suggested to Henkin that he simply incorporate my proofs into
his paper, but he insisted that I publish a separate paper presenting these proofs, and
he wrote a very complimentary letter to Andrzej Mostowski (the editor of Fundamenta
Mathematicae) recommending that my paper be published immediately following his
own paper’.
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(1) (Aa ≡ Ba) abbreviates Q(aa)AaBa, where Aa and Ba are any
formulas of type a.

(2) (∀Xa)A0 abbreviates {Xa | A0} ≡ {Xa | Xa ≡ Xa}
(3) T0 abbreviates (∀x0)(x0 ≡ x0), and F0 abbreviates (∀x0)x0
(4) ¬(0) abbreviates {x0 | x0 ≡ F0}
(5) ∧(00)abbreviates

{
x0y0 | ∀G(0)[(G(0)x0 ≡ G(0)T0) ≡ x0]

}

(Henkin 1975 [16], p. 36)

Henkin also introduces a deductive calculus for this language as well as the
standard interpretation for it containing the domain D0 of the two truth values, an
arbitrary non-empty domain D1 for individuals, and the whole collection of relations
defined over Da1 , ...,Dan for type (a1...an); namely, D(a1...an) = ℘(Da1 × ...×Dan).

Due to the incompleteness phenomenon, to be commented in our next section,
Henkin also introduces frames and generalized models for this higher-order language.
To finish the paper, Henkin mentions another interpretation taking D0 as a many
valued domain. This interpretation providing a completeness result in the Boolean
sense.

Conversely, we obtain a new completeness result: Whenever |=B A0
for every complete Boolean algebra B, then also ` A0. We may charac-
terize this result by saying that our deductive system is complete in the
Boolean sense.

[...]
Proofs for the results on B-models will be given in a forthcoming

paper.
(Henkin 1975 [16], p. 43 and footnote 17)

Unfortunately, it seems that Henkin never published that paper.

1.5 Completeness
This section is a reduced version of the chapter Henkin on Completeness [21] that
was published in 2014 in the book The Life and Work of Leon Henkin: Essays on
His Contributions [20]. We highly recommend that book to all people interested in
the influential figure of Leon Henkin.

If you take a look at the list of documents Leon Henkin left us, the first published
paper, The completeness of first order logic [7], corresponds to his well known result,
while the last, The discovery of my completeness proof [18], is extremely interesting
as autobiography, thus ending his career with a sort of fascinating loop.
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It seems to the authors of this paper that reading the last paper is a must. Why?
As you know, Leon Henkin authored an important collection of papers, some of them
extremely exciting, as his proof of the completeness theorem both for the theory of
types and for first-order logic. He did so by means of an innovative and highly
versatile method, which was later to be used in many other logics, even in those
known as non-classical.

1.5.1 Henkin’s work on completeness

The completeness theorem establishes the correspondence between deductive calcu-
lus and semantics. Gödel had solved it positively for first-order logic and negatively
for any logical system able to contain arithmetic. The lambda calculus for the theory
of types [5], with the usual semantics over a standard hierarchy of types, was able
to express arithmetic and hence could only be incomplete. Henkin showed [8] that if
the formulas were interpreted in a less rigid way, accepting other hierarchies of types
that did not necessarily have to contain all the functions but at least the definable
ones, it is easily seen that all consequences of a set of hypotheses are provable in the
calculus. The valid formulas with this new semantics, called general semantics, are
reduced to coincide with those generated by the rules of calculus.

In his 1996 paper, we learn about the process of reaching this discovery, which
observed facts he was trying to explain, and why he ended up discovering things that
were not originally the target of his enquiries. Thus, in this case we do not have to
engage in risky hypotheses or explain his ideas on the mere basis of the later, cold
elaboration in scientific articles. It is well known that the logic of discovery differs
from what is adopted on organizing the final exposition of our research through their
different propositions, lemmas, theorems and corollaries.

We also learn that the publication order of his completeness results ([7] and [8])
is the reverse order of his discovery of the proofs. The completeness for first-order
logic was accomplished when he realized he could modify the proof obtained for type
theory in an appropriate way. We consider this to be of great significance, because
the effort of abstraction needed for the first proof (that of type theory) provided a
broad perspective that allowed him to see beyond some prejudices and to make the
decisive changes needed to reach his second proof. In [21] you can find a detailed
commentary of Henkin’s contribution to the resolution and understanding of the
completeness phenomena.
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1.5.2 Henkin’s expository papers on completeness

In 1967 Henkin published two very relevant expository papers on the subject we
are considering here, Truth and Provability [14] and Completeness [15], which were
published in Philosophy of Science Today [24].

Truth and Provability In less than 10 pages, Henkin gives a very intuitive intro-
duction to the concept of truth and its counterpart, that of provability, in the same
spirit of Tarski’s expository paper Truth and Proof [28]. The latter was published in
Scientific American two years after Henkin’s contribution. This is not so surprising
as by then Henkin had been working with Tarski in Berkeley for about 15 years and
the theory of truth was Tarski’s contribution.

The main topics Henkin introduces (or at least touches upon) are very relevant.
They include the use/mention distinction, the desire for languages with infinite sen-
tences and the need for a recursive definition of truth, the language/metalanguage
distinction, the need to avoid reflexive paradoxes, the concept of denotation for
terms, and the interpretation of quantified formulas. He also explains what an ax-
iomatic theory is and how it works in harmony with a deductive calculus. Properties
such as decidability and completeness/incompleteness of a theory are mentioned at
the end. The way these concepts are introduced is admirable, with such élan, and
the chain Henkin establishes, which shows how each concept is needed to support
the next one.

Completeness In this short expository paper Henkin explores the complex land-
scape of the notions of completeness. He introduces the notion of logical complete-
ness —both weak and strong— as an extension of the notion already introduced of
“completeness of an axiomatic theory”. This presentation differs notably from the
standard way these notions are introduced today where, usually, the completeness
of the logic precedes the notion of completeness of a theory and, often, to avoid
misunderstandings, both concepts are separated as much as possible, as if relating
them were some sort of terrible mistake or even anathema. Gödel’s incompleteness
theorem is presented, as well as its negative impact on the search for a complete
calculus for higher-order logic. The paper ends by introducing his own completeness
result for higher-order logic with general semantics. The utilitarian way Henkin uses
to justify his general models as a way of sorting the provable sentences from the un-
provable ones in the class of valid sentences (in standard models) is remarkable. We
highly recommend that students study this paper thoroughly.
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2 Leon Henkin’s Roles of Action and Thought in Math-
ematics Education

Henkin was often described as a social activist. He invested a significant portion
of his career to increase the number of women and of underrepresented minorities
in the upper echelons of the mathematicians’ community. He was also very aware
that we are beings immersed in the crucible of history from which we find it hard
to escape, an awareness he brought to the very beginning of his interesting article
about the teaching of mathematics:

Waves of history wash over our nation, stirring up our society and
our institutions. Soon we see changes in the way that all of us do things,
including our mathematics and our teaching. These changes form them-
selves into rivulets and streams that merge at various angles with those
arising in parts of our society quite different from education, mathemat-
ics, or science. Rivers are formed, contributing powerful currents that
will produce future waves of history.

The Great Depression and World War II formed the background of
my years of study; the Cold War and the Civil Rights Movement were the
backdrop against which I began my career as a research mathematician,
and later began to involve myself with mathematics education.
(Henkin 1995 [17], p. 3)

In this paper he gave both a short outline of the variety of educational programs
he created and/or participated in, and interesting details about some of them.

2.1 NSF Summer Institutes.
The National Science Foundation is an independent federal agency created by the
United States’ Congress in 1950. As you can read in their web page,16, its aim
was ‘to promote the progress of science; to advance the national health, prosperity,
and welfare; to secure the national defense. . . ’. Nowadays, NSF is the ‘only federal
agency whose mission includes support for all fields of fundamental science and
engineering, except for medical sciences.’ NSF’s Strategic Plan includes Investing
in Science, Engineering, and Education for the Nation’s Future.

NSF began summer institutes to improve the teaching of mathematics in high
school in 1955. In [17] Henkin related this initiative to historical facts: ‘The launch-
ing of Sputnik demonstrated superiority in space travel, and our country responded

16See http://www.nsf.gov/about/
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in a variety of ways to improve capacity for scientific and technical developments’.17

The launching of Sputnik in 1957 did drive the U.S. Congress to greatly increase the
funding for the summer institutes. The increased funding allowed NSF to expand
the institutes to college teachers, as well as those from high schools.

Henkin worked with high school teachers in the summer of 1957, shortly before
the launching of Sputnik. In the two succeeding summers, he worked with college
teachers. His course was aimed at showing the teachers how the facts and procedures
they taught their students could be derived in a deductive system. Also he wanted
them to use mathematical language with greater precision. He was surprised at the
wide variety of mathematical and pedagogical points of view that he found among
both the high school and college teachers. Having studied at a top high school and
college, he wrote ‘my previous experience as a student in high school and college
math classes gave me a very narrow view of the nature of instruction around the
country’.18

The subject of his courses was the axiomatic foundation of number systems.
One of his aims was to help instructors understand ‘the idea of a proof’ because
he believed that it could help instructors in the effort of finding proofs their own,
in a much better way than the mere understanding of the steps that constitutes a
proof. The success of the courses led him to write a text [12], with some colleagues
from the institute. His aim was to allow teachers who could not attend his summer
sessions to learn on their own about the deductive system behind their teaching. He
found that this text was not sufficient for teachers to learn about proving on their
own. In hindsight, 20 years later, he saw that students need experiences in coming
up with proofs on their own. He states ‘having experienced a search is a big help in
understanding someone else’s proof’.19

2.2 MAA Math Films.
TheMathematicalAssociation of America was established one century ago, in 1915.
As you can read in their web page: 20 ‘Over our first century, MAA has certainly
grown, but continues to maintain our leadership in all aspects of the undergraduate
program in mathematics’. Long before internet resources became available, there
was still interest in using technology in education. The technology available at
the time was television and movies. The MAA decided to try its hand at making
movies, actually filmed lectures. As Henkin said: ‘Sensing a potential infusion of

17See [17], p. 4.
18See [17], p. 5.
19See [17], p. 6.
20See http://www.maa.org/about-maa/maa-history
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technology into mathematics instruction, MAA set up a committee to make a few
experimental films. [...] the committee approached me in 1959-60 with a request to
make a filmed lecture on mathematical induction which could be shown at the high-
school-senior/college-freshman level. I readily agreed’.21 The film was part of the
Mathematics Today series, and was shown on public television in New York City
and in high schools.22

In [17] Henkin described the preparation of the film, both from a technical point
of view and from a methodological and pedagogical perspective. He attributed the
lack of understanding of the induction principle at the undergraduate level to the
formulation as a mathematical principle about sentences.

These formulations are the source of most student confusion on this
subject. It is extremely difficult to be mathematically correct in talking
about sentences and their relation to numbers, and it is simply not a
suitable subject for beginning students. The principle of induction is,
of course, a statement about sets of numbers satisfying two simple con-
ditions; formulated in this way, it is a fine vehicle for giving students
practice in forming and using sets of numbers to show that all natural
numbers possess various properties.

(Henkin [17], p. 6.)

Henkin began his process of constructing his video-lectures, by first trying out
a lecture on high school students. The assigned producer, Larry Dawson, had no
background in mathematics, but accompanied Henkin at his trial lecture. Henkin
was astonished at the amount of insight this non-mathematician brought to clarifying
his lecture. Leon proceeded to try the revised lecture on college students. In all, he
tried out the lecture seven times, each time finding ways to improve it. He cites in
[17] that this should be a lesson to all teachers who want to improve their teaching:
namely, practice and refining are important. Finally, after Henkin’s last trial, the
producer said it was all quite clear, except for the question: why should a student
care about mathematical induction? Why was it worth learning?

Leon pondered about it and came up with the following answer:

[...] mathematical induction is really of great importance to engineer-
ing, for it enters into the proofs of a great many of the most fundamental

21See [17], p. 6.
22The Fourth International Congress on Tools for Teaching Logic (http://ttl2015.irisa.fr/) was

celebrated in Rennes in 2015. An important part of the Special Session on Leon Henkin was to
show the movie.
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theorems in the branch of mathematics we call analysis —and these the-
orems are used over and over by engineers.

And yet, to me, the true significance of mathematical induction does
not lie in its importance for practical applications. Rather I see it as a
creation of man’s intellect which symbolizes his ability to transcend the
confines of his environment.

After all, wherever we go, wherever we look in our universe, we see
only finite sets: the eggs in a market, the people in a room, the leaves in
a forest, the stars in a galaxy —all these are finite. But somehow man
has been able to send his imagination soaring beyond anything he has
ever seen, to create the concept of an infinite set. And mathematical
induction is his most basic tool of discovery in this abstract and distant
realm.

(Henkin 1960 [10], pp. 10-11)

2.3 Activities To Broaden Opportunity.

“The sixties” is the term used to describe the counterculture and revolution move-
ment that took place in several places in the U.S.A. and Europe. Berkeley students
were taking energic actions against segregation in southeastern U.S.A. as well as
against military actions in Vietnam. In [17] Henkin said

In the midst of this turmoil I joined in forming two committees at
Berkeley which enlarged the opportunity of minority ethnic groups for
studying mathematics and related subjects.

[...] We noted that while there was a substantial black population
in Berkeley and the surrounding Bay Area, our own university student
body was almost “lily white” and the plan to undertake action through
the Senate was initiated.

(Henkin 1995 [17], p. 9)

2.3.1 Special Opportunity Scholarship Program

In 1964, Leon Henkin and Jerzy Neyman, a world-famous Polish-American statisti-
cian from Berkeley University, started a program at Berkeley to increase the number
of minority students entering college from Bay Area high schools. Henkin told us
that the initiative came after Neyman’s participation in ‘the MAA’s Visiting Mathe-
matician Program in Fall 1963. He lectured in southern states where, by law, whites
and blacks studied in separate colleges. Upon returning to Berkeley he told some
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of his friends that “first-rate students were being given a third-rate education”’.23

Henkin and Neyman undertook actions through the Academic Senate at Berkeley,
and in 1964 the Senate established a committee with the desired effect. The com-
mittee recruited promising students and offered them summer programs to study
mathematics and English. If they persisted in the program, they were offered spe-
cial scholarships.

The program began with a summer program for 9th and 10th grade students
from African American and Hispanic communities whose teachers felt they held
academic promise. The students were taught English in the mornings by special high
school teachers. In the afternoons, math and English graduate students arranged
experiences in various departments on the campus for the students to interest them
in attending college.

The program evolved into an academic program for minority students which
provided academic, as well as, financial support. The program in mathematics
also recruited women students and later began recruiting women and minorities
into the graduate mathematics program. With Henkin’s backing, the mathematics
department allotted 10% of the available graduate admission places and 10% of the
teaching assistantships to students from the Special Opportunity Program. Henkin
was chair of the committee in charge of the program from its inception until a year
before his death in 2006.

2.3.2 Project SEED

In 1964, Henkin heard a talk by a Berkeley High School teacher, Bill Johntz. At
that time, Berkeley was racially segregated in the elementary schools, since the
African American and Caucasian students lived in different sides of the town. Later,
Berkeley was one of the first American communities to institute bussing so that
schools could be less racially segregated. Johntz noted that virtually no African
American students ever passed elementary algebra, the first course in the high school.
He had the idea of teaching them algebra while they were in elementary school.
David Page, a mathematician from the University of Illinois and Robert Davis, a
university mathematician who at that time was at the University of Syracuse had
both begun teaching algebra to elementary school students.

Johntz attended a summer program given by Robert Davis, where Davis used
a Socratic group-discovery method to teach the students. Johntz began using the
method to teach African American 5th graders algebra and invited Henkin to see
him in action. Henkin saw that Johntz was able to raise great enthusiasm in the

23In [17], p. 9.

101



Manzano, Movshovitz-Hadar and Resek

class. Significantly, students enjoyed and actively engaged in the process of learning,
and they became integrally involved in their own education.

Henkin found some university funding and began recruiting graduate students to
teach using Johntz’ methods in the African American elementary schools in Berkeley.
The method worked well, and more teachers were needed than were available among
Berkeley’s graduate students. Engineers and others were loaned by their companies.
The program was called Project SEED — Special Elementary Education for the
Disadvantaged. This program is still alive, as you can see in their web page. 24

Henkin and Johntz went to the California legislature and got funding for a system
wide program throughout the campuses of the University of California to pay mathe-
matics graduate students to teach minority elementary students throughout the state
using the methods from Project SEED. The new program was called Community
Teaching Fellowship Program (CTFP). This program encouraged many mathemat-
ics graduate students to become involved in pre-college teaching.

2.4 Educating Teachers and Students
2.4.1 Cambridge Conference and its effect on Henkin

In 1963 some leading mathematicians and mathematics educators met in Cambridge
Massachusetts to discuss pre-college mathematics curriculum reform. They tried
to imagine what a radically different curriculum for mathematics could be in the
distant future. They were thinking about the year 2000. They devised the outlines
of a curriculum by which high school graduates would have learned the first three
years of what was then and what is now an undergraduate mathematics major. They
drew up some broad pedagogical guidelines but gave little thought to the education
of teachers who would be teaching the reform material.

Henkin was not present at that 1963 conference, but he was invited to its suc-
cessor in 1966, which focused on the training of teachers. In his paper [17], he
states: ‘Well. I participated in the Second Conference, but can find no account in
my memory or my bookshelves of what proposals we constructed’.25 However, when
he returned to Berkeley after the conference, he was moved to involve himself in
the University mathematics department course for prospective elementary school
teachers, so this was the beginning of his involvement in mathematics education.

Previously, the course for elementary school teachers had been taught by lec-
turers from the College of Education, but Henkin elicited the help of his prominent
colleague, J.L.Kelley, and they took over the teaching of the course. Henkin began

24See http://projectseed.org/
25In [17], p. 13.
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writing a text for the course, which in his paper The Roles of Action and of Thought
in Mathematics Education he claims:26 ‘would have resembled several others pro-
duced by mathematicians at that time in which elements of modern algebra were
presented as a way of ‘explaining’ the familiar algorithms of school arithmetic.’ Af-
ter trying out a preliminary version with students, Henkin was led to discontinue the
project. He later reflected upon the project, after he had begun to work with teach-
ers: ‘I came to believe that the emotional responses of the teachers to mathematics
was of more importance to the learning process of the students than the teacher’s
ability to relate the algorithms of arithmetic to the axioms of ring theory.’

2.4.2 Film Project and its Effect

Henkin’s next encounter with teacher education came in 1968 when he was asked
by the National Council of Teachers of Mathematics to serve on a committee to
help produce a series of films for teachers on the rational numbers. Along with 12
films to educate teachers about the rational numbers, the project produced a text
for teachers. Henkin wrote the second chapter of the book: Fractions and Rational
Numbers. The chapter was a rather formal presentation of the subject which Henkin
later felt contained some ‘good ideas’ but ‘may be difficult for teachers to follow.’

In fact, ten years later in 1978, he hand-drafted an abstract and an introduc-
tion entitled: “Logical and pedagogical foundations for the theory of non-negative
rational numbers” which he sent to his former student, Nitsa Movshovitz-Hadar,
then a mathematics education lecturer at Technion, Israel Institute of Technology,
as a platform for collaborative work. In 1979, Henkin spent a part of his Sabbatical
year at the Technion. During that period he collaborated with Movshovitz-Hadar
to complete his formal presentation and to combine it with pedagogical methods.
Specifically, Henkin proposed five different models for ‘founding’ the notion of a pos-
itive rational number and each model was supposed to be paired with a pedagogical
method for presenting fractions to children. Further work on this marvelous idea
was carried out in 1995 as the mathematics educator, Pearla Nesher joined in and
more work was done in later years. This paper was never completed, and Henkin’s
unfinished work on it can be found in [23].

2.4.3 1969-1973 National Science Foundation Project for Berkeley Ele-
mentary Schools

Henkin’s participation in the conference in Cambridge and the film project brought
him into contact with the well-known mathematician and mathematics educator,

26The quotes in this paragraph come from [17], p. 13.
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Robert B. Davis. As was mentioned above, the town of Berkeley was moving from
segregated schools to integrated ones. The move was challenging to teachers as
the African American students lacked self-confidence and there was an academic
achievement gap between the different races. Henkin and Davis applied to the
National Science Foundation for a grant to help some elementary school teachers
become mathematics specialists in their schools and to find ways of making all
students more successful in mathematics. When the project was funded, Diane
Resek, a student of Henkin’s at the time, was selected as the coordinator. The
project consisted of a summer program and then meeting throughout the academic
year. Davis was in charge of the summer program and Henkin of the academic
component. Henkin worked closely with Resek and occasionally conducted sessions
himself for the teachers. The teachers were charmed by Henkin and seemed to feel
privileged by the attention and respect he paid them.

2.4.4 Bay Area Math Project and the American Mathematics Program

In 1982, Judy Kysh, now a professor of mathematics and mathematics education at
San Francisco State University, started a summer program at the University of Cali-
fornia, Davis, to educate pre-college teachers so they could provide a more engaging
and coherent math curriculum. The State of California instituted the California
Mathematics Project based on the Davis program and others. Its mission was to
improve the pre-college teaching of mathematics especially for students from under-
represented populations. A second purpose was to use both pre-college teachers and
university faculty to work together to educate other pre-college teachers mathemat-
ically and pedagogically. The teachers and faculty were to have equal status, using
their complementary expertise to better educate others.

In 1983, Henkin spearheaded a team from University of California, Berkeley to
establish a site for the project in the Berkeley Area. It was called the Bay Area
Mathematics Program and is still in operation at this time. Henkin worked with
Lyle Fisher, a high school teacher. At times, Henkin sat in as a participant when
high school teachers led hands-on workshops on topics such as tessellations. At the
other times he invited visiting mathematicians such as Henry Pollack from Columbia
University to address the teachers on mathematics topics such as applications of
mathematics.

A few years later Henkin worked with Kysh and others to establish the American
Mathematics Project through the Mathematics Association of America. The project
was funded for three years and was based on the same principle of combining the
complementary expertise of mathematicians and mathematics educators. Six teams
of pairs, consisting of a faculty member and a precollege teacher, from around the
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United States, took part in the program. Henkin was committed to valuing mathe-
matical and pedagogical expertise equally in educating teachers. He wanted to get
more mathematicians involved in mathematics education.

2.4.5 Project 2061

The American Association for the Advancement of Science (AAAS) began an ambi-
tious program in 1986, the last time Halley’s Comet passed the earth. By 2061, the
next time the comet would come by, the AAAS hoped that all Americans would be
truly literate in mathematics, science, and technology. To begin the project, they
chose prominent mathematicians and scientists to delineate what they felt a truly
scientific literate person would need to know in 2061. Leon Henkin and David Black-
well, a prominent statistician from the University of California, Berkeley were asked
to lead a panel of renowned university mathematicians and statisticians to draw up
a list of the important mathematical ideas a high school graduate should possess
in 2061 in order to be scientifically literate. Because of Henkin’s respect for the
knowledge of pre-college mathematics teachers and other mathematics educators,
he added several consultants to advise the panel.

The report of the committee [4], which was written by Henkin and Blackwell,
contains a well-reasoned response to the question: What are “the important ideas
of mathematics that everyone should know and understand”? It is also, as are most
documents penned by Henkin, a joy to read.

The document lays out in sections: the processes of mathematics, the subject
areas of mathematics, mathematics in science and technology, mathematics and
language, emotions and mathematics, and, finally, concluding remarks. The first of
the concluding remarks states: ‘Our over arching theme is that mathematics is a part
of human experience; it emerges from every-day experience and can be reflected back
on it.’ The remarks go on to tie in the other sections of the report. Two important
remarks are:

Mathematical learning should be integrated with play. Many math-
ematical ideas should emerge from a variety of constructions and other
projects having physical, chemical, biological elements, as well as from
games possessing economic and strategic characteristics.

[...]
Children should be helped to develop intuitive ideas about ‘how

things work’ in various realms of experience. They should learn how to
‘translate’ these intuitions into hypotheses about mathematical models
of real world phenomena, and they should get used to adjusting intuitions
and models to fit within experience.
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(In Blackwell and Henkin [4], p. 60)27

2.5 Open Sesame: The Lawrence Hall Of Science
In 1968 the University of California, Berkeley instituted a science museum on the
Berkeley campus, called the Lawrence Hall of Science. It was created in honor of
the 1939 Alfred Nobel prize winner Ernest Orlando Lawrence. As you can read in
their web page: 28

‘We have been providing parents, kids, and educators with opportunities to engage
with science since 1968.’

A physics professor, Alan Portis, was made the first director. Portis wanted the
Hall to become more than a museum; he conceived of a center for science and math
education at all levels. He enlisted the participation of scientists, mathematicians
and science educators to form a graduate program of research. The participants
created a PhD program named, SESAME, Search for Excellence in Science and
Math Education.

Henkin and John Kelley were the two mathematicians on the faculty of the pro-
gram. Although the physicists and biologists began working with graduate students,
Henkin and Kelley stayed away from that aspect of the program. They did institute
a math education study group with graduate students in math and math education,
who met regularly to inform themselves about new ways of teaching math. Henkin
also became one of three co-directors of the Hall and through that experience gained
familiarity with hands-on exhibits to teach mathematics.

In Spring 1972, Nitsa Movshovitz-Hadar wrote him asking to work with him on
a PhD in mathematics education through SESAME. She was then a student from
the Technion in Israel and now is a retired professor of math education from the
Technion, a former director of the Israel National Museum of Science, Technology,
and Space, and a contributor to this paper. Henkin relates his reaction to her request
in [17]

She seemed well qualified, had strong recommendations, and I felt
she ought to be admitted. But how could I take on the responsibility
of directing her research, when I had never myself pursued research in
math education (despite the many projects in which I had worked)? I
felt very insecure and uneasy. Finally, however, I said to myself. “If not
me, with whom should such a student work?” I had no good answer for
this question, so reluctantly said OK.

27Quote appears on the final draft sent to Nitsa Movshovitz-Hadar on Jan 26, 1988 from Henkin.
28See http://www.lawrencehallofscience.org/about
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(Henkin 1995 [17], p. 16)

Henkin was a dedicated thesis advisor. He is remembered running a Xerox ma-
chine to get copies of a student’s thesis to the rest of the student’s committee while
the student was writing the last pages. He encouraged his students to write more
practical theses that could affect classrooms and learning directly. Elizabeth Stage,
then a lecturer in the SESAME program and now the Director of the Lawrence
Hall of Science, remembers that this perspective often put him at odds with other
SESAME faculty, who took more ideological and theoretical points of view. At one
defense of thesis meeting, a physicist who was committed to behaviorism, asked
Henkin’s PhD student why the material the student had devised was asking ele-
mentary students to figure out the answers. “Why not tell them how to look at it.”
Henkin defended his student by saying the point was whether students could learn
without being told.

Henkin ‘fathered’ four other PhD students in SESAME after working with
Movshovitz-Hadar. He reflected on the beginning of his work with SESAME stu-
dents in [17]:

The path of my work in mathematics education is about to change
its character, and its role within my professional work. The emphasis
up to this point has been on activities stimulated by external events,
which generated thought to accomplish defined goals. Beyond this point
we shall see an internal growth and development of ideas relating to
mathematics education such as we are used to experiencing when we do
mathematics; and new ideas will follow from these thoughts, rather than
lead them.

(Henkin 1995 [17], p. 16)

Henkin promised at the end of [17] to write another paper describing his new
phase. Unfortunately, Henkin never produced that second paper. He did not leave
any finished papers in mathematics education. We have lost a lot by not hearing
how his ideas on mathematics education finally unfolded.
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Abstract

This paper proposes a linear algebraic approach to teach modal logic to stu-
dents who might not be familiar with first-order logic. Our approach is based
on Fitting’s linear algebraic reformulation of Kripke semantics of modal logic.
A key idea of his reformulation is to represent an accessibility relation R by a
square matrix and a valuation V (p) of an atomic variable p by a column vector.
Then, we may calculate the truth set of 3p as the multiplication of the square
matrix R for the accessibility relation and the column vector for p. Hence, we
can regard such matrix calculation as an extended version of truth table calcu-
lation. We discuss how our reformulation is useful to teach modal logic to our
target students before teaching first-order logic. In addition, we present our
supporting software to avoid involved calculations on matrices and explain how
we can use it for educational purposes.

Keywords: Modal logic, Linear Algebra, Quantification, First-order logic.

1 Introduction and Motivation
1.1 Linear Algebraic View for Kripke Semantics of Modal Logic
In order to teach modal logics to students effectively, we propose to use Fitting’s
linear algebraic approach. Under the approach, we can teach many elementary topics
of Kripke semantics for modal logics by calculations over Boolean matrices. In this
paper, our target students are those who have prior knowledge of both linear algebra
and propositional logic. In general, they are first or second year undergraduate
students at the departments of computer science, electrical engineering, and physics.
They might not be familiar with first-order logic.
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Modal logics are often taught to students as one of advanced topics after propo-
sitional logic and first-order logic. This is because Kripke semantics of modal logics
relies on knowledge of quantification and binary relation of first-order logic and
model theory. In particular, the notions of existential quantification and univer-
sal quantification are used to define the semantics of 3 and 2 operators over the
Kripke model, respectively. Moreover, quantifications are also used to define frame
conditions of frame properties, e.g., for all w, wRw reflexivity holds (wRv stands
for ‘there is a link from w to v’). Therefore, the ordinary target students of a course
on modal logic are assumed to belong to the departments of philosophy, computer
science, and mathematics. Such students might be familiar with first-order logic
and its model-theoretic semantics. In particular, they might have already learned
the syntactic notions of quantification and binary relation of first-order logic and
the model-theoretic explanation of them.

So far, many topics of Kripke semantics are taught to students by the model-
theoretic approach. Some topics of modal logic are easier to understand than those of
first-order logic, since we can explain Kripke semantics on a graphical representation
of a Kripke model (see the left side of Figure 1). For example, we can calculate the
truth value of a formula over a graphical representation of a Kripke model visually.
Under this approach, however, there are some topics which might confuse our target
students. For example, such topics include the truth of 2p at a ‘dead-end’ world
where we cannot access any world, and the verification of the Euclideanness property
(wRv and wRu jointly imply vRu, for all w, v, u). In order to show the truth of 2p
at the dead-end world, we need to teach students when the implication is vacuously
true. This might be unnatural for some students. In addition, the verification of
Euclideanness of a given frame might be difficult for some students, since they need
to check whether the frame satisfies the condition of Euclideanness very carefully
where v and u are possibly the same. If the cardinality of the domain of the model
is larger, such checking might be more involved.

In order to teach the above topics of modal logics to students effectively, we pro-
pose to use Fitting’s linear algebraic reformulation of Kripke semantics. A key idea
of his reformulation is to represent an accessibility relation R by a Boolean square
matrix and a valuation V (p) of an atomic variable p by a Boolean column vector,
provided the cardinality of the domain is finite (see the right side of Figure 1).1 As
a result, we may compute the truth set of a formula by calculations over Boolean
matrices. For example, the truth set of 3p is calculated by the multiplication of
the square matrix of R and the vector of V (p). Moreover, we may also verify the

1We note that this assumption is often justified because most of the well-known modal logics,
for example T, S4 and S5, enjoy the finite model property, i.e., ϕ is the theorem of a modal logic
Λ iff ϕ is valid for all finite models for the logic Λ.
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Figure 1: Kripke model and its Boolean matrix representation

frame property of a given frame by the calculation of matrices. Since these calcula-
tions are based on the truth-table calculation of propositional logic, we can regard
the calculations as an extended version of truth-table calculation. As a result, we
may replace required prior knowledge of the quantifications and binary relation of
first-order logic by the truth-table calculation of propositional logic and elementary
calculations of Boolean matrices of linear algebra. Moreover, this extension allows
us to calculate some restricted forms of quantifications (in Kripke semantics) without
bound variables of first-order logic.

We claim that our linear algebraic approach is helpful to students who have prior
knowledge of both linear algebra and propositional logic. Using our approach, they
can learn modal logics based on their acquired knowledge without prior knowledge
of first-order logic. Moreover, ordinary target students, who have already learned
first-order logic, may deepen their understanding of the subject from a different
perspective. In order to obtain feedbacks from students, we have held a small seminar
to teach elementary topics of modal logic using our approach. The details will be
explained in Section 4.5.

1.2 Related Studies

Our key idea comes from Fitting’s linear algebraic reformulation of Kripke semantics
for (multi-) modal logics [4]. He explained that a machinery of matrices over Boolean
algebras is appropriate to investigate multi-modal semantics. In his paper, a Kripke
frame is regarded as a directed graph and represented by a Boolean matrix, and a
valuation of each atomic variable is represented by a Boolean vector. Then, a linear
algebraic reformulation of Kripke semantics is defined by Boolean operations on
matrices and vectors. This idea is also extended to define relations between frames,
however, we employed the above reformulation only.
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The other idea of our linear algebraic approach comes from the following previous
works. Liau [9] introduced Boolean matrix operations for multiple agents’ belief
reasoning, revision, and fusion. Based on the matrix representation of belief states,
he proposed a belief logic and its algebraic semantics. Similarly, Fusaoka et al. [5]
introduced real-valued matrix operation for qualitative belief change in a multi-agent
system. Based on the above studies, Tojo [14] proposed notions of Boolean matrices
and vectors for the simultaneous informing action with communication channels.
He showed that the notions of matrices can represent a public announcement [11]
and a consecutive message passing. It can be regarded as an application of linear
algebraic approach to multi-agent communication. Then, Hatano et al. extended
Tojo’s idea to provide rigorous definitions in [6]. They proposed a decidable and
semantically complete multi-agent doxastic logic with communication channels and
its dynamic extensions with two informing action operators. With the help of van
Benthem and Liu’s idea of relation changer [16], their dynamic operators can be
regarded as program terms in propositional dynamic logic. Afterward, they provided
a linear algebraic reformulation of the proposed semantics. In addition, a supporting
software based on the above idea is also provided. The present paper expands
Hatano et al.’s work into the educational content. In connection with spatial logics
and linear algebra, we refer to a survey by van Benthem and Bezhanishvili [15].
In the survey, they mentioned connections between modal logic and linear algebra
over vector spaces Rn. Different from our approach, they did not provide Kripke
semantics using Boolean matrices.

Finally, we also refer to relevant study to ours in terms of relational algebra
by Berghammer and Schmidt [2]. They proposed a relational algebraic approach
to investigate finite models of non-classical logics such as multi-modal logics with
common knowledge operators and computational tree logic. They interpret the
logics in relation algebra with transitive closures whose representation is based on
Boolean matrices. They also present applications of their tool RELVIEW based on
the above idea for finite model checking tasks, e.g., the muddy children puzzles.
Their study seems very close to ours, although their approach is different from ours
since they simply used Boolean matrices as an input and output interface to their
computation system and did not compute the matrices directly.2 For example, they
defined a ‘composition’ of two Boolean square matrices which corresponds to two
accessibility relations by a componentwise relational composition, although we define
it by a multiplication of Boolean matrices. Another difference is that in this paper,
we have a list of the matrix representation of frame properties and two types of

2Relations can be represented by Boolean matrices [12], although ordinary works of relational
formalization do not employ such representation, e.g., a study of relational formalization of non-
classical logics by Orlowska [10].
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correspondence between modal axioms and their matrix representations.

1.3 Outline of This Paper

The rest of this paper is organized as follows. In Section 2, we recall basic definitions
and notions of modal logic and Boolean matrices. Section 3 explains a matrix
representation of Kripke semantics and its relevant properties, and also connect our
argument to the concept of quantification in first-order logic. In Section 4, we explain
how we can use our approach for educational purposes. We explain which teaching
topics of modal logics can be taught to students using our approach and why the
approach is helpful for educational purposes. Moreover, we present our supporting
software to avoid involved calculations on matrices. In addition, we introduce our
teaching experiment and summarize feedbacks from students. Finally, in Section 5,
we summarize our contribution and conclude with further remarks.

2 Preliminaries

2.1 Modal logic

First, we recall the ordinary (propositional) modal logic. A modal language L is
composed of the following vocabulary: A finite set Prop = { p, q, r, . . . } of proposi-
tional letters; Boolean connectives ¬,∨; diamond operator 3. A set of formulas of
L is inductively defined as follows:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | 3ϕ

where p ∈ Prop. We will omit the parentheses whenever convenient. A formula
3ϕ stands for ‘it might be the case that ϕ’. We introduce the dual operator of 3
by 2ϕ := ¬3¬ϕ, whose reading is ‘it must be the case that ϕ’, and the Boolean
connectives ∧,→ as usual abbreviations.

Then, we introduce Kripke semantics for the syntax L. A Kripke model M is
a tuple (W,R, V ) where W is a non-empty set of possible worlds, called domain,
R ⊆ W × W is an accessibility relation, and V : Prop → P(W ) is a valuation
function. A frame is the result of dropping a valuation function from a model, i.e.,
(W,R) (denoted by, for instance, F). We denote (w, v) ∈ R also by wRv. We use
both notations depending on the context. Given any model M = (W,R, V ) and any
possible world w ∈ W , the satisfaction relation M, w |= ϕ is defined inductively as
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follows:
M, w |= p iff w ∈ V (p),
M, w |= ¬ϕ iff M, w 6|= ϕ,
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ,
M, w |= 3ϕ iff M, v |= ϕ for some v with wRv.

A truth set JϕKM is defined by JϕKM = {w ∈W |M, w |= ϕ }. Then, we can obtain
the following:

JpKM = V (p),
J¬ϕKM = W \ JϕK,
Jϕ ∨ ψKM = JϕKM ∪ JψKM,
J3ϕKM = {w | wRv and v ∈ JϕKM for some v }.

We say that ϕ is valid on a model M if M, w |= ϕ for all worlds w ∈W . We also say
that ϕ is valid on a frame F if (F, V ) |= ϕ for all valuation V on F. In connection with
the validity of a formula and the truth set of a formula, the following proposition
holds:

Proposition 1. Given a model M and a formula ϕ,

ϕ↔ ψ is valid on M iff JϕKM = JψKM.
Example 2. Recall Figure 1 of Section 1, i.e., we define the model M by:

W = {w1, w2, w3 },
R = {(w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3)},

V (p) = {w2 }.
By definition, it is clear that 3p is true at w1 and w2, i.e., M, w1 |= 3p and M, w2 |=
3p, respectively. In order to compare the ordinary model-theoretic approach with
our linear algebraic approach later, we explain the proof of M, w1 |= 3p by the
model-theoretic approach. Let us rewrite our goal M, w1 |= 3p by definition as:

For some v ∈W (w1Rv and M, v |= p).

By the clause for propositional variable, this is equivalent to:

For some v ∈W (w1Rv and v ∈ V (p)).

By definition, V (p) = {w2 }. In order to obtain our goal, it suffices to know if
(w1, w2) ∈ R. Since this trivially holds, we conclude M, w1 |= p, as required.

In Example 3 in Section 3.1, we will see that we can show M, w1 |= 3p with-
out the notions of the existential quantification. In other words, the above model-
theoretic proof can be represented by a simple calculation over Boolean matrices.
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2.2 Boolean Matrix
Mathematical operations and some properties of Boolean matrices are slightly differ-
ent from real-valued matrices. For example, the inverse operation of multiplication
seems not well-defined,3 and the addition of the same matrices satisfies idempotence,
i.e., the resultant matrix of the addition is equal to the original one.

Throughout this paper, we use the symbol M , to denote a Boolean matrix, i.e.,
each element of the matrix belongs to the set { 0, 1 }. We use the symbol M as a
superscript M with a symbol or expressions (e.g., XM and (X + Y )M ) to denote a
matrix representation of them. If the representing matrix is clear from the context,
we omit ‘M ’ from such ‘XM ’ and just write ‘X’. Moreover, M(m × n) means the
set of all (Boolean) m × n matrices, where m and n are the numbers of rows and
columns, respectively. In the usual sense, 1 × n and m × 1 matrices are called
Boolean row vector and column vector, respectively. Let M be an m × n matrix,
1 ≤ i ≤ m and 1 ≤ j ≤ n. M(i, j) denotes the element in the i-th row and j-th
column entry. Moreover, E, 0 and 1 denote the unit square matrix (E(i, j) = 1 if
i = j; 0 otherwise), complete matrix (1(i, j) = 1 for all i and j), and zero matrix
(0(i, j) = 0 for all i and j), respectively.4

The Boolean operations of addition ‘+’, multiplication ‘·’ and complement ‘−’
for the element of Boolean matrices correspond to the logical operations of ‘∨’, ‘∧’
and ‘¬’, respectively. These operations are also defined to the level of matrices.
Let M,M1,M2 ∈ M(m × n). For all i and j, the complement M and the addition
M1 +M2 are defined by:

M(i, j) := M(i, j),
(M1 +M2)(i, j) := M1(i, j) +M2(i, j).

Given any M1 ∈ M(m × l) and any M2 ∈ M(l × n), the multiplication M1M2 of
matrices is defined by:

(M1M2)(i, j) =
∑

1≤k≤n
(M1(i, k) ·M2(k, j)).

The transposition tM is defined as: tM(i, j) = M(j, i) for all i and j. In the
below, we summarize basic properties of addition, multiplication and transposition

3The inverse operation of the Boolean addition, i.e., subtraction is not well-defined over Boolean
values. Consequently, subtraction for a Boolean matrix cannot make sense.

4Dimensions of those matrices depend on the context.
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of Boolean matrices. For any M,M1,M2 ∈M(m× n),

M = M +M,
M = EM,
M = t(t(M)),

t(M1 +M2) = tM1 + tM2,
t(M1M2) = tM2tM1.

These facts will be used in Section 3.2 to show some propositions of frame properties
in matrix representation. For more general introduction to Boolean matrix theory,
see [7].

3 Linear Algebraic Reformulation of Kripke Semantics
3.1 Kripke Semantics in Matrices
In this section, we establish a connection between Kripke semantics and its matrix
representation with the help of Fitting’s idea [4]. Regarding a possible world as
a vertex and a tuple (v, u) in an accessibility relation as a directed edge, a frame
(W,R) forms a directed graph. If the set of possible worlds is finite, the graph can be
represented by a finite adjacency matrix 5 with boolean values, i.e., Boolean matrix.
In order to focus our discussion on such matrices, we use the following convention.

Convention 1. In what follows in this paper, we restrict our attention to the finite
Kripke models.

Informally, Fitting’s idea of reformulation of Kripke semantics can be summa-
rized as follows: An accessibility relation (or frame) forms a directed graph and can
be represented by a Boolean matrix. A valuation of a proposition (or a truth set of
formula) can also be represented by a Boolean (column) vector. Then, propositional
connectives correspond to Boolean operations over Boolean vectors, and 3 operator
corresponds to the multiplication of a Boolean matrix and a vector.

Example 3. Recall a Kripke modelM = (W,R, V ) in Example 2 (see also Figure 1).
A Boolean vector which represents a truth set of 3p can be obtained by a multi-
plication of the matrix corresponding to R and the column vector corresponding to

5Let V = { v1, . . . , vn } and E ⊆ V × V , we can form a finite directed graph (V, E). Then the
adjacency matrix of E is a n× n square matrix such that its component M(i, j) = 1 if there is an
edge from vertex i to vertex j, and 0 otherwise.
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V (p): 


1 1 1
0 1 0
0 0 1







0
1
0


 =




1
1
0


 .

The resultant vector exactly corresponds to the truth set J3pKM = {w1, w2 } in
Example 2.

We also emphasize that the calculation of the semantics can be regarded as an
extension of truth-table calculation. A truth value of 3p at w1 is computed by a
multiplication of the row vector corresponding to w1 row of the square matrix of R
and the column vector of V (p):

[
1 1 1

]



0
1
0


 = 1.

The resultant value also corresponds to the result of M, w1 |= 3p in Example 2.

Now, let us introduce our linear algebraic reformulation of Kripke semantics
in full detail. Let F = (W,R) be a (finite) Kripke frame and suppose that the
cardinality of W is m and W = {w1, w2, . . . , wm }. A matrix representation of an
accessibility relation RM ∈M(m×m) is defined by

RM (i, j) =
{

1 if (wi, wj) ∈ R,
0 if (wi, wj) 6∈ R.

Intuitively, a row of the matrix means ‘from’ world and a column means ‘to’ world.
In order to obtain a matrix representation of Kripke model, it suffices to consider a
valuation function in terms of Boolean matrices. Given a Kripke model M = (F, V )
and an atomic proposition p ∈ Prop, a matrix representation of V (p) is defined to
be a column vector V (p)M ∈M(m× 1) such that

V (p)M (i) =
{

1 if wi ∈ V (p),
0 if wi 6∈ V (p).

The semantic clauses of each formula ϕ can be defined by the computation over the
column vector(s) ‖ϕ‖ ∈M(m× 1) inductively as follows:

‖p‖ := (V (p))M ,

‖¬ϕ‖ := ‖ϕ‖,
‖ϕ ∨ ϕ‖ := ‖ϕ‖+ ‖ϕ‖,
‖3ϕ‖ := RM‖ϕ‖,
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where p ∈ Prop. Note that we may extend our syntax and semantics to a multi-
modal language. Let G be a finite set of indices. For syntax, we use 3a operator
in multi-modal language instead of 3 operator and the other operators are the
same as mono-modal language. For semantics, an accessibility relation R is replaced
by (Ra)a∈G, where Ra ⊆ W × W , and their matrix representation becomes RM

a .
Therefore, ‖3aϕ‖ := RM

a ‖ϕ‖. In order to focus our attention on elementary teaching
topics in Section 4, we will not explain multi-modal extension in this paper.

Proposition 4. Given any finite Kripke model M and any formula ϕ of L,

(JϕKM)M = ‖ϕ‖.

Example 5. Let RM be a 2 × 2 matrix, p ∈ Prop and V (p)M be a 2 × 1 matrix.
Let us write

RM :=
[
r11 r12
r21 r22

]
and V (p)M :=

[
x
y

]
.

Then,
‖2p‖ = ‖¬3¬p‖ = ‖3¬p‖

= RM‖¬p‖ = RMV (p)M

=
[
r11 r12
r21 r22

] [
x
y

]
=

[
r11 r12
r21 r22

] [
x
y

]

=
[
r11x+ r12y
r21x+ r22y

]
=

[
(r11 + x) · (r12 + y)
(r21 + x) · (r22 + y)

]
.

Thus far, we have explained our linear algebraic reformulation of Kripke seman-
tics. From Examples 3 and 5, we can observe that calculations of the truth set of
a formula are based on truth-table calculation of propositional logic. Indeed, if we
focus on propositional connectives and restrict the cardinality of the domain to 1, a
matrix calculation of the truth set of a formula is essentially the same as the truth-
table calculation of the formula. In this sense, we may regard matrix calculations
of the truth set of a formula as an extended version of truth-table calculation of
propositional logic. In the next section, we will explain that another type of an ex-
tended truth-table calculation, namely, the verification of frame properties in terms
of Boolean matrices.

3.2 Modal Axioms in Matrices
In order to discuss various frame properties, we now explain that relational union
and composition can be defined by matrix addition and multiplication as follows:
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given two binary relations R,S ⊆W ×W ,

(R ∪ S)M = RM + SM , (R ◦ S)M = RMSM

where R ◦ S = { (w, v) | (w, u) ∈ R and (u, v) ∈ S for some u ∈W }. From an edu-
cational perspective, the reader may wonder if we should teach relation algebra after
introducing our linear algebraic approach to modal logic since these operations are
originally from Tarski’s relation algebra [13]. However, this is not the case. Even
if our target students do not have prior knowledge of relational composition and
union, we can introduce these operations just as the corresponding operations to
matrix addition and multiplication. Therefore, we may even introduce the notions
from Tarski’s relation algebra based on Boolean matrices.

In addition to the above correspondences, the following equivalences will be
helpful in proving correspondence between modal formulas and their matrix repre-
sentations (e.g., Proposition 11 in Section 3.2).

Proposition 6. Given any R,S ⊆W×W , R ⊆ S iff S = R∪S iff SM = RM +SM .

Now we can reformulate well-known frame properties in terms of Boolean ma-
trices.

Proposition 7. Every frame property listed in Table 1 can be reformulated in terms
of Boolean matrix with elementary matrix calculations as in the Table 1 where 1
means a column vector of all 1s.

Name Frame Condition Formula Matrix Reformulation
Reflexive ∀w(wRw) T 2p→ p R = R + E
Symmetric ∀w, v(wRv implies vRw) B p→ 23p R = tR (or R = tR + R)
Transitive ∀w, v, u(wRv&vRu imply wRu) 4 2p→ 22p R = RR + R
Serial ∀w∃v(wRv) D 2p→ 3p RtR = RtR + E (or 1 = R1)6

Euclidean ∀w, v, u(wRv&wRu imply vRu) 5 3p→ 23p R = tRR + R

Table 1: Frame properties in this paper

We can verify the five frame properties of a given frame in Table 1 in terms of
Boolean matrices.

6We have found more general result than [2]. Their seriality is described by L ⊆ R; L where
R is an accessibility relation, L denotes the universal relation, and R; L denotes the relational
composition of R with L. The corresponding matrix representation of their seriality is L = RL
where L and R are unit square matrix of a relation. If the cardinality of the domain is 2, we can
describe their seriality by [11] = R [11] = [R1, R1].
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Example 8. Recall a matrix representation of an accessibility relation R in Ex-
ample 2. For simplicity, we regard R as a square matrix of the relation. We can
verify whether R satisfies certain frame properties listed in Table 1 by the compu-
tation over matrices. For example, let us check whether R satisfies transitivity. By
R = RR+R, i.e.,




1 1 1
0 1 0
0 0 1


 =




1 1 1
0 1 0
0 0 1







1 1 1
0 1 0
0 0 1


 +




1 1 1
0 1 0
0 0 1




=




1 1 1
0 1 0
0 0 1


 .

Hence, we may conclude that R satisfies transitivity. In a similar manner, we can
also check whether R satisfies the other properties. Since R = R + E and 1 = R1,
R satisfies reflexivity and seriality, respectively. However, by R 6= tR, E 6= tRR +
E and R 6= tRR + R, this R does not satisfy symmetricity, and Euclideanness,
respectively. Finally, we may conclude that the model satisfies reflexivity, seriality,
and transitivity.

Note that the verification of frame properties in Example 8 can also be regarded
as an extended truth-table calculation. This is because each verification of frame
property in Example 8 is based on Boolean matrix calculation.

Next, we will establish well-known implications among frame properties in terms
of Boolean matrices. In addition, we also show an ordinary proof for comparison.

Proposition 9. Reflexivity and Euclideanness jointly imply symmetry, i.e., R =
R+ E and R = tRR+R jointly imply R = tR.

Proof. Firstly, we observe that if R is reflexive, then the transposition tR is also
reflexive, i.e., tR = tR + E. Secondly, we rewrite the equation of reflexivity, as
follows:

R = R+ E (Reflexivity)
= (tRR+R) + E (by Euclideanness)
= (tR+ E)R+ E
= tRR+ E (by reflexivity of tR).

Afterward, we get tR = tRR + E by transposing both sides. Since both R and tR
are equal to tRR+ E, we finally obtain R = tR.
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For comparison, we show an ordinary proof with quantifiers as follows. We show that
for any w, v ∈ W , wRv implies vRw. Fix any w, v such that wRv. By reflexivity,
wRw. By Euclideanness, we obtain vRw from wRv and wRw, as desired.

Proposition 10. Reflexivity and Euclideanness jointly imply transitivity, i.e., R =
R+ E and R = tRR+R jointly imply R = RR+R.

Proof. R = tRR+R (by Euclideanness) = RR+R (by Proposition 9).

We also show an ordinary proof with quantifiers as follows. We show that for any
w, v, u ∈ W , wRv and vRu imply wRu. Fix any w, v such that wRv and vRu. By
symmetry (Proposition 9), vRw. By Euclideanness, we obtain wRu from vRw and
vRu.

In the above ordinary proofs, we had to select the appropriate variables for every
application of the conditions of the frame properties. The selection of variables might
sometimes be a cause of an error in the proof. On the other hand, we did not need to
worry about the selection of variables in the above linear algebraic proofs. Therefore,
the linear algebraic proofs seem clear and easy to understand for many our target
students.

In order to establish a relationship between modal axioms and frame properties,
we follow the idea of Lemmon-Scott axioms or Geach axioms [8, 3]. Namely, we
show that there are at least two types of correspondence between modal axioms and
their corresponding matrix representations in the Table 1. For simplicity, we are
omitting superscript M and regard R as a square matrix.

Proposition 11. Let n,m, l, k ∈ N and p ∈ Prop. For all frames F = (W,R),

3k2lp→ 2m3np is valid on F iff (tR)mRk +Rn(tR)l = Rn(tR)l.

Proof. Here R−1 denotes the inverse relation of R. We observe that t(RM ) =
(R−1)M . Fix any frame F = (W,R).

3k2lp→ 2m3np is valid on F,
iff (3−1)m3k2lp→ 3np is valid on F,
iff (3−1)m3kp→ 3n(3−1)lp is valid on F,
iff (R−1)m ◦Rk ⊆ Rn ◦ (R−1)l,
iff (R−1)m ◦Rk ∪Rn ◦ (R−1)l = Rn ◦ (R−1)l.

This is equivalent to (tR)mRk +Rn(tR)l = Rn(tR)l.
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Using the above proposition, we can obtain matrix representations of reflexivity,
symmetricity, transitivity, seriality, and Euclideanness in Table 1. In addition, we
can obtain another matrix representation of seriality, i.e., 1 = R1, by the following
proposition.

Proposition 12. Let m ∈ N, p ∈ Prop and 1 be a vector of all 1s. For all frames
F = (W,R),

2mp→ 3mp is valid on F iff Rm1 = 1.

Proof. Fix any frame F = (W,R).

2mp→ 3mp is valid on F iff 3m¬p ∨3mp is valid on F,
iff 3m(¬p ∨ p) is valid on F,
iff 3m> ↔ > is valid on F,
iff Rm1 = 1.

3.3 Quantifications in Matrices

So far we have explained the matrix reformulation of Kripke semantics in modal
logic. Now we begin to extend this approach to capture the behaviors of a universal
quantifier ∀ and an existential quantifier ∃ in first-order logic.

Let us consider the case of the universal (or full) relation, i.e., R = W ×W .
Then, the semantic clauses of 2 and 3 becomes:

M, w |= 2ϕ iff ∀v ∈W (wRv implies M, v |= ϕ),
M, w |= 3ϕ iff ∃v ∈W (wRv and M, v |= ϕ).

Since R is the universal relation, wRv trivially holds. This implies that these clauses
are not restricted by the accessibility relation R. Namely, the clauses can be regarded
as:

M, w |= 2ϕ iff ∀v ∈W (M, v |= ϕ),
M, w |= 3ϕ iff ∃v ∈W (M, v |= ϕ).

In this sense, we may regard the semantic clauses for 2 and 3 of modal logic as the
ones for ∀ and ∃ of first-order logic, respectively.

We can establish a similar argument in terms of Boolean matrices. In the sense
of the matrices, the universal relation R becomes the complete square matrix 1. As
a result, computations of ‖3p‖ and ‖2p‖ come to reflect the above argument.
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Example 13. LetW = {w1, w2, w3 }, R be the universal relation and V (p) = {w2 }.
Since there exists a world w2 such that p holds, 3p also holds at every world, i.e.,

‖3p‖ := RM‖p‖ = RMV (p)M =




1 1 1
1 1 1
1 1 1







0
1
0


 =




1
1
1


 .

However, since p does not hold at w1 and w3, 2p does not hold at every world, i.e.,

‖2p‖ := RM‖p‖ = RMV (p)M =




1 1 1
1 1 1
1 1 1







1
0
1


 =




0
0
0


 .

Now, let us visualize the distinction between ∃∀ and ∀∃ of first-order logic by
matrix representation. Let us consider the situation where ∃x∀yR(x, y), that is,
there is some world x from which all the other worlds are accessible. Then, it means
that the x-column is filled with 1s. This observation implies that the property of
∃y∀xR(x, y) is expressed in terms of Boolean matrix as (tR)1 6= 1. In the similar
way, in case ∀x∃yR(x, y), that is, for each row there must be at least one 1 (see
Table 2). Thus, the property ∀x∃yR(x, y) of seriality is expressed in terms of Boolean
matrix as: R1 = 1.

∃y∀xR(x, y) ∀x∃yR(x, y)



1 0 1
1 0 1
1 0 1







0 1 0
0 0 1
1 0 1




Table 2: Example of nested quantifications in terms of matrices (in 3× 3).

Then, we also establish “∃∀ implies ∀∃” in term of matrices.

Proposition 14. (tR)1 6= 1 implies R1 = 1.

Proof. Let R be an n× n matrix. Let us write

R :=



r11 · · · r1n
... . . . ...
rn1 · · · rnn


 .
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We show the contrapositive implication and so assume R1 6= 1. Now, the goal is to
show (tR)1 = 1. The assumption implies that [ri1 · · · rin] = t0 for some 1 ≤ i ≤ n.
Fix such i. Then, [ri1 · · · rin] = [ri1 · · · rin] = t1. Since

tR :=



r11 · · · rn1
... . . . ...
r1n · · · rnn




(tR)1 = 1 holds by [ri1 · · · rin] = t1.

4 Linear Algebraic Approach to Teach Modal Logic
In this section, from an educational point of view, we explain which topics of modal
logics can be taught to students using our approach and why the approach is helpful
for educational purposes. In addition, we introduce our supporting software to avoid
involved computations on matrices.

4.1 Teaching Topics on Modal Logic by Linear Algebraic Approach
When we teach modal logics to students, the following topics are often covered:

1. Syntax: how to read modal operators, how to define formulas, the dual defi-
nition of modal operators, and the distinction between nested modalities.

2. Kripke semantics: a graphical representation of a Kripke model, the satisfac-
tion relation, how to compute the truth value of a formula at a world, the
validity and the satisfiability of a given formula, a counter-model construc-
tion, frame properties (reflexivity, symmetricity, transitivity, seriality and Eu-
clideanness), and the correspondence between frame properties and formulas
(T, B, D, 4 and 5).

3. Proof theory: Hilbert-style systems, tableau methods, natural deductions, se-
quent calculi, extensions by modal axioms (T, B, D, 4 and 5).

4. Possible further topics: bisimulation, finite model property, and decidability,
complexity, soundness and completeness theorem of modal logics.

Here we focus our attention on elementary topics of items 1-3. For item 1, we
should teach how to read modal operators at first. We introduce 2 and 3 operators
and teach how to read them, i.e., we read 2 as ‘it is necessary that’ and 3 as ‘it
is possible that.’ Then, we also teach the other readings of modal operators. For
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example, we read 2 operator as ‘it is believed that’ in doxastic logic, ‘it is known
that’ in epistemic logic, ‘it is obligatory that’ in deontic logic, ‘it will always be
the case that’ and ‘it has always been the case that’ in temporal logic. Afterward,
we should teach how to write a formula of modal logic by a BNF grammar. If 3
operator is contained in the syntax, then we can define the other 2 operator as
the dual of the operator 3, e.g., 2p := ¬3¬p. In addition, we should also teach
the distinction between nested modalities, e.g., 22p, 23p and 32p. In connection
with epistemic logic, we also teach what the positive introspection (2p→ 22p) and
the negative introspection (¬2p→ 2¬2p) mean. The positive introspection stands
for ‘If agent knows, he/she knows what he/she knows’, and negative introspection
stands for ‘If agent do not know, he/she knows that he/she do not know.’

For item 2, in order to teach Kripke semantics, we use the model-theoretic ap-
proach. A good point of modal logic is that we can calculate the truth value of
a formula over a graphical representation of a Kripke model visually. However,
such graphical approach sometimes might not work well, e.g., a calculation of the
truth value of the formula 2p at the ‘dead-end’ world where we cannot access any
world. In such a case, we should follow the definition of the satisfaction. We of-
ten give a brief introduction to the above five frame properties by the graphical
approach intuitively, and then we explain frame conditions of a frame property by
the model-theoretic approach rigorously. We also explain well-known implications
among the frame properties, e.g., reflexivity and Euclideanness jointly imply transi-
tivity (cf. Section 3.2). Afterward, we should explain correspondence between frame
properties and valid formulas, e.g., a frame satisfies Euclideanness if and only if 5
(3p→ 23p) is valid on the frame.

For proof theory of item 3, we should introduce the basic proof system first. For
example, the Hilbert-style base system is defined by propositional tautology, the
distribution axiom for 2 operator, (2(p→ q)→ (2p→ 2q)), modus ponens (from
ϕ and ϕ → ψ, we may infer ψ), and the necessitation rule for 2 operator (from ϕ,
we may infer 2ϕ). In addition, we also teach what a proof of the theorem is and
what the notion of theorem on the base system is.

Next, we should teach additional well-known modal axioms, i.e., T, B, D, 4, and
5. From these five axioms, we also teach that we can consider 32 different combi-
nations of the axioms, but we can reduce them substantially to 15 combinations.
By the 15 combinations of axioms, we can determine 15 different modal logics. For
example, we can determine KT, KD, K45, S4, and S5. Thereafter, we explain
some extensions of the base system. For example, if we add the axioms T, B, and 4
to the above Hilbert-style base system, it becomes Hilbert-style system for S5.

Our linear algebraic approach can cover some of the above topics. In particular,
many topics of Kripke semantics (item 2) and soundness of proof theory (item 3) can
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be covered. But the topics of syntax (item 1) and proof theory (item 3) cannot be
covered. We assume that our target students have prior knowledge of propositional
logic and linear algebra, and so our approach might be effective for them. In the
following sections, we compare the ordinary model-theoretic approach with our linear
algebraic approach.

• In Section 4.3.1, we start with a calculation of the truth value of a formula.
We also explain how we can verify the validity of a formula on a model in
Section 4.3.2.

• In Section 4.4.1, we explain how to verify frame properties of a frame. In
this section, we also mention that we can check whether the frame satisfies
reflexivity, seriality, and symmetricity at a glance by the form of a matrix of
an accessibility relation.

• In Section 4.4.2, we explain how to show the correspondence between frame
properties and valid formulas.

For each section, we also explain how to use our software for educational purposes.
Finally, in Section 4.5, we explain our teaching experiment and feedbacks from
students.

4.2 Supporting Software to Teach Modal Logic
In Section 3, we regarded a calculation of the truth set of a formula and the verifica-
tion of frame properties listed in Table 1 as an extended truth-table calculation, i.e.,
a computation on Boolean matrices. However, similarly to the case of the ordinary
model-theoretical approach, we have to give more efforts to compute matrices if the
length of a given formula becomes longer or the dimension of a matrix becomes
bigger. Such efforts might be required when lecturers provide exercises or prepare
teaching materials. If we wish to avoid such efforts on calculations, we had better
to implement some supporting tools. In this section, we introduce our supporting
software to overcome this issue. We provide an overview and a short instruction on
our software in the remaining sections.

We have implemented a supporting software based on our linear algebraic refor-
mulation of Kripke semantics by JavaTM 8 programming language and opened for
the public.7 The features of our software can be summarized as follows:

1. We can edit a matrix representation of a Kripke model by a graphical user
interface easily.

7http://cirrus.jaist.ac.jp:8080/soft/bc.
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2. A computation program of the truth set of a formula on a model is provided.
We can obtain a Boolean vector representation of the truth set of the formula
written in TEX style, e.g., ‘p Uland q.’8 From this vector, we can obtain a
truth value of the formula for each world and also verify the validity of the
formula on the model.9

3. A verification program of frame properties is also provided. We can verify all
frame properties listed in Table 1 at once.

4. A visualization program is provided. By the program, and we can obtain a
graphical representation of a Kripke model via Graphviz.10

The provided programs might be helpful for educational purposes. For example,
lecturers can use our software to design exercises and lecture materials. In addition,
students can use our software to study modal logics by themselves. Notice that unlike
RELVIEW tool [2], if we know how to input a formula and a model into our software, we
can work with modal logic by our software without any more preparation. RELVIEW
tool is designed to solve computation tasks of relation algebra. In order to work
with modal logic by RELVIEW tool, we need to provide definitions of formulas and
semantics of modal operators based on relational operations to RELVIEW tool by
the internal language of it. For example, we need to define 2 operator by box(S,
v) = - (S * -v) where S is a matrix for an accessibility relation, v is a vector for
valuation and the operators - and * are relational complementation and composition,
respectively. However, in the context of the efficiency of computation tasks, we do
not claim any superiority of our program over RELVIEW.

Figure 2 shows a sample of the graphical user interface of our software.11 The
interface is divided into two parts. The left side of the interface is an editor for
Kripke model, and the right side is a calculator for the computation tasks that we
mentioned in the above list of features.

A Kripke model editor allows us to manage a model easily. The design of the
editor reflects our approach; namely, we can input the model into the editor by the
matrix representation of the model. A general workflow to input the parameters of
the model is described as follows:

8As a matter of practical convenience, there are insert buttons of a proposition, logical connec-
tives, and modal axioms at the next to the parameter box of the calculator. Hence, we can input
the above vocabulary of modal logic written in TEX style into the parameter box easily.

9We note that our software was originally introduced in [6] to support computation tasks for
dynamic logic of multi-agent communication.

10http://www.graphviz.org/
11Displaying parameters are corresponding to the formula and the model in Example 2.
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Figure 2: Overview of our implementation

1. Input the cardinality of possible worlds and propositions into corresponding
parameter boxes.

2. Input 0 or 1 into each component of matrices for relations, and valuations.12

As a matter of practical convenience, each component of matrices works as either a
button or a text field. We may either switch the values of matrices 0 and 1 by clicking
the component or enter a truth value to the component directly. Each component
turns to blue if it has the value 1, white if 0. The colored matrices are helpful since
these matrices allow us to recognize some (frame) properties of matrices at a glance
(see Section 4.4.1). In addition, there are buttons E, 0, 1, and Rand to set the values
of each matrix as unit square matrix, zero matrix, complete matrix and randomly
generated matrix, respectively.

Once parameters are entered to the editor side, we can use the calculator side to
solve several computation tasks. The calculator has functions which solve tasks of

12Matrices of channels are used to define communication channels among agents in [6]. In this
paper, we leave the matrix to 1, i.e., the unit square matrix, and this stands for ‘every agent has
communication channels each other’ (cf. Figure 2). Since this is out of focus of the present paper,
we can ignore this matrix.

130



Teaching Modal Logic from The Linear Algebraic Viewpoint

the following kind:

1. Visualization of a Kripke model.

2. Computation of the truth set of a formula.

3. Verification of frame properties listed in Table 1 of a frame

The function for visualizing a Kripke model can be executed by clicking Visualize
button on the calculator. With the help of ‘Graphviz’, the function yields and saves
a picture of the graphical representation of the model under appropriate directory.
Afterward, our software displays the picture on the screen. We will explain details
and applications of the other two functions for educational purposes in the following
Section 4.3 (computation of a truth set of a formula) and Section 4.4 (verification
of frame properties), respectively.

4.3 Computation of Truth Sets and Validity
One of the most basic topics of Kripke semantics for modal logic is to calculate the
truth value of a formula at a given world. In connection with this topic, we have
the following topics which should be taught to students:

• The truth value of a formula at a given world

• The validity and the invalidity of a formula on a model

In this section, we explain to follow the above topics.

4.3.1 Truth Value of Formula at World

In modal logic, the truth value of a formula is computed at each possible world. In
general, we explain to students how the truth value of a formula is computed by the
ordinary model-theoretic approach as in Example 2 (Section 2.1). If a given formula
is simple and the domain of a given model is small, we can calculate the truth value
of a formula visually. This is one of the best points of modal logic. In this approach,
we firstly draw a picture of a graphical representation of a Kripke model, and next
we calculate the truth value of a formula on the picture.

For example, let us consider a Kripke model M1 by W = {w1, w2, w3 }, R =
{ (w1, w1), (w1, w2), (w1, w3), (w2, w2) }, and V (p) = W (see Figure 3). In the model,
2p is true at every world. In order to teach the truth of 2p at a given world on
a model visually, we often use the graphical representation of a Kripke model such
as a picture of the model M1 shown in the left side of the Figure 3. By tracing
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Figure 3: The world w3 is now ‘dead-end’

the links of an accessibility relation from w1 and w2, students can obtain the truth
value of 2p at w1 and w2, respectively. However, the graphical approach is intuitive
but sometimes misleading. For example, some students might be confused how to
obtain the truth value of the formula 2p at w3. This is because the world w3 is a
‘dead-end,’ i.e., a world where we cannot access any world, and so we cannot find
any link to the other worlds from the picture. In such a case, we should use the
ordinary model-theoretic approach. By the explanation of this approach, students
eventually understand why 2p trivially holds at w3. Namely, our goal is to show:
for all v ∈W, w3Rv implies M1, v |= ϕ. But, by definition of R, there are no world
v ∈W such that w3Rv. Therefore, the above implication is vacuously true, and we
can conclude that 2p trivially holds at w3. However, this proof might be unnatural
for some students. In such case, we may also explain the proof by the negation of
an assumption. Namely, we assume that M1, w3 6|= 2p. Then this is equivalent to:

it is not the case that for all v ∈W, w3Rv implies M1, v |= ϕ,
iff for some v ∈W, it is not the case that w3Rv implies M1, v |= ϕ,
iff for some v ∈W, w3Rv and M1, v 6|= ϕ.

Hence, we obtain w3Rv for some v ∈ W . But there is no world v ∈ W such that
w3Rv by definition of R, a contradiction. Therefore, the graphical approach some-
times might not work well, and the model-theoretic approach gives us the more
rigorous explanation. However, we need to rely on the notion of ‘vacuously hold’ or
the argument by contradiction in this approach.

On the other hand, if we employ our linear algebraic approach to obtain the
truth value of the above formula, we do not need to rely on such notions explicitly.
As we mentioned in Section 3.1, we can compute the truth value of a formula by
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an extended truth-table calculation, i.e., a Boolean matrix calculation. In order to
teach how to obtain the truth value of 2p at w3 by our approach, at first we should
show the following matrix representations of R and V (p) to students:

RM :=




1 1 1
0 1 0
0 0 0


 , V (p)M :=




1
1
1


 .

Then, we can teach the computation of the truth set of 2p by:

‖2p‖ = RMV (p)M =




1 1 1
0 1 0
0 0 0







1
1
1


 =




1 1 1
0 1 0
0 0 0







0
0
0


 =




0
0
0


 =




1
1
1


 .

Afterward, we can extract the computation of w3 from the above computation as:
[
0 0 0

] [
1
]

=
[
0 0 0

] [
0
]

=
[
0
]

=
[
1
]
.

We may also explain that the truth value of 2p eventually must be true at the dead-
end world since

[
0 0 0

] [
x

]
(where x is a truth value of p at the dead-end world)

always returns 1. As we can see above, we can compute the truth set of a formula
using our approach easily. On the other hand, in order to obtain the truth set of
a formula, in the ordinary model theoretic approach we need to calculate the truth
value of the formula for every world.

Furthermore, we may use our software to obtain the truth set of a formula quickly.
Our software provides a function to compute the truth set of a formula. Inputs of
the function are matrices of a Kripke model and a formula written in TEX style, e.g.,
‘p Uland q.’ An output is a vector corresponding to the desired truth set. We can
compute the truth set of a given formula by clicking the button Truths on the calcu-
lator. If the computation procedure finishes successfully, a resultant vector appears
on a terminal window. See the bottom side of the Figure 3. We can find the vector
‖2p‖ = 1 of the truth set. We can also find the more involved computation result
in the bottom right side of the figure, i.e., the vector ‖3(2p → 22p)‖ = t

[
110

]

of the truth set. Since the function yields intermediate computation results, it can
be helpful for educational purposes. For example, students can use this function for
their self-study. Lecturers can also use this function to provide exercises and write
lecture materials. In addition, we can obtain the following solutions from the vector
of the truth set of a formula:

1. the truth value of a formula at a world.
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2. the validity of a formula on a model.

That is, if the n-th component of the vector is 1, the formula is true at n-th world
(item 1). In the right side of the Figure 3, we can find the truth value 1 of a formula
2p at the row of w3 of the vector. If the vector is filled with 1, the formula is valid
on a model (item 2). Otherwise, the formula is invalid on the model. For the validity
and the invalidity, we explain them in Section 4.3.2.

4.3.2 Validity and Invalidity of Formula on Model

In connection with the topic of the truth value of a formula, the validity of a formula
on a model is another important topic which should be taught to students. This
is because the notion of the validity of a formula is used to explain the notions of
a counter-model to a formula, the satisfiability of a formula on a model, and the
correspondence between frame properties and (valid) formulas.

In the ordinary model-theoretic approach, we explain that a formula is valid on a
model if the formula is true at every world. For example, let us recall the model M1
which we used in Section 4.3.1 (see also Figure 3) and verify whether the formula
2p is valid on the model. After the calculation of the truth value of the formula 2p
for each world, we obtain 2p is true at every world, and can conclude that 2p is
valid on the model M1. During the above calculation, we have to repeat the similar
argument.

In the linear algebraic approach, we may explain that a formula is valid if a
vector of the truth set of a formula is 1, in other words, the vector does not contain
0. For example, through the calculation of the truth set ‖2p‖ on the above model
M1, we obtain the vector 1. Therefore, we can conclude that the formula 2p is valid
on the model. Let us suppose a model M′1 by the model M1 where V (q) = {w2 }.
We can also show that 3(p ∨ q) ↔ 3p ∨ 3q is valid on M′1. It suffices to show
J3(p ∨ q)K = J3p ∨3qK (cf. Section 2.1). Since

‖3(p ∨ q)‖ = RM (V (p)MV (q)M ) = (RMV (p)M ) + (RMV (q)M ) = ‖3p ∨3q‖,

we obtain ‖3(p ∨ q)‖ = ‖3p ∨ 3q‖, i.e., J3(p ∨ q)K = J3p ∨3qK, therefore the
commutativity of 3 over disjunction is reduced to the distributivity of matrix mul-
tiplication. Moreover, we can also show J3⊥K = J⊥K by ‖3⊥‖ = RM 0 = 0 = ‖⊥‖.

From the notion of the validity of a formula on a model, we should also teach
invalidity of that on the model. That is, a formula is invalid on a model if the
formula is not valid on the model. In other words, there is some world such that a
formula is not true. For example, let us define a model M2 by W = {w1, w2, w3 },
R = { (w1, w1), (w1, w2), (w1, w3), (w2, w2), (w3, w3) } and V (p) = {w2 }. The model
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is the same as the model that we explained in Example 2 (Section 2.1). Then,
the formula 2p is no longer valid on the model M2 since 2p is false at w1 and w3.
Therefore, 2p is invalid on the model M2. In the model-theoretic approach, we need
to find such worlds w1 or w3 by the calculation of the truth value of the formula for
each world. Although in the linear algebraic approach, we only need to find 0 in the
vector of the truth set of the formula, i.e.,




1 1 1
0 1 0
0 0 1







0
1
0


 =




1 1 1
0 1 0
0 0 1







1
0
1


 =




1
0
1


 =




0
1
0


 .

Since the vector of the truth set contains 0, we can conclude that the formula 2p
is invalid on the model M2. If we use our software, we can check the validity of a
formula easily. As we mentioned in Section 4.3.1, we can compute the truth set of a
formula on a model, and from the resultant vector we can check the validity of the
formula on the model. For example, in Figure 3, the resultant vector of the truth set
of the formula 2p does not contain 0. Therefore, the formula is valid on the model
of the figure.

From the invalidity of a formula, we may also explain that a model is a counter-
model to the formula. We say that a model M is a counter-model to a formula ϕ if
ϕ is invalid on the model M. For example, the above model M2 is a counter-model
to the formula 2p. Of course we can investigate the validity of a formula on the
larger model easily. Such investigation can be a good exercise to some students who
want to study finite model checking.

4.4 Verification of Frame Properties
As we mentioned in Section 4.3, the truth value of a formula is determined for each
possible world. In particular, if the formula contains modal operators, the resultant
truth value is affected by the properties of a given accessibility relation. Therefore,
it is important to explain topics of various properties of frames to students. In this
section, we explain the following topics that should be taught to students:

1. The verification of frame properties of a given frame.

2. The validity of a formula on a frame which satisfies one of the frame properties
listed in Table 1.

4.4.1 Frame Properties on Frame

After giving a brief introduction to frame properties of a frame visually, we should
explain how to verify them. The ordinary approach to teach the verification of
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Figure 4: The frame satisfies seriality, transitivity and Euclideanness

frame properties is to use both the visual and the model-theoretic approach. For
example, let us define a frame F by W = {w1, w2 }, R = { (w1, w2), (w2, w2) } (see
Figure 4). The frame F satisfies seriality, transitivity and Euclideanness. Since
the cardinality of the accessibility relation as a set is enough small, we can use the
graphical approach to explain that the frame satisfies the above frame properties.
If we show a graphical representation of the frame to students, they might easily
realize that the frame satisfies seriality and transitivity. However, it might be difficult
to realize if the frame satisfies Euclideanness. In such case, we should switch our
explanation to the model-theoretic approach. When we show the frame satisfies
Euclideanness, we should check whether the frame satisfies the frame condition of
the frame property, i.e., wRv and wRu imply vRu for any w, v, u ∈W . By definition
of the accessibility relation R, we have the following implications:

• w1Rw2 and w1Rw2 imply w2Rw2 (w = w1, v = w2, u = w2).

• w2Rw2 and w2Rw2 imply w2Rw2 (w = w2, v = w2, u = w2).

The other implications, e.g., w1Rw1 and w1Rw1 imply w1Rw1 (w = w1, v = w1,
u = w1), trivially hold since the antecedent of the implication is false by definition
of R. Therefore, we can conclude that the frame F satisfies wRv and wRu imply
vRu for any w, v, u ∈W , i.e., Euclideanness.

If we teach how to verify the frame properties of a frame by our linear alge-
braic approach, we should show the verification of matrix reformulation of a frame
property. Similarly to Example 8 (Section 3.2), we can explain the verification of

136



Teaching Modal Logic from The Linear Algebraic Viewpoint

Euclideanness of the above frame F by R = tRR+R, i.e.,
[
0 1
0 1

]
=

[
0 0
1 1

] [
0 1
0 1

]
+

[
0 1
0 1

]

=
[
0 0
0 1

]
+

[
0 1
0 1

]
=

[
0 1
0 1

]
.

In addition, we may also mention that the more simplified method to verify some
frame properties of a frame. We can check whether a given frame satisfies reflexivity,
seriality, and symmetricity by the form of a matrix of an accessibility relation of the
frame. This is because if the frame satisfies the above three properties, then the
matrix of an accessibility relation has the following features:

• Reflexivity: every diagonal component of the matrix consist of 1.

• Seriality: every row contains at least one occurrence of 1.

• Symmetricity: a matrix is a mirror image in the diagonal line.

For example, we can recognize that the matrix R of F in Figure 4 satisfies seriality
but not reflexivity and symmetricity at a glance.

We may also teach the above matrix computation with our software, which has
a function to verify every frame properties listed in Table 1 (Section 3.2). An input
parameter of the function is a matrix of an accessibility relation of a frame, and
an output is a list of the verification results of each property. After entering the
input parameters, it is ready to verify the property. If the dimension of the matrix
of an accessibility relation is enough small, we can also use the simplified method
to verify some frame properties as we mentioned before. Since the color of each
component is blue if it is 1, we can easily recognize whether the matrix satisfies the
above features of frame properties. For example, see the matrix of RM at the center
of Figure 4. We can observe that the matrix actually satisfies seriality since every
row contains a blue component, i.e., 1. If we wish to use the function of verification
of frame properties, we can execute it by clicking the button Frame Property on the
calculator. If the function finishes successfully, a resultant list will be displayed in a
terminal window (see right side of Figure 4). In the list, if the given frame satisfies
a frame property, 1 appears at the right side of the name of the property, otherwise,
0 appears. In addition, the name of the modal axiom also appears at the next to
the name of the corresponding frame property. At the right side of the Figure 4, we
can see that the frame satisfies seriality, transitivity and Euclideanness.
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Figure 5: How to satisfy both transitivity and seriality by adding an edge?

Since we can easily manipulate an input matrix of a model by the model editor
and obtain the result of the verification of frame properties of the model quickly, for
example, we can design or solve the following exercises.

Example 15. Suppose a model of Figure 5 which satisfies transitivity.

1. In order to satisfy both transitivity and seriality, which edge should we add to
the model? (answer: add an edge from w3 to itself.)

2. In order to satisfy Euclideanness, how should we modify the model? (answer:
delete every edge from the model.)

3. How to remove every frame property from the model by one edge deletion?
(answer: delete an edge from w1 to w3.)

If we try to compute possible solutions of the above exercises without supporting
tools, we have to compute frame conditions with various changes over and over again.
Therefore, our software might be helpful to avoid such efforts.

4.4.2 Frame Properties and Valid Formulas

In this section, we focus our attention on the modal axioms T, B, D, 4 and 5. If
we know whether a given frame satisfies some properties, we can determine which
formulas are valid. For example, each frame property listed in Table 1 (Section 3.2)
has the corresponding formula. If a model satisfies seriality, then the corresponding
formula D (2p→ 3p) is valid on the model. In order to explain the correspondence
between frame properties and valid formulas, we use both verification of the validity
of a formula on a model in Section 4.3.2 and of frame properties of a frame in
Section 4.4.1.
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For example, let us recall the frame F of previous Section 4.4.1, and define
a model M3 by F and V (p) = W (see Figure 4). The model satisfies seriality,
transitivity, and Euclideanness. In addition, the formulas D (2p→ 3p) for seriality,
4 (2p → 22p) for transitivity and 5 (3p → 23p) for Euclideanness are valid on
the model M3, respectively. In order to teach the the correspondence between frame
properties and valid formulas smoothly, the above properties are sometimes provided
as an assumption. Otherwise, we should start to explain from the verification of all
frame properties listed in Table 1 of the frame F. In this example, we suppose
that the above properties are given. Then, we can start our explanation from the
verification of the validity of the above formulas. To make our discussion simpler,
we focus our attention on the validity of the formula 5 (3p→ 23p) only. Under the
model-theoretic approach, we have to check the truth value of the formula 5 for each
world. Through the similar discussion in Section 4.3.2, we can eventually conclude
that the formula 5 is valid on the model M3. Similarly, we may explain the validity
of the formula by our linear algebraic approach. By

‖3p→ 23p‖ = ‖3p‖+ ‖23p‖
= RMV (p)M +RM (RMV (p)M )

=
[
01
01

] [
1
1

]
+

[
01
01

] 


[
01
01

] [
1
1

]


=
[
1
1

]
+

[
01
01

] [
1
1

]
=

[
0
0

]
+

[
0
0

]
=

[
1
1

]
,

we can conclude that the formula 5 is valid on the model M3. In a similar manner,
we can also verify whether the formulas 4 (2p→ 22p) and D (2p→ 3p) are valid
on the model, respectively. However, we need to give the effort to calculate matrices,
thus we may use our software to check the validity of the formulas quickly.

We should also explain that if a formula which defines a frame property is not
valid, then the corresponding frame property is not satisfied in the frame of the
model. Remark that we still focus on the axioms T, B, D, 4 and 5. For example, let us
define a modelM4 byW = {w1, w2 }, R = { (w1, w2) } and V (p) = W (see Figure 6).
Then the frame of the model M4 does not satisfy seriality and Euclideanness since
the formulas D (2p→ 3p) and 5 (3p→ 23p) are no longer valid on the model M4,
respectively. To show that the frame does not satisfy Euclideanness, we should find
a link which violates the frame condition of the frame property. By the ordinary
model-theoretic approach, we can find that the following implication does not hold:
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Figure 6: The formula 5 (3p → 23p) is invalid and the frame does not satisfy
Euclideanness

w1Rw2 and w1Rw2 imply w2Rw2 (w := w1, v := w2, u := w2). Therefore, the frame
does not satisfy Euclideanness. The result is also the same in the linear algebraic
approach by R 6= tRR+R, i.e.,

[
0 1
0 0

]
6=

[
0 0
1 0

] [
0 1
0 0

]
+

[
0 1
0 0

]

=
[
0 0
0 1

]
+

[
0 1
0 0

]
=

[
0 1
0 1

]
.

The above calculation seems easy but it takes a bit of our time. Hence, we may use
our software to verify which frame properties are satisfied on the frame quickly.

At the end, for example, we can design the following exercise with the help of
our software.

Example 16. Let us define a Kripke model by W = {w1, w2, w3 }, R = {(w1, w1),
(w1, w3), (w2, w3), (w3, w1), (w3, w3)} and V (p1) = {w1 } (see Figure 7).

1. Enumerate satisfying frame properties (listed in Table 1). (answer: the frame
satisfies seriality and Euclideanness.)

2. Verify whether the formula 5 (3p1 → 23p1) is valid on the model. (answer:
5 is valid on the model.)

3. Let us delete an edge from w3 to w1. Afterward, verify again the formula 5 on
the model. (answer: 5 is invalid on the model.)

4. Verify whether the frame satisfies Euclideanness. (answer: the frame does not
satisfy Euclideanness.)
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Figure 7: Which frame properties are satisfied on the frame?

When we teach modal logic, we sometimes need to consider involved exercises
as above. With the help of some supporting tools, we can avoid our efforts by hand
and eliminate human errors from our teaching materials.

4.5 Feedbacks from Students
In order to obtain feedbacks from students, we have held a small seminar to teach
elementary topics of modal logic using our approach. The participants of this sem-
inar were 15 graduate students from our university. For reference, we have opened
our lecture material and feedbacks from students for the public (see also Figure 8).13

In the lecture, we taught the following topics to the students:

1. Truth-table calculation of propositional logic, how to read modal operators,
how to define formulas, and the dual-definition of modal operators.

2. A graphical representation of Kripke model, linear algebraic reformulation of
Kripke semantics, and computation of truth sets and validity of a given formula
on a model.

3. Matrix representation of the five frame properties in Table 1 (reflexivity, sym-
metricity, transitivity, seriality and Euclideanness), verification of them, and
the correspondence between these frame properties and formulas (T, B, D, 4
and 5).

These topics are selected from teaching topics explained in Sections 4.1, 4.3 and 4.4.
We used Examples 2, 3 and 8, and examples of the truth value of a formula 2p at

13http://cirrus.jaist.ac.jp:8080/soft/ttl
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Figure 8: Our lecture material and questionnaire form

a dead-end world in Section 4.3.1 and the verification of Euclideanness property in
Section 4.4.1. In order to compare our linear algebraic approach with the ordinary
model-theoretic approach, we also provide a short explanation of the model-theoretic
approach for each topic. Finally, we demonstrated our supporting software.

After the seminar, we have conducted a survey using a questionnaire form (see
the right side of Figure 8). The questionnaire form consists of the following items:

1. Past and current affiliation, past and current major of research and subjects
which he/her has ever learned.

2. Levels of understanding of the topics and his/her intriguing topics.

3. Preferred approach to learn modal logic.

4. Effectiveness of our approach and supporting software to learn modal logic.

We have collected 15 completed questionnaire forms, and the results and opinions
can be summarized as follows. For item 1, we found that 14 students have already
learned linear algebra, and 6 students have never learned first-order logic (see the
left diagram of Figure 9).14 In what follows, we regard the latter 6 students (i.e.,

14In the questionnaire, we also asked a question that whether students know modal logic and
set theory. As a result, we found that 6 students and 4 students have already learned modal logic
and set theory, respectively. Since these students also have already learned first-order logic, we
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Figure 9: Prior knowledge of students and their preferred approach

Figure 10: Interesting topics to students

one-third of the participants) as our target students since we taught truth-table cal-
culation at the beginning of the seminar. For item 2, most of our students answered
that they could understand the topics of the seminar (see the left graph of Figure 10).
In particular, the topic of the verification of frame properties using matrices attracts
the interest of 12 students (see the right graph of Figure 10). For item 3, the re-
sults were different from our expectation. Our approach was bit preferred than the
model-theoretic approach; 7 students preferred to use linear algebraic approach, 5
students preferred to use the model-theoretic approach and 3 students preferred to

have merged them into the same group of students who know first-order logic in the left diagram
of Figure 9.
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Figure 11: Effectiveness of our teaching approach and software to learn modal logic

use both approaches (see the right diagram of Figure 9). In particular, 5 students
of our target preferred the linear algebraic approach. Their opinion is that sim-
ple matrix calculations allow them to understand the elementary notion of modal
logic since they are not familiar with set theory and felt difficult to understand the
model-theoretic treatment of Kripke semantics. This result indicates that our tar-
get students could learn elementary part of modal logic using our approach. On the
other hand, 7 students who have already learned first-order logic were divided into
two groups; 4 students preferred model-theoretic approach and 3 students preferred
both approaches. But these 7 students also answered that they could deepen their
understanding of modal logic from the linear algebraic perspective (see the left graph
of Figure 11). For item 4, most of our students are agreed that our approach is ef-
fective to learn modal logic (see the center graph of Figure 11). They also answered
that our software can be helpful to their study since they wished to avoid involved
calculation of matrices (see the right graph of Figure 11).

As a result, students eventually got a positive impression to learn modal logic
using our approach. The above feedbacks indicate that our approach must be ef-
ficient for both our target students and those who have already learned first-order
logic. The result also indicates that our approach has the potential of expanding
the range of our target students. For example, in Japan, many high-school students
learn basic calculations of real-valued matrices. Therefore, we may teach elementary
topics of modal logic and graph theory to advanced high school students in terms of
matrices.
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5 Conclusion

We have explained a linear algebraic approach to teach modal logic to students.
Based on Fitting’s linear algebraic reformulation of Kripke semantics of modal logic,
we can represent an accessibility relation R by a Boolean matrix, and a valuation
V (p) of an atomic variable p by a Boolean column vector, provided the cardinality of
the domain is finite. Then we can calculate the truth set of a formula by calculations
over these matrices.

Moreover, we can also verify the frame properties in terms of matrices. In order
to obtain a linear algebraic reformulation of frame properties, we have shown two
types of correspondence between matrix reformulation of frame properties and cor-
responding modal axioms. Based on the idea of Lemmon-Scott axioms and Geach
axioms, we can capture all of the five well-known frame properties, i.e., reflexivity,
symmetricity, transitivity, seriality and Euclideanness. As a result, we can regard
the above matrix calculations of Kripke semantics as an extended version of truth
table calculation. Furthermore, this extension allows us to capture some restricted
form of quantifications (in Kripke semantics) without bound variables of first-order
logic.

Our target students are those who have prior knowledge of linear algebra and
propositional logic. They can learn modal logics based on their acquired knowledge
without learning first-order logic. In addition, students who have already learned
first-order logic, can also deepen their understanding of the subject from a different
perspective. In order to claim this, we have explained which topics of modal logics
can be taught to students using our approach and why the approach is helpful for
educational purposes. In order to avoid involved calculations on matrices, we have
introduced our supporting software. Finally we have taught some elementary topics
of modal logic to our students using our approach, and collected feedbacks from
them. The feedbacks indicates that our approach must be efficient for both our
target students and the ordinary target students of a course of modal logic.

A further direction of this study will be to use a similar approach to teach ad-
vanced topics of modal logics. In particular, we may expand our mono-modal syn-
tax into multi-modal one to cover, e.g., description logic [1] and dynamic epistemic
logic [17]. As for description logic, a family of roles (say “has a child”) generates
both box-type and diamond-type modal operators. Therefore, we can capture the
semantics of these operators by a set of the corresponding adjacency Boolean ma-
trices to the roles. We can also cover some topics of dynamic epistemic logics [17]
by our approach, where multi-modal operators are employed for describing agents’
knowledge or beliefs. For example, [6] has presented a linear algebraic semantics of
dynamic epistemic logic for a multi-agent communication system, with the help of
van Benthem and Liu’s idea of relation changer [16]. A key idea of the notion of

145



Hatano, Sano and Tojo

relation changer is that a dynamics of beliefs may be described as a program term
in propositional dynamic logic, i.e., a program term constructed from atomic pro-
grams by composition, non-deterministic choice, and test. Since we can represent
these three program constructors as matrix operations, we may also apply our ap-
proach to such dynamic epistemic logic. The other topics, such as soundness and
completeness theorem of modal logics, still remain for further studies.
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Abstract

The medieval trivium consisted of logic, grammar and rhetoric. It was the
‘linguistic’ component of medieval education as opposed to the more mathe-
matical quadrivium. Over the last thirty years or so something worth calling
the New Trivium has emerged. This paper discusses what it is, and why it is
important, but is for the most part concerned with a pedagogical issue: how
best to teach the New Trivium to humanities students with little or no back-
ground in logic.

Keywords: Trivium, Quadrivium, Logic, Critical thinking, Logic education, Prob-
lematisation, Humanities

1 Introduction
Roughly speaking, by the New Trivium I mean certain applications of logic to fields
such as linguistics, social and cognitive psychology, knowledge representation, arti-
ficial intelligence, and theoretical computer science. This is not very precise, but
later in the paper I’ll explain why I believe that there is something here worth iso-
lating and calling the New Trivium. Nonetheless, for the most part this paper is
not so much concerned with what the New Trivium is, or even why I believe it to
be important. Instead, it’s mostly about how to teach it, and in particular, how to
teach it to students with very little (if any) logical background.

Indeed, this paper is really about teaching logic without teaching logic. This
may sound paradoxical, or whimsical, but I don’t intend it to be either. Rather,
the expression “teaching logic without teaching logic” is my attempt to point to a
pedagogical gap. At present, New Trivium subjects are mostly taught at graduate

I am grateful to my RUC colleagues Camelia Elias, Kasper Eskildsen, Klaus Frovin Jørgensen, Prem
Poddar and Irina Polyanskaya who have taught me many new things about teaching.
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schools, often specialised summer schools, to students with some technical back-
ground. I would like to make this body of work accessible to undergraduate human-
ities students, including those with little (if any) knowledge of logic. Quixotic this
may be; paradoxical it is not.

There is an autobiographical component to the paper. While I have only recently
started talking of the New Trivium, the phrase is my attempt to name whatever it
was that I learnt as a PhD student from the various research communities around
me,1 and which I have since spent much of my professional life trying to articulate.
I have taught New Trivium material at many different levels (undergraduate, grad-
uate, postgraduate) to many different specialist audiences (linguists, computational
linguists, computer scientists, and philosophers) and to highly interdisciplinary au-
diences too. But for the past five years I have been teaching at the humanities
faculty at Roskilde University (RUC). This has been one of the most stimulating
pedagogical experiences of my life, but also, for reasons I shall now explain, one of
the most challenging when it comes to logic education, especially for the topics that
I am lumping together under the New Trivium banner.

RUC is Danish university which emphasises student-led project work and inter-
disciplinarity. At the start of their first semester, humanities students are required
to form project groups (typically with 4-6 members) and work on a self-chosen re-
search topic. They do the same at the start of their second and third semesters
too. All three projects are worth 15 ECTS credits, and each is assigned an academic
supervisor. Much of my time is spent supervising such groups.

Interdisciplinarity is hardwired into RUC’s Bachelors and Masters programs.
During their first three semesters (that is, while writing the projects just mentioned)
students are not attached to any particular department but to the entire humanities
faculty.2 During this time they do not follow specialised courses in (say) history
or Danish, but instead follow four wide-ranging lecture courses covering a range
of humanities (and indeed, social science) topics. They also participate in more
intensive courses and workshops on research methodologies and the role of theory
in the humanities. Only in their third semester do they begin to attend the regular
classes offered in individual disciplines (for example philosophy, history, or Danish).
And the final touch is this: in order to gain the Bachelors degree, every student
is required to study two such disciplines, and typically both these disciplines will

1I was a PhD student at the Centre for Cognitive Science at Edinburgh, where I was surrounded
by computational linguists, formal semanticists, cognitive psychologists, and logicians.

2This is done by assigning them all to different ‘houses’. The reader who thinks of these in
terms of Gryffindor, Hufflepuff, Ravenclaw and Slytherin has got it pretty much right. House-based
student project work has something of the flavour of the Oxbridge college-based tutorial system.
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also be studied at Masters level.3 That is (to use the American terminology) RUC
students are required do a double major. It’s also worth remarking that the student-
led project work mentioned above does not stop after the third semester; it continues
unbroken until the Masters thesis. Typically 50% of the time spent on both major
subjects (at both Bachelors and Masters level) is project based, and just as in the
first three semesters, students have considerable freedom in their choice of topics.

This is an unusual system, at least for a European university. Indeed, when I
describe it to fellow academics it tends to give rise to either extremely enthusiastic
or highly skeptical reactions. I am firmly in the enthusiastic camp. I find RUC’s
teaching system innovative and exciting, and a major motivation for my move to
Denmark was to be a part of it. But I did not outline RUC’s teaching system in
order to discuss its advantages and disadvantages (that would require a separate
paper). Rather it was to make clear that the questions I posed at the start — how
to teach logic without teaching logic, and how to bring humanities students face-to-
face with the New Trivium — are a concrete issues for me. I teach in the Philosophy
and Science Studies Section of the humanities faculty. How can I best teach logic in
general, and the types of logic relevant to the New Trivium in particular, given the
academic setup just described?

Let me make some of the difficulties explicit. The first is fairly obvious: there’s
simply not enough time. Roughly 50% of students’ time is devoted to student-
led project work, and courses in the individual disciplines only begin in the third
semester. Moreover, even when these courses begin, the remaining time available
for lecture courses is split between two disciplines, as each student does a double
major. And roughly 50% of the time in each discipline is reserved for project-based
work anyway, and here the students’ choices reign supreme. The upshot is that
each discipline has to strip its compulsory courses down to the essentials, and omit
anything not belonging to this core. Again, I applaud: it’s a great way to strip away
intellectual fat. Unfortunately, it also means that we do not have an introductory
logic course in the Philosophy and Science Studies Section.4

The second difficulty, however, concerns issues of motivation, and these run
deeper. As is probably clear, even from the brief remarks made above, appreciat-
ing what the New Trivium offers presupposes a certain sophistication concerning
what modern logic is and what it can bring to the study of such subjects as lan-
guage, cognition, knowledge and interaction; such sophistication is not something

3As in most European countries, the majority of university students in Denmark complete a five
year program consisting of a three year Bachelors degree followed by a two year Masters degree.

4The natural sciences faculty, however, offers a Masters course called Fundamentale matematiske
strukturer which covers some set theory, and a Bachelors course called Logik og diskret matematik,
which introduces propositional and predicate logic and tableaux-based proof methods.
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that undergraduate students (in any subject) can reasonably be expected to have.
Moreover, what the New Trivium offers can often seem alien and uninteresting, es-
pecially to humanities students. For a start, many of its insights are hidden behind
a mask of mathematical formalism, which humanities students tend to dislike, or
find intimidating. But this problem, real though it is, may be the most minor one.
More pressing is the simple fact that RUC students have a great deal of freedom in
choosing what they write their projects on. Students who choose philosophy often
do so because they have been inspired by major philosophical figures, ranging from
Baruch Spinoza to Judith Butler (Danish students have often gained some back-
ground in philosophy from their school studies) and they quite understandably want
to devote their precious project time to studying their works in depth. Or they may
have chosen philosophy for what it can tell them about contemporary social and
political issues; projects on such topics as refugees, issues in feminism and gender,
or the relevance of neuroscience to ethics, are fairly typical here. Or they may have
chosen philosophy simply because it fits in well with their other major subject which
(at least until recently) could be pretty much anything offered in any department in
the university. Given all this, logic is easy to overlook and usually is.

What follows are reflections prompted by this situation. I’ll discuss a couple of
logic-related courses I have given, noting what went right and what went wrong.
I’ll give further details about the New Trivium, explain why I think it is important,
and try to place it in historical context. Above all, I’ll try to explain what I think
the next step should be, for being forced to think seriously about how to teach
logic without teaching logic has taught me a lot. And although it was the special
environment of RUC that led me there, what I learnt may be of wider interest.

2 Critical Thinking

I’ll start by discussing a course in critical thinking that I first taught in 2013. I
do so for two reasons. The first is simply this: many universities do not teach
specialised logic courses, but courses in critical thinking are common. In a sense,
such courses offer a simple answer to the question of how to teach logic without
teaching logic, though it is an answer driven almost totally by practical concerns.
My second reason, however, will lead to a central theme of the paper. By the time I
taught the critical thinking course I had already taught a course explicitly devoted
to New Trivium topics. I’ll discuss this (in key respects, unsuccessful) course in some
detail later. For now I’ll simply say that the experience made me think harder about
how to motivate logic-related matters for humanities students, and I approached the
critical thinking course with the issue of motivation firmly in mind.
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A contemporary course in critical thinking at an Anglo-Saxon university is likely
to cover some combination of the following topics: the distinction between inductive
and deductive logic, with deductive logic typically being represented by examples
of syllogistic reasoning and some propositional logic. Little if any formalism will be
used: the aim is to teach the student that there are different types of reasoning, and
that there are well understood patterns of correct and incorrect inference. Students
are expected to learn to distinguish good from bad reasoning in various kinds of texts,
such as newspaper articles and academic papers. Many critical thinking textbooks
contain extensive lists (with examples) of logical fallacies, and many (when discussing
inductive logic) may well dig deeper into statistics and probability theory. For
example, many discuss the perils of ignoring base probabilities (how likely is it that
you really have that horrible disease you just tested positive for?) and introduce
basic Bayesian inference.

There are many textbooks on critical thinking available (there’s a big market)
and lots of free online material. Some is dull and formulaic. Others approach the
basics with wit, charm and clear writing. Yet others approach critical thinking in
a deeper and more systematic way, and take care to address contemporary issues,
such as how to get reliable information off the internet (if you have ever supervised
projects with students just out of school, you’ll appreciate how important this is).
Finally, some books dig deeper into the foundations of critical thinking. A central
question here is how to get to grips with the logical structure of real texts in a way
that makes it possible to assess their argumentation. This is difficult to do, and
there is a long research tradition devoted to it; for example, Stephen Toulmin’s The
Uses of Argument [28] is an influential early monograph on this, and a more recent
textbook, Alec Fisher’s The Logic of Real Arguments [10] introduces a novel method
of teaching such skills and applies it to some challenging examples.

Nonetheless, recent research suggests that there may be a problem at the heart
of critical thinking. Quite simply, there seems to be evidence that such courses are
not particularly effective; see, for example, Willingham [32]. They attempt to teach
informal logical skills, but it is unclear whether such courses have a lasting effect.

Why so? Because human reasoning skills seem grounded in particular contexts.
A historian learns logical and critical thinking in the (long) process of becoming a
historian, a chemist learns as part of the process of becoming a chemist. But it is
unclear how well thinking skills learnt in this way transfer to other domains. It may
be that some disciplines give rise to transferable skills better than others (I have
heard mathematicians, computer scientists, and philosophers all argue that their
fields are excellent — indeed the very best! — setting for learning critical thinking).
Be that as it may, we are all aware of how often experts in one field come badly
unstuck in another. And yet the central claim of traditional critical thinking courses
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is precisely that they teach, in a clear, digestible (and above all) transferable form,
an important set of domain independent reasoning skills. It is unclear whether such
claims are substantiated.

It occurred to me that this difficulty might be an excellent way to motivate the
course. The point is this. Many courses in critical thinking are not really courses
about critical thinking as such — rather they are essentially courses presenting a
number of critical thinking techniques, together with lots of practical examples. But
few courses and textbooks address in much depth what critical thinking is, why it is
desirable, and why it is that (even with the very best intentions on our part) we can
go so spectacularly wrong. And yet there is a fascinating literature which addresses
all these issues (and many more of relevance) in depth.

The assigned course reading included parts of Dewey’s How We Think [7], a
classic text by one of the 20th century’s most influential philosophers and pedagogical
theorists, a text very much on the why rather than the how of critical thinking. I
also assigned parts of Kahneman’s Thinking, Fast and Slow [16] which presents and
extends his joint work with Amos Tversky in an engaging manner. Another valuable
book was Cordelia Fine’s A Mind of its Own [9], together with some research papers
on cognitive biases. Reading the Dewey text gives students a deeper insight into
what critical thinking might be, and what role it has to play in education. The
texts by Kahneman, Fine and others made students aware of the wild cognitive
whirlwinds, the idiot winds, that blow inside our heads.

I opened the course by asking the students to attempt a number of well known
puzzles, including the Wason Four Card Task, and Kahneman and Tversky’s Linda
the Bank Teller Scenario. The results were every bit as bad as expected. Immedi-
ately afterwards, we discussed Willingham [32], the paper mentioned above which
suggets that teaching critical thinking may well be a waste of time. In short: the
first session was devoted to making the students acutely aware that informal logical
thinking is difficult, and that maybe there wasn’t really all that much that we could
do about it in the short space of the course!

The students liked this. It challenged them. In subsequent sessions we alternated
between working through material from standard critical thinking textbooks, and
discussing the Dewey, Kahneman, Fine (and other) material. And throughout the
course I tried to get the students to ask what critical thinking was, and to understand
that it was uninteresting (and probably not particularly useful) to think of it as
learning how to bandage logical wounds. Bandages fall off. The deeper point is to
understand where the wounds come from, and to be on the lookout for new ones.

To put it another way: I taught critical thinking by problematising the notion of
critical thinking. That is: I tried to teach my students to think critically by getting
them to think critically about critical thinking. I don’t know whether this approach
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has more long-term effect that a more standard approach, but it at least had the
merit of treating my students as students of a genuine subject (namely: critical
thinking) rather than as consumers of some critical thinking product.

But whether the students learnt something valuable or not, I certainly did.
Teaching the central concept of the course (in this case, critical thinking) by prob-
lematising it clearly struck a chord. I started to think more systematically about
how I could introduce logic in a similar way. And not just any logic; I wanted to
teach the New Trivium.

3 The New Trivium
The medieval trivium consisted of logic, grammar and rhetoric. It was the ‘lin-
guistic’ part of medieval education and paved the way for the more mathematical
quadrivium of arithmetic, geometry, music and astronomy. But what is the New
Trivium? Consider the courses typically taught at a European Summer School for
Logic, Language and Linguistics (ESSLLI).5 All three components of the original
trivium are clearly visible — but in brave new form.

For a start, there is grammar. Natural language semantics is usually well repre-
sented, often under the name formal semantics to emphasize the heavy use made of
logic. Sometimes the logical ideas involved are long-established; Church-Henkin style
type theories, for example, are a staple tool. Often, however, they are new: Discourse
Representation Theory (see [17]) and other ‘dynamic’ approaches to semantics are
important examples. And then there’s syntax. Richard Montague famously insisted
that syntax was interesting only as a prelude to semantics — but the necessary syn-
tactic and phonological ‘preludes’ (if indeed they are mere preludes) are all taught
at ESSLLIs too. All in all, the grammar component of trivium is clearly present,
and indeed represented in a variety of forms: theoretical, computational, symbolic
and statistical.

What about rhetoric? Here, perhaps, the link is looser, but it is present nonethe-
less. Rhetoric is the study of certain practical uses of language, in particular the
arts of persuasion and effective communication. But the word ‘art’ here is note-
worthy. One of the most interesting components of what I call the New Trivium
is contemporary work on pragmatics, which gives a much broader perspective on
language use. The conceptual link with rhetoric is, I think, clear — but contem-
porary pragmatics (and related areas such as the study of discourse and dialogue)
represent a fundamental step forward in our understanding of language. Modern

5Or at a North American Summer School for Logic, Language and Linguistics (NASSLLI).
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pragmatics has a far wider range of concerns than classical rhetoric.6 Ideas from
social reasoning, AI-style planning, and game-theory give contemporary pragmatics
a solid theoretical basis, and its border with modern semantics is an active area of
investigation. The science underlying the art is becoming visible.

Gluing these topics together is logic. Or rather logics. For ESSLLIs over the
years have offered courses in many kinds of logic: modal logics, epistemic logics,
description logic, dynamic logics, default logics, non-monotonic logics, partial and
multi-valued logics, fuzzy logics — the list goes on. But what is most worth noting
is not the items on the list, but where they come from. Many are logics that
arose from practical applications, often in AI and computer science (default and
description logics are obvious examples). Others are logics that bridge several areas
of investigation: epistemic logic, which has roots in philosophy and computer science
is a good example. To put it another way: logic is not a pre-existing glue applied
from the outside. It is a glue that is being actively developed and redeveloped as part
of ongoing investigations into novel research areas. The remarkable development of
Dynamic Epistemic Logic (see [29]) over the last decade or so is a good illustration
of this process at work.

In short: logic is changing these areas, and these areas are changing logic. But
how did this happen? A little historical context may clarify. From antiquity until
the 19th Century (let’s say, until John Stuart Mill) logic was seen as relevant to
what we now call linguistic and cognitive themes. For logic has always had high
ambitions; many of the themes investigated by medieval logicians still have contem-
porary resonance. Nonetheless, for most of its history, logic’s reach exceeded its
grasp. It was underpowered for the tasks it set itself.

All this changed with the work of Frege and Cantor. Frege gave us modern
logical syntax with its variables and variable binding; Cantor gave us the set theory
that would eventually provide the setting for model-theoretic semantics. And logic
entered what we might call its first mathematical phase. One of the key themes
motivating this phase was that logic might provide a foundation for mathematics.
The work of Gödel in the early 1930s largely killed this dream, but it also led the
way towards one of logic’s most enduring legacies: the creation of a robust notion
of computation in the work of Church and Turing.

The insights of the 1930s also led to what we might call logic’s second mathemat-
ical phase. Here the pioneering figure is Tarski: the syntax-semantics distinction is
clearly drawn, the concept of a model clearly emerges, and the relationship of logic

6While this claim is probably true, it is worth emphasizing that classical rhetoric had a far wider
scope and a more central role to play in classical thought than the (often somewhat dismissive)
contemporary use of the term ‘rhetoric’ might suggest; see Chapter 1 of [26].
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and mathematics is inverted: far from being a foundation for mathematics, logic
becomes a branch of mathematics. The 1960s, with its independence proofs and the
invention of non-standard analysis were a golden era for second phase work.

Summing up: much of logic from the time of Frege and Cantor until the 1960s
was mathematical in nature and in its areas of application. More irreverently we
might say: it is the story of the 90lb weakling who entered the gym and emerged as
a Charles Atlas figure, muscles bulging. And this is significant because, sometime
around the end of the 1960s, logic started to rediscover its pre-Fregean concern with
language and cognition. But now it packed bigger punch.

And it was around then that the interdisciplinary work that was to form the
New Trivium began to emerge. First, and perhaps foremost, logic and language
become more deeply intertwined. At least two lines of work are significant here. One
is Richard Montague’s development of formal semantics (see [22]), which showed
the power of logical methods in the study of language, and opened the door to
computational approaches to semantics. Another is the link between pragmatics and
logic. Here, perhaps, the key figure is Paul Grice (see [13]). His work was largely
informal, but the connections between his ideas and various kinds of epistemic and
dynamic logics have become clearer in subsequent years.

Which leads us to a second thread: the emergence of epistemic logic. Here
the pioneering work is due to Jaako Hintikka ([14]); his work would later feed into
theoretical computer science, and blend with dynamic approaches to semantics and
work on planning from the AI community. And this swiftly leads us to a third
thread: the early link forged between logic and AI. A key paper here is McCarthy
and Hayes [19], which drew topics from philosophical logic and transformed them
into tools for thinking about artificial intelligence. And (a fourth theme) ideas from
AI also fed back into the computational study of language with the emergence of the
Prolog programming language. This introduced the idea of ‘programming with
logic’ (see [18]) and gave rise to new ‘declarative’ approaches to syntax throughout
the 1980s.

The previous two paragraphs are highly impressionistic, but they point towards
something important: somewhere in the late 1960s and early 1970s such fields as
linguistics and computer science became intertwined, subfields such as computa-
tional linguistics and AI crystallised, and technical and philosophical logic played
an important role in these developments. What I have written is not serious his-
tory — writing a detailed account of these developments would be a daunting task.
Nonetheless, I hope what I have said conveys something of the swirl and interplay of
research from all these fields, an interplay which was mediated by logic, and which
transformed the way we understand logic in the process.

In the space of this paper, this is about as far as I can go to explain what the New
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Trivium is and where it came from. There is a great deal more that I could add. For
example, more recent work on the interplay between logic and cognitive psychology
(the key text here is Lambalgen and Stenning [27]) is also relevant. But the basic
point is (I hope) clear. In some sense, the study of logic, language, interaction
and cognition become mathematised. We might say: the quadrivium invaded the
trivium. But the mathematics at the heart of this invasion was logic.

I believe that we now have a New Trivium on our hands — and it’s a lot deeper
than the medieval one. But it’s also, quite simply, just plain bigger : there is an
awful lot to learn and thus an awful lot to teach too. And as my goal is to find
ways of bringing it to humanities students with little, if any, background in logic,
the word ‘quixotic’ may seem fully justified.

4 A First Attempt
In my first semester at RUC I taught a brief (six lecture) course for Masters students.
The aim was to give them a taste of work related to my own research. I knew that
most of them had little or no background in logic, so I decided to teach a course on
natural language semantics that emphasised “natural language metaphysics”. This
seemed an ideal choice: it let me introduce New Trivium topics, enabled me illustrate
how modern (semantically driven) approaches to inference could illuminate linguistic
and philosophical issues, and — last but not least! — it let me sneak in a little logic
through the back door.

The phrase “natural language metaphysics” is due to the late Emmon Bach (see,
for example, Bach [2, 1]). Bach emphasised the role of ontological modelling in
natural language semantics: what must the world be like to make language (and in
particular, certain patterns of inference) work as they do? He put “natural language”
in front of “metaphysics” to emphasise his neutrality as to whether the enterprise
counted as ‘real’ metaphysics.7

I have always liked his phrase, because it points towards a key issue: the inter-
play of logic and ontology. Moreover, many of the neatest illustrations involve the
way we use language to talk about time, an appealing topic, and one loaded with
examples. Furthermore, I had successfully taught similar introductory courses at
ESSLLI, NASSLI and Linguistics Institute summer schools. So I assigned accessible
(and non-technical) reading such as selections from Reichenbach [25] and Prior [24]
on tense, Vendler on verb classification [30] and Davidson [6] on events — and off
we went.

7Bach also made an interesting attempt to teach formal semantics informally: see Bach [3],
which is based on a lecture series he gave at Tianjin Normal University, China, in 1984.
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Davidson’s article provides a good illustration of the sort of ideas I wanted to
convey: it shows why abstract entities can be important for inference. To make the
issue concrete, ask yourselves how you would use first-order logic to represent the
following sentence:

John ate.

The answer may seem obvious: surely we can just represent it using the simple
atomic formula ate(john)? Well, no. Because if we choose this representation it is
not clear how to represent the following (closely related) sentences:

John ate a big kahuna burger.
John ate a big kahuna burger in the kitchen.
John ate a big kahuna burger in the kitchen at 10.00 o’clock.
John messily ate a big kahuna burger in the kitchen at 10.00 o’clock.

If we insist on representing “ate” by a one-place predicate symbol we face the problem
that in the second example it expresses a two-place relation (between John and a
burger), in the third example a three-place relation (between John, a burger, and a
location) and in the fourth example a four-place relation (between John, a burger,
a location and a time). The fifth example complicates matters more by asserting
something about the manner in which John ate, and by adding further adverbial
modifiers we can drive the arity as high as we like.

These sentences are logically interrelated. In particular, the longer sentences
entail the shorter ones, and indeed entail many other variant sentences not listed.
For example, we have that:

John messily ate a big kahuna burger in the kitchen at 10.00 o’clock
|=

John ate at 10.00 o’clock.

However simple-minded representational strategies (for example, using several “ate”
predicates of different arity) make it difficult to mirror these logical relationships in
first-order logic. And this leads to Davidson’s point: we should reify. Intuitively,
the above sentences are talking about an event. So we should regard the verb
“ate” as introducing an abstract entity — an event — and work with first-order
representations which let quantify over them. If we do this, our representational
difficulties vanish: once events are ‘things’, we can simply attribute properties to
them, and let them participate in relations. Moreover, adopting this strategy means
that the required inferential relationships hold automatically. For example, the
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previous natural language entailment is transparently mirrored by the following
first-order entailment:8

∃e(eating(e) ∧ manner(e, messily) ∧ agent(e, John) ∧ patient(e,BKB)
∧ location(e, kitchen) ∧ time(e, 10.00))

|=
∃e(eating(e) ∧ agent(e, john) ∧ time(e, 10.00))

Davidson’s work shows the interdependence of logic and ontology. This example
is fairly typical of the sort of high-level issue I discussed in the course. I also like
it because it shows the neutrality — indeed, the emptiness — of logical notation.
First-order syntax can be applied in many ways to one and the same semantical
problem, and some of these may be very bad (multiple predicate symbols for “ate”)
and others much better (letting variables range over events). But the notation is
merely a useful tool, it’s the way we conceive the world that determines success or
failure of our modelling.

Nonetheless, I was dissatisfied with the course: I failed to convey the sense
of intellectual excitement that drives research in natural language semantics. The
students were politely interested in what I had to say, but little more. Why?

I don’t think it was because I made use of logical notation. In my experience,
if logical formalism is casually introduced, aided perhaps by a few brief words of
explanation, students tend to pick it up without complaint.9 I did notice that the
students were unused to thinking recursively — the idea of building new structures
(such as sentences) by repeatedly gluing old ones together was clearly novel. But
this did not seem to be the source of any obvious difficulties.

The problem, essentially, was motivation. The fact that the course was about
language was (initially) interesting — but it examined language in more detail and
at a lower level than they were used too. Language is a car they wanted to drive;
seeing me poke around under its hood, discussing how the various pieces fitted

8For readers who have not encountered natural language semantics before, a small caveat: events
are not unproblematic, there are many different ways of modelling them, and there are interesting
ways of avoiding their use altogether. But these issues are not relevant to this paper.

9Some logicians are happy letting beginners ‘pick up’ logical notation and proof-theoretic skills
in this way, others hate the idea. I think it depends on the students, and on what the goal of the
course is — but that said, to overemphasise rigour can be a serious pedagogical blunder. Rigour
(at least as conventionally conceived) plays little role in the way many core mathematical skills
are taught. At school, important calculus skills such as integration by parts and integration by
substitution are taught by example: students are expected to ‘grasp’ the basic ideas from the
examples given and to apply them to new problems. Formal definitions play little or no role in the
process, and this is not a sign of anarchy: it’s an effective way of ‘learning to talk calculus’. Letting
beginners ‘learn to talk logic’ in a similar way is often a sensible option.
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together, didn’t fire their interest in the way I hoped. They became, in essence,
passive spectators. Some students appreciated the interplay of logic, language and
ontology — but they lacked the background to develop the ideas further or to use it
in their own work. If I wanted to get students interested in logic, I needed another
approach.

5 Problematising Logic
Which brings us back to the critical thinking course. This grabbed the students’
interest because it (vividly) problematised critical thinking right from start. Prob-
lematisation turned students into participants, and gave focus to the course: its goal
swiftly became obvious: to find answers to the question What is critical thinking
and why is it so hard? But can logic be problematised in a similar fashion?

First, what do I mean by ‘problematising’ something? I mean this in two senses.
The first is fairly standard. It means, roughly speaking, to call into question leading
ideas, accepted notions, and to examine them (in some sense) critically. This first
sort of problematisation is evident in my approach to the critical thinking course.

Logic can certainly be problematised in this first sense.10 Logic is a word that
is used and misused, overused and underused. There is a sense that it points to
something fundamental, but its status is ambiguous: a solution to a legal or personal
problem may be applauded because it is ‘logical’ — but calling something ‘too
logical’ usually means that some empathic or imaginative ingredient is missing. And
many other (often contradictory, or near contradictory) notions swirl around the
word: logic is something fixed, there is only one true logic, logic is good for some
things but not for others, there are many logics, there is only one logic, logic is
neutral, we are born logical, we are not born logical, and so on. Clearly there is much
here that humanities students in general (and philosophy students in particular)
should find important. But is there a way of using these questions to drive a course
on logic? And in a way that leads to the New Trivium? This brings me to the
second sense of ‘problematise’.

This sense is more playful, but is at least as important as the first. It means,
wherever possible, to present key ideas via problems, or puzzles that students can
solve (or fail to solve) both singly and in groups. Nor is ‘solution’ really the point.
The problems I have in mind are often more like stories to reflect upon. For the role

10Note that problematising logic seems to mean making some sort of logical critique of logic.
Isn’t this inherently circular, dangerous, perhaps even paradoxical? Well, yes! But (as the history
of logic demonstrates) this is territory that logicians love to explore and have explored with vigour,
imagination, and insight. Thanks to their efforts, this terra is no longer incognita — and is certainly
no terror either.
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of these problems, puzzles, stories is to make the underlying issues vivid. Certain
puzzles are useful tools for teaching logic, because they call into question conceptions
and misconceptions about logic in ways that are hard to forget. I view such puzzles
as building blocks in the quest to teach logic without teaching logic.

To illustrate this I will discuss two problems that I have experimented with
in both lecture and project-based settings. Both problems are drawn from the
psychological literature. The first is the Wason Four Card Problem (also known
as the Wason Selection Task) which played an important role in the first critical
thinking lecture. The second is the Sally-Anne task, a classic false-belief task from
the Theory of Mind literature. Both problematise certain aspects of logic in the
first sense: that is, they call into question, or throw under a novel light, certain key
assumptions of logic. But both problematise in the second sense too: the Wason
Four Card Problem simply is a little puzzle and the (two versions of) the Sally-Anne
task I shall discuss lead to surprises. Both can be hijacked for pedagogical purposes.

Let’s begin with the Wason Four Card Problem (see [31]). In this problem,
four cards are displayed. Each card has a colour on one side, and a number on the
other. Suppose we place four cards on a table so that 3, 4, Red, and Brown are face
up. Which cards must be turned over to verify whether the following generalization
holds: If there is an even number on one side, then the colour red is on the other?

Now, if we turn this into propositional logic, we (as logicians) see that the crucial
cards are the 4 and the Brown. We need to turn over the 4 in order to verify that
the other side is Red. We also need to turn over the Brown, as doing so could falsify
the stated generalisation. It’s also clear that the other two cards (the 3 and the
Red) are irrelevant to the task at hand. We could sum up the situation by saying:
turning the relevant cards over corresponds to applying the inference rules Modus
Ponens and Modus Tollens, while turning the irrelevant cards overcorresponds to
using the fallacies of Denying the Antecedent and Affirming the Consequent.

But to say this is to assume that it is obviously correct to model the situation
using classical propositional logic. This flies in the face of the fact that in Wason’s
original trial fewer than 10% of his subjects successfully solved the puzzle.11 More-
over, it misses the pedagogically important point. The difficulty of the task reinforces
what logic teachers know firsthand: a fundamental concept of propositional logic,
namely material implication, is abstract and difficult. Teaching material implication
can be a tough task: grasping the concept seems to demand a certain suspension of
disbelief on the part of the student. What does it mean? Why is its truth table so
odd? It certainly doesn’t match the meaning of most conditionals in natural lan-
guage. And this feeling of oddity is entirely natural: the truth-conditional approach

11I have never had more than a 15% success rate when using the test as a classroom puzzle.
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to logic is an abstract invention that only became logical orthodoxy in the 20th cen-
tury. As logicians we are used to it, which blinds us to its peculiarities. But when
teaching it — and especially when teaching it to humanities students with little
or no mathematical background or experience of abstract proofs — we should be
aware that it’s deeply weird. Which brings us back to problematisation (in the first
sense): it is an interesting strategy to embrace these difficulties, and let students
battle towards understanding this (important but counterintuitive) interpretation of
conditionality for themselves.

The Wason task is an ideal playground for novices to do this. And it’s a play-
ground that works well with groups — when students are encouraged to work out
together what to do, they often reach the ‘correct’ idea more rapidly. Moreover,
thinking about this task opens the door to other logics, and the spirit of the New
Trivium encourages thinking in terms of logics (plural) rather tham logic (singular).
For it’s not obvious that one should model the Wason Task in classical propositional
logic. I can’t explore this point here, but will refer the reader to Lambalgen and
Stenning [27] which discusses the task in terms of deontic (as opposed to declarative)
conditionals. But the key pedagogical point is this: grappling with the task gives
students a memorable way of exploring concepts of conditionality. The Wason task
was designed to show how badly humans perform ‘logical reasoning’. This makes it
a remarkably effective tool for teaching logic, one that lets students gain real insight
into what ‘logical reasoning’ is all about.

Let’s turn to the Sally-Anne task. This is a story to reflect on rather than a
puzzle to be solved and I’ll present two versions of it. Here’s the basic scenario.

An experimenter, using two dolls called Sally and Anne and various other props
(a basket, a box, and a ball) is telling a story to a child — the dolls and props are
used to act out the story, making it more vivid. The story the experimenter is telling
runs something like this:12

This is Sally, and this is Anne. And this is Sally’s basket, and that’s
Anne’s box. Look: Sally is putting the ball into her basket! And now
she’s going away. Bye bye Sally! But what’s Anne doing? She’s taking
the ball out of the basket and putting it in her box. But Sally doesn’t see
it because she went away. Tricky Anne! Oh, look. Now Sally’s coming
back in again.

The experimenter then asks the child the key question:

12On YouTube you can usually find videos of psychologists administering the Sally-Anne task
(and other first-order false-belief tasks, such as the Smarties task) to children.
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Where will Sally look for her ball?

Now for the first surprise. Most three-year-olds answer: “In the box”. On the
other hand, almost all five-year-olds will give the correct answer: “In the basket”.
Somewhere around the age of four, children come to realise that others can have
beliefs about the world that can be false.13

And there’s a second surprise: children with Autism Spectrum Disorder (ASD)
usually fail first-order false-belief tasks until a significantly later age; only about
20% pass at the same age as typically developing children. This was first shown by
Baron-Cohen, Leslie and Frith in a seminal study (see [5]), and Baron-Cohen later
argued that ASD involves a kind of ‘mindblindness’, and even used this as the title
for a book (see Baron-Cohen [4]).

But let’s move on to second-order false-beliefs. In the version of the Sally-Anne
task just given, the child was asked to judge Sally’s belief about where the ball is.
This is a first-order belief: it is about Sally’s belief about the world. But beliefs can
also be about other beliefs, and such beliefs are called second-order beliefs. We can
easily adjust the first-order Sally-Anne task so that it becomes a false-belief task
for second-order beliefs. The new story is the same as the previous version — until
the part where Sally leaves the room and Anne puts the ball in the box. We then
continue as follows:

Oh, look. Sally didn’t really go away! She’s peeking through the window!
She sees Anne move the ball! But Anne doesn’t notice. She doesn’t see
that Sally is watching. Now Sally’s coming back in again.

The experimenter then asks the child the key second-order question:

Where does Anne think that Sally will look for her ball?

The second-order nature of the question is clear from its syntax: we have transformed
the first-order question Where will Sally look for her ball? into

Where will Anne think that Sally will look for her ball?

which has one level of sentential embedding more.

13The original experimental work on first-order false-beliefs was carried out by Wimmer and
Perner’s in 1983 (see [33]). The basic findings have been repeatedly replicated under a wide range of
conditions: the effects of language, culture, story complexity, verbal versus non-verbal presentations,
and much else besides, have been investigated. The basic findings still stand.

164



New Trivium

Once again, surprises are in store. Typically developing children learn to handle
second-order false-beliefs somewhere around the age of six. Moreover, second-order
false-beliefs seem to be extremely difficult for children with ASD.14

When students hear that three-year-olds fail the first-order task, they are usually
surprised, even sceptical. Something unexpected — something strange — is going
on. What exactly?

A lot. We are usually so comfortable with our everyday habit of reasoning about
the beliefs, desires and intentions of others that it never occurs to us that this (on
reflection, quite remarkable) capacity might have had to be learned. We all realise
that we learnt language at some stage — but, when we were three, did we really not
understand that beliefs held by others could be false? It seems we did not.

Moreover, not only does there seem to be a conceptual ‘jump’ at the age of
four (when typically developing children learn that beliefs about the world can be
false) but there seems to be a similar ‘jump’ at the age of about six when typically
developing children learn to reason about beliefs about beliefs. Indeed we might say:
this is when typically developing children reify the belief concept. Or at least: this is
when they begin to act as though the world contains abstract entities (beliefs) that
can not only be about concrete entities (like cabbages and kings) but also about
beliefs themselves. We are close to the territory I tried to teach using Davidson on
events: the interdependence of logic and ontology, and why reification and abstract
entities are important. But approaching these ideas via the Sally-Anne tasks has
proved more pedagogically compelling for my students.

There are a number of other puzzles I use as pedagogical tools, drawn from var-
ious disciplines. One is the well-known Muddy Children puzzle (see [8]). This is
useful because it gives students insight into recursive thinking — and works beau-
tifully in group settings. Moreover, some classic philosophical material, such as the
Master Argument of Diodorus Cronus (see [11] for an excellent presentation of this,
and related puzzles) also lends itself to this style of teaching. I am slowly assembling
a collection of building bricks (and baking a few of my own).

6 Can it all be put together?
I have indicated what the New Trivium is, described a disappointing attempt to
approach it using very little logic, and zeroed in on what I think is the crucial
pedagogical idea: problematising logic. But while problematisation worked in the

14The original experimental work on second-order false-beliefs was carried out by Perner and
Wimmer in 1985 (see [23]). But far less is known about them. For a book-length treatment of the
subject, see Miller’s Theory of mind: Beyond the preschool years [20].
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critical thinking course, I have as yet little evidence that it can provide the framework
for an entire logic course. For until now I have only used it to provide logical
interventions in other courses. For example, I now routinely use the Wason Selection
Task when I need to discuss the basics of propositional logic in (say) Epistemology
or Philosophy of Science classes, and I plug in other problems as and when they
seem appropriate in other courses.

Such interventions can be useful. For example, students seem to get more out of
Miranda Fricker’s [12] analysis of the trial scene in Harper Lee’s To Kill a Mocking-
bird after they have worked though the Sally-Anne and Muddy Children scenarios.
These scenarios sensitise them to the subtleties involved in reasoning about knowl-
edge and belief, a useful frame of mind for approaching Fricker’s work.

But can problematising logic provide the conceptual skeleton for an entire logic
course? Can we really teach logic without teaching logic? And can we present the
New Trivium in this way? At this point, however, all I can offer is speculation
(probably coloured by wishful thinking). To keep the remaining discussion brief and
focussed, I’ll present it question-and-answer style.
Q. Do you really see useful course(s) emerging out of such problems?
A. Yes, I think so. The key will be to find the right examples, and the right sequence
for them. And the goals of the course will have to be crystal clear to get this right.
Q. You’re essentially saying you’ll need to impose some kind of overall architecture.
But this means that you are guiding the students. Doesn’t that undercut your claim
that this is about “teaching logic without teaching logic”?
A. Well, yes. But I used the phrase to dramatise a key idea: enabling students to
unearth crucial concepts themselves.15

Q. I can see that this approach might be useful to stimulate philosophical discussion,
but is it an effective way to teach concrete skills?
A. I think so. It would be easy to motivate (say) the tableaux method in such a
course.16 Or natural deduction. Or resolution. Or how to systematically translate
natural language expressions into logic.17 There are many useful skills which fit well
with the approach.

15There is a long tradition of trying to do something similar in mathematics. Jumping back to
antiquity, in Meno, Plato tries to establish that learning is recollection by having Socrates elicit a
proof of a geometrical theorem from an untrained slave boy. More recently, several mathematics
departments have experimented with the Moore method (named after Robert Lee Moore) to ‘teach’
such subjects as number theory, point set topology, and mathematical logic. The key idea of the
method is that the students should prove the key theorems in these subjects themselves.

16Wilfred Hodges does something like this in his layperson’s guide to logic (see [15]).
17See Montague and Kalish [21] for classic exposition. The experience of writing this textbook

was one of the motivations that led Richard Montague to develop Montague grammar.
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Q. But won’t this always be second-best to a more rigorous presentation?
A. I don’t believe that at all. It’s true that when it comes to technicalities, and
confidence with symbol manipulation, mathematicians and computer scientists usu-
ally have an initial advantage. Moreover, linguists, because of their familiarity with
phrase structure trees and other modes of recursive representation, are likely to have
an advantage over other humanists. But a course of the kind just described could
convey a lot of these skills. If you’ve thought hard about the Muddy Children, and
have done your fair share of natural deduction proofs, you’ll soon be ready to move
on to the next stage.
Q. So there is a next stage? What is it?
A. Start attending ESSLLIs! Actually, that’s not a joke. A good measure of the
success of such a course would be that it prepared humanities students to attend an
ESSLLI or a NASSLLI or something similar and get something useful out of it.

Q. OK, but if this is such a great idea, why not use it for everyone? Why all this
talk about humanities students?
A. The point is this: mathematics and computer scientists are (pretty much auto-
matically) equipped for the study of logic, at least as far as technical prerequisites
are concerned. Linguists too — indeed linguists not only have some of the skills
required for logic (recursive thinking, for example) and they also have some moti-
vation to study it (for example, to let them get to grips with formal semantics).
Linguistics students would probably have enjoyed my course on natural language
metaphysics way more than my philosophy students did.

Motivation is always an issue – and problematisation offers a compelling handle
here. You’re only going to get one chance to get this stuff across, so you’ve got to
work in a way that simultaneously provides strong motivation and provides technical
and intellectual tools. Humanities students need both. And problematisation (in
both senses) seems a promising way of providing what they need.
Q. Hmmm . . . isn’t this paper essentially a long daydream about a new textbook?
A. Maybe. Or perhaps it’s the worlds longest ESSLLI course proposal. Teaching
logic without teaching logic need not be paradoxical, whimsical or even Quixotic.
But it will involve a lot of hard graft.

7 Concluding Remarks
Arguably, something worth calling the New Trivium has emerged over the last thirty
or so years. In the late 19th and early 20th century logic entered a revolutionary
phase: its mathematical content became visible and (perhaps more importantly)
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it entered into a symbiotic relationship with computer science, a field it helped to
create. But while old logical themes (such as links with language, cognition, and
knowledge) were temporally overshadowed, they re-emerged in the late 1960s and
become relevant again, giving rise to what I have called the New Trivium.

But this paper has focussed not so much on the New Trivium as on how to
teach it, and in particular, on how to teach it to humanities students with little or
no knowledge of logic. Much of the paper argued that problematising logic was a
promising way of teaching it without teaching it. But there is a further question
I did not address: why bother with teaching it to this audience at all? Why not
just accept that logic and language (in cahoots with information) have flown the
coop? The mathematical quadrivium has swallowed the linguistic trivium and that
is pretty much that. The humanities are dead if not yet buried.

Because I don’t believe it’s true. Many humanists insist that what makes their
work different from (say) that of natural scientists is its interpretational nature.
To put it another way: what they do is different because it fundamentally involves
language-oriented skills, the sort of skills rooted in the original trivium. But the
recursive, self-referential nature of modern logic and computing, aligns well with
the endless hermeneutic cycling of the humanities. The New Trivium, rooted in the
logics of the late 20th century has something to say about how meanings are made,
how they are expressed, how they multiply and how they lead to information flow
— and the humanities may well have the most important things to say on all these
topics. It is time for a double reinsertion: logic into the humanities, and humanities
into logic. And it is ultimately to make this reinsertion possible that I think it is
worthwhile to learn how to teach logic (so to speak) without teaching logic. For,
with luck, some students will see how to live in both worlds at once — and such
students will be the ones who will work out what needs to be done next.
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Logic for Fun: an online tool for logical
modelling

John Slaney
The Australian National University

Abstract

This report describes the development and use of an online teaching tool
giving students exercises in logical modelling, or formalisation as it is called
in the older literature. The original version of the site, ‘Logic for Fun’, dates
from 2001, though it was little used except by small groups of students at the
Australian National University. It is currently in the process of being replaced
by a new version, free to all Internet users, intended to be promoted widely as
a useful addition to both online and traditional logic courses.

Keywords: Logic Teaching, Online Learning, Logical Modelling, First Order Logic.

1 Background: Formalisation
In introducing undergraduates to formal logic, we attempt to impart a range of skills.
In a typical “Logic 101” course, the most prominent of these involve manipulation of
calculi: devising proofs, usually using some form of natural deduction, constructing
semantic tableaux or the like. We also ask students to formalise natural language
sentences—often specially constructed to involve awkward nesting of connectives
or strings of quantifiers—and may hope that they acquire some facility in critical
reasoning and perhaps an appreciation of some wider issues connected to logic, be
they mathematical, computational, philosophical or historical. Some of these things
we teach better than others. Although devising proofs is traditionally a stumbling
block, most students do in fact become tolerably adept at handling the technical
details of natural deduction. Where we fail is rather in teaching them to say what
they mean in the abstract notation of logic: many students who can mechanically

A short version of this paper was presented in the conference Tools for Teaching Logic in Rennes
in June 2015. Thanks are due to the participants in that conference for illuminating conversations
and ideas.
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construct a proof remain depressingly unable to write a well-formed formula to
express even a simple claim about a domain of discourse.1 Barwise and Etchemendy,
for instance, comment:

The real problem, as we see it, is a failure on the part of logicians to find
a simple way to explain the relationship between meaning and the laws
of logic. In particular, we do not succeed in conveying to students what
sentences in FOL mean, or in conveying how the meanings of sentences
govern which methods of inference are valid and which are not. [3], p.13

We should find this situation alarming. Mechanical symbol-pushing for the purposes
of simple proofs is easy to teach, tolerably easy to learn—at least, if students can be
brought to work at it—and almost useless once the course is finished. On the other
hand, the ability to read and write in the notation of formal logic, to use this as a
medium for knowledge representation, to analyse and to disambiguate, is the most
important skill students can take away from an introductory logic course, and it is
a skill most of us can claim less success in teaching.

The reasons why students find formalisation so hard are not difficult to discern.
The problem of rendering a description into formal notation has no unique solution
and there is no easy way to know whether a putative solution is right or wrong.
There is also no simple algorithm for treating such problems, so “surface” learning
is ineffective. The ony successful method, in fact, is to understand both the natural
and formal languages and to match the two. Faced with this challenge, students not
infrequently give up.

It was against this background that the tool Logic for Fun [9, 10] was devised
around 15 years ago. Logic for Fun is a website on which users are invited to express
a range of logical problems and puzzles in such a way that a black-box solver on
the site can produce solutions. It was never tied to a prescribed course, but was in-
tended to be used as an adjunct to undergraduate courses, whether those be in logic,
critical reasoning, artificial intelligence or other fields, or by interested individuals
outside the context of formal instruction. The language in which problems are to
be expressed is that of a many-sorted first order logic, extended slightly with a few
built-in expressions and modest support for integers. The solver takes as input a
set of formulae in this language and searches for finite models of this set. If it finds
a unique model, this is almost certainly a solution to the problem. More usually it

1Evidence for this claim is anecdotal, but strong. My own appreciation of it was sharpened
in 2011, when analysis of results from a class of 61 students showed grades on proof construction
that were on average above their grades for other courses, but after 13 weeks of study more than a
third of them were unable to express ‘The bigger the burger the better the burger’ adequately in
the notation of first order logic.
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Figure 1: Screenshot of the window for problem input

either reports syntax errors in the encoding or else says that there is no solution.
The user (i.e. the student) then debugs the encoding until it is correct. This has
several advantages over traditional formalisation exercises:

1. The sentences to be formalised constitute a meaningful problem, rather than
looking like isolated examples of things it may be tricky to express formally;

2. There is an easily graspable concept of a correct solution, so students know
whether they are right or wrong;

3. Feedback is always accurate and immediate, rather than coming a week after
the homework was handed in;

4. Because there is no feedback latency, because there is a goal (solving the
problem) and because the machine is infinitely patient, students will put time
and effort into their work, to a degree never seen in the traditional setting;

5. For the problem encoding to count as correct, it must be completely accurate,
as the computer will not accept hand-waving, so the value of rigorous attention
to detail is constantly emphasised.
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An example (not a puzzle in this case, but a first order theory) will help to
illustrate the process required of the student. Figure 1 shows the form used for text
input. It consists of three boxes: in the first are listed the “sorts” or domains over
which variables are to range; in the second is the vocabulary of non-logical symbols
(predicates, names, etc) with their types; in the third are the constraints, written
as first order formulae.

The logic taught in introductory courses is usually single-sorted rather than
many-sorted, but the experience over 15 years has been that students find it easy to
adjust to having many sorts available.2 In the example, there are six sorts (persons,
animals, sizes, colours, times and places) of which two (sizes and colours) are given
by explicit enumeration while the other four are left for the solver to decide.

Sorts:
person.
animal.
size enum: microscopic, little, medium, big.
colour enum: green, white, purple.
time.
place.

The domains of these sorts are disjoint. We wish to say that Mary had a little lamb,
so as vocabulary we declare ‘Mary’ as a name, ‘had’ as a relation between persons
and animals, ‘stature’ as a function of animals and ‘isLamb’ as a predicate:

Vocabulary:
predicate {

had(person,animal).
isLamb(animal).

}
function {

hue(animal): colour.
stature(animal): size.
location_p(person,time): place.
location_a(animal,time): place.

}
name Mary: person.

2Single-sorted encoding of problems is perfectly possible in Logic for Fun, in case anyone really
wants or prefers it, but for most problems it is not recommended.

174



Logic for Fun

The convenience of using a many-sorted logic for knowledge representation pur-
poses is immediately apparent. It enables us to specify the types of predicates and
function symbols separately from the formulae in which they occur. The hue and
stature functions, for example, map animals to their colours and sizes; to model
the constraints will be to determine which functions to assign to them. This not
only removes the need for sort specifications in the antecedents of the constraints,
but it allows the type checker to detect many errors which might otherwise lead to
nonsense.3

Since every user-defined predicate and function symbol is strictly typed, and
sorts are disjoint, it is not possible to specify a location function which can apply
to both people and animals. Hence there are two, one for each sort. We have
considered relaxing the syntax rules to allow unions of sorts in argument places, but
in fact the ramifications of this would cause more complexity for the user than would
be justified by the reduction in artificiality of the syntax.

To finish the example, here is the constraint:

∃ x (
had(Mary,x) ∧
isLamb(x) ∧
stature(x) = little ∧
(hue_of_snow = white → hue(x) = white) ∧
∀ t (location_a(x,t) = location_p(Mary,t))

).

Below the constraints box are buttons, not visible in Figure 1, for running the solver.
There is one for generating solutions and another for running in a lightweight mode
to check syntax. Having written the description, the student clicks “Solve” and the
back-end reasoner—essentially a SAT solver adapted to finite domain first order
problems—starts searching for solutions. Naturally, it finds models of this little
theory with very small domains, including the expected interpretation in which there
is one person (Mary), one animal (the little white lamb) and one place which neither
of them visits. Amusingly, the solver also finds unexpected solutions, for instance in
which the lamb is green—but it is still just as white as snow because snow is purple!

3Other problem representation languages also benefit from this feature. The constraint mod-
elling language Zinc [4, 6] for example has an elaborate type system, whereas its subset Minizinc [7]
treats almost everything as a number. In Minizinc, you can add an employee to a day of the week
and divide by a truck, and no type error is detected. Many-sorted first order logic is a valuable step
towards fully typed languages, with all the advantages they confer.
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In the pedagogic context, this provides a good opportunity for the teacher to make
some points about interpretations and truth conditions and the semantics of the
material conditional. When this kind of situation arises in modelling a puzzle which
should admit only one solution, the student must invent more constraints to supply
the missing information (e.g. that snow is white and that Mary went to school).
In order to do this, they have to think about the semantics of the problem, render
it into first order logic and understand the relationship between the formulae they
have written and the satisfying formal interpretations.

Of course, some consistent first order formulae have no finite models, and even
where finite models do exist, there may be none sufficiently small to be presented.
The existence of models and of finite models is undecidable in general. However, this
is not a matter of great concern, firstly because the problems on the Logic for Fun
site are deliberately chosen to have easily discovered small models, and because the
solver is in any case set to time out after three seconds (or another short time if the
user chooses) so completeness of the search is neither expected nor really desired.

The most significant precursor of Logic for Fun was Tarski’s World [2, 1] which
provides exercises in reading and writing formulae expressing facts about situations.
The use of problems rather than simply states of affairs as the basis, and of the
user’s “freestyle” choice of vocabulary, mark significant differences between Logic for
Fun and earlier software. More recently, websites have appeared using functionality
similar to that of Logic for Fun for other purposes. A good example is MiniZinc
which has been used to teach aspects of constraint programming—there is even a
MOOC based on it [12]—though the emphasis there is partly on efficient encoding
and search methods rather than purely on logical modelling.

2 Structure of the exercises

The problems given as exercises on the site are divided into five levels: Beginner, In-
termediate, Advanced, Expert and Logician. The boundaries between levels are not
really definite, but students like the idea of progressing through levels in the style of a
game. “Beginner” problems are fairly trivial to represent and solve, and are designed
to get students through the phase of learning to use the site, teaching them how to
declare vocabulary, write constraints and read the solver output. Figure 2 shows one
of the “Beginner” problems with a suggested encoding. Note that students actually
need to learn a good deal about function declarations and other syntax details in
order to master this level, but that the logic is not deep. “Intermediate” problems
are mainly logic puzzles of the kind found in popular magazines, often calling for
bijections between sets of five or six things satisfying a list of clues. There is a long
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Figure 2: A “Beginner” problem, its encoding and its solution
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tradition of making these problems gently humorous, and students are usually famil-
iar with the style of problem, so most of them find it fairly easy to get this far with
the site. “Advanced” puzzles are not necessarily harder, but have features requir-
ing more sophisticated logical treatment—nested quantifiers and the like. This can
cause difficulties for users without a background in logic, so where Logic for Fun is
used in a logic course, it is worth spending time on several of the “Advanced” prob-
lems rather than rushing past them to get to more interesting ones. The “Expert”
puzzles are more challenging, and include several state-transition problems from AI
planning, for instance. They require students to supply less obvious vocabulary and
axiomatisation to represent preconditions, postconditions and frame conditions of
actions and so forth. Most of them can be represented in several different ways,
using different ontologies and different styles of constraints. This offers opportuni-
ties for the teacher to discuss (and for the student to experiment with) non-trivial
aspects of formalisation. Finally, the “Logician” section contains problems which
hint at applications of logic, for instance to finite combinatorics and to model-based
diagnosis.

It is important that all of the suggested problems can be solved quickly by the
software behind the site, without requiring coding tricks. This is because the aim
is to teach correct logical expression, not constraint programming. Especially for
some of the “logician” puzzles, efficiency does matter, as the underlying problems
(e.g. minimal hitting set, classical planning, quasigroup completion) are NP-hard,
and solver behaviour can be affected by non-obvious things like the order in which
functions are declared, but as far as possible the site de-emphasises efficiency and
instead lays stress on correctness.

An interesting feature of teaching logical modelling in this way is that concepts
are introduced in approximately the opposite order from that in the parallel lectures.
The standard structure of a typical logic course is to work from the more abstract
levels down to the more detailed ones. We start with the generic idea of inference,
then proceed to examine propositional connectives, then move to first order logic
with names, predicates and quantifier-variable notation. Then we introduce identity
as a special relation symbol and go on finally to deal with function symbols and
general terms. We do not usually get as far as many-sorted logic. There are good
pedagogic reasons for this order of exposition, as the more intricate parts of logic
presuppose the simpler ones, and the details make more sense within a clear frame-
work than they do in isolation. It is undeniably easier to learn to manage boolean
operations on sentences than quantification over arbitrary domains, so we aim to
give our students facility in manipulating the former before expecting them to tackle
the latter.

Logical modelling, by contrast, starts with sorts, equations, names and functions.
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The very first example in the user guide to Logic for Fun is

Find a number x such that 2 + x = 4

which of course students without a logical background find entirely trivial. Consid-
ered as a first order formula, however, it involves both interpreted and uninterpreted
individual constants, a binary function symbol with a built-in interpretation, equal-
ity as a special binary relation, and integers as a sort—quite advanced material for
Logic 101. The key concept right at the start is that of interpreting a formula by as-
signing values to its uninterpreted symbols. Generality needs to be introduced next.
The universal quantifier is used much more than the existential one: at this early
stage, existentials can mostly be replaced by Skolem functions (mostly constants)
without making students explicitly aware of this substitution. Only after that do we
meet the basic connectives. Introductory logic textbooks, though they vary greatly
in emphasis and style, tend to follow the same overall direction as logic courses.4
My experience of using Logic for Fun as part of a standard introductory logic course
is that the reversed order of topics does create a certain degree of difficulty. It re-
quires the lecturer to spend time explicitly pointing out the relationship between
the logical modelling exercises and the rest of the course, as the two strands do not
converge until the end and may seem disjoint to many of the students. I have not
yet experimented with the possible strategy of inverting the entire course, making
logical modelling the centrepiece and working from the detailed and specific towards
the more abstract.

3 The logic of Logic for Fun
The fragment of logic underlying Logic for Fun is chosen to be useful for expressing
simple theories over finite domains without departing too far from standard first
order logic. Thus the language includes the usual connectives, ∧ , ∨ , ¬, → , and
quantifiers ∀ and ∃. It also makes heavy use of the identity symbol, =, not only
to express equations but also to express uniqueness and the like. As noted above,
the logic is many-sorted, so that variables are able to range over things of a kind
without repetitive antecedents to restrict the constraints, and so that functions can
be typed to remove the need for many cumbersome axioms. On interpretation, the
sorts correspond to disjoint finite domains. Since the relation of identity makes
sense for every domain, the equality symbol is typically ambiguous, though it is a
type error to assert an identity between two things of different sorts. The objects of

4There are exceptions. One of the most notable is the little introduction by Wilfred Hodges [5]
used over 30 years ago as a textbook by the Open University and still in print.
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a sort may be enumerated explicitly, giving each a canonical name and defining a
total order on them, or they may be left unspecified. Upper and lower bounds may
optionally be placed on the cardinality of a non-enumerated sort.

Any non-reserved string of characters not containing punctuation or space may
be either a name or a variable. It is a variable if bound by a quantifier; otherwise it
is a name. It may not be used both as a name and as a variable in the same problem
encoding. Names may be declared along with the rest of the vocabulary, or may be
used without declaration.

For the purposes of writing formulae, the logical symbols may be written as
the English words AND, OR, NOT, IMP, ALL and SOME (all in upper case). This is
helpful for students in the early stages of learning to use the site, who may be
unfamiliar with standard notation. There is an option to use pure clause form for
writing constraints, avoiding explicit connectives and quantifiers altogether in favour
of simple punctuation. This was designed to make Logic for Fun independent of
notation, so that it could be seen as compatible with absolutely any introduction to
elementary formal logic. However, pure clause form proved unpopular with students,
so this option is disabled in the current version of the site and “normal” first order
notation used instead.

There are two built in sorts, int and bool. The latter consists of the two truth
values with canonical names FALSE and TRUE (in that order). The former does not
consist of the integers: since all sorts are finite, and in fact quite small, it consists
of the first few natural numbers 0, . . . , MAX_int, where MAX_int is set to a fairly
low value such as 100. For encoding logical puzzles, it is by default set even lower,
at 20 or 30, as the exercise only involves logic, not arithmetic, for which purpose
very small numbers are sufficient. Note that identity on the boolean sort is material
equivalence, so no special symbol besides ‘=’ is needed for the material biconditional.

More built-in operations are provided, as they have been found useful for ex-
pressing finite domain problems. Since each sort is totally ordered in a canonical
way—either by explicit enumeration or implicitly—it makes sense to refer to the
smallest (first) and largest (last) elements of a sort as MIN and MAX respectively.
These symbols may be subscripted with the name of a sort if this is not deducible
from the context. The ordering relation on any sort is represented by ‘<’ and ‘>’ as
one would expect. Any element may be incremented or decremented by a positive
integer, so for instance foo+2 is the item (if any) which comes two after foo in the
canonical ordering of its sort. In practice, this is almost always used just to add or
subtract one to refer to the successor or predecessor of an object.

Predicate and function symbols, including individual constants (names), may be
declared as in the example in Section 1 or in Figure 2. Each has not only a specified
type but optionally a list of features. These include the useful feature “hidden”,
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which suppresses printing of the symbol and its value. Binary operators, whether
predicates or function symbols, may optionally be written in infix position between
their arguments: there is no need to specify this, as the parser accepts both prefix
and infix notation, even for the same symbol in the same formula.

Functions of any type may be partial, lacking values for some arguments. By
default, functions are total, but may be declared partial when they are specified
in the “Vocabulary” box. Certain other properties, such as being injective or
“all_different” may be enforced in the same way. Each sort has an existence predi-
cate EST (for “there Exists Such a Thing as. . . ”) which returns TRUE if the expression
to which it applies has a value in the domain of the interpretation, and FALSE oth-
erwise. This is extremely useful where partial functions are used. In a domain of
persons, for instance, we might have a function spouse returning an individual’s
husband or wife. Then (for the artificial purposes of some problem) we may want
to say that there are no same-sex marriages within the domain:

ALL x (NOT(female(spouse(x)) = female(x))).
However, there may be unmarried people, so we want spouse to be a partial function,
in which case we can write:

ALL x (EST(spouse(x)) IMP NOT(female(spouse(x)) = female(x))).
to say that if there exists such a thing as x’s spouse, then that individual has opposite
gender from that of x.

The list of extensions and restrictions of standard first order vocabulary may
may seem complicated, but in fact they serve to adapt “pure” first order logic rather
modestly for the purpose of easy applicability to finite domain problems.

One question which arose early in the development of Logic for Fun was whether
to restrict it to first order logic or to allow higher order constructions. Over finite
domains, of course, the distinction between first order and higher order expressions
is a little artificial, as sets and functions are just more finite objects which could
be referenced in a first order way, but there are clear reasons for avoiding them
in general for the purposes of this site. Notably, they cause exponential or hyper-
exponential increases in the sizes of domains, thus conflicting with the manner in
which everything is internally represented to the solver by explicit enumeration, and
with the need to solve problems in seconds at worst (more usually in milliseconds).
Some second order features, notably allowing reference to the transitive closure of
a binary relation, would be useful for knowledge representation in certain cases
and have polynomial time propagators, so they could be added without causing an
explosion. It is possible that such features may be included at some stage, but as
things currently stand they remain unavailable.

By an interpretation of the first order language specified for a given problem
we mean an assignment of a domain D(s) to each sort s and an assignment of a
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USER
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solution[s] error message encoded problem

natural language problem Exit

Figure 3: Logic for Fun workflow. The main loop is a dialogue between a user and
the solver.

function I(f) of appropriate type to each function symbol f . Each domain is a
finite set, and each function symbol of type s1, . . . , sn −→ s is assigned a function
from D(s1)× . . .×D(sn) to D(s). A predicate symbol from this perspective is just a
function symbol of value type bool, and a name is a function symbol as above with
n = 0. Built in function symbols are given the obvious readings.

As expected, an interpretation is a model of the set of constraints specified by the
user iff each of them evaluates to TRUE in accordance with the standard story about
truth for an interpretation. Note that since the language has no free variables, there
is no need to treat valuations of variables separately from complete interpretations
differing on the values of names. If no model is found by the solver within the time
limit, the message “No solution found” is returned. If several models are found, by
default up to three are returned. The limit on the number of models may be changed
via the “settings” button available to the user. Each model returned is reported by
explicitly printing the tables of values of each function for its possible arguments.
Students have usually found this style of writing solutions easy to understand.

4 Errors and feedback

The workflow of the site (Figure 3) is one of dialogue between student and machine,
whereby the problem in natural language is initially proposed as a challenge to which
the student responds by writing formal encodings of all or part of the problem which
the solver evaluates. Feedback in the form of error messages or solutions (or lack
of solutions) informs the student’s next attempt. The cycle is broken when the
student decides to terminate or suspend it. Work may be saved at any point for

182



Logic for Fun

future reference.
Clearly, the educationally effective part of this process is the correction of errors.

To put it simply: the tool is only doing useful work when its users are making
mistakes. Feedback is therefore the essence of the process. Errors (apart from
accidental slips) are fundamentally of two kinds, syntactic or semantic, evoking very
different responses from the system. Errors of syntax are caught by the parser or the
type checker and reported with explicit messages. For example, if the user writes

had(Mary, ∃x(lamb(x))).

(presumably trying to say “Mary had some x such that x is a lamb”) the solver
replies:

Input error on line 32: had(Mary, SOME x lamb(x)).
Type mismatch with argument of had

Detailed diagnostics: in the formula
had(Mary,SOME x lamb(x))

the main operator "had" expects argument 2 to be of type animal
but argument 2 is

SOME x lamb(x)
which is of type bool.

Hints for this kind of error: check
(1) parentheses;
(2) possible typos (e.g. misspelling);
(3) how variables and names get their sorts assigned.

The suggested possible causes of this kind of error—misplaced parentheses and wrong
names—are not guilty in this case, but the key information that there is a boolean
formula where a reference to an animal was expected is clearly present. The solver
also lists the vocabulary used in the offending formula and writes out the parse tree
as far as the parser was able to get before raising an exception. This kind of detail
in error messages is an important feature, but such verbosity can become irritating
so a possible enhancement for a future version of the site might be to place detailed
drill-down under user control.

Users have frequently reported obscure error messages as a major source of frus-
tration in using Logic for Fun. Efforts to make error messages more friendly and
informative are continuing, as this is an aspect of the site which is perpetually ca-
pable of improvement.

Semantic errors are harder to classify and harder to deal with. There are no
“canned” solutions written in, so if the encoded problem gets past the parser and
type checker, all the solver can do is search for solutions and report what it finds.
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Hence the only symptom of misunderstanding on the semantic level is an unexpected
solution or (more often) no solution. This is the case whether the error is due to
basic misunderstanding of semantics, such as confusion between the conditional and
the biconditional, or whether it is a matter of problem representation—using logic
correctly to say the wrong thing.

5 Diagnosis tool
The case in which there is no solution is common, and of course the solver’s response
“No solution found” provides the user with a minimum of information. Techniques
for making the feedback more informative include commenting out lines of the encod-
ing and re-running to see whether solutions exist. This can sometimes be effective in
pinpointing incorrectly expressed constraints, though it is laborious and the results
are not always helpful.

A diagnosis tool designed to help automate the process of isolating incorrect
constraints in cases where the encoded problem globally has no solution has been
developed: a prototype exists and has been tested by a range of volunteer users,
ranging from beginners to experts, but has not yet been incorporated into the live
version of the website. As noted, it cannot tell the user what is wrong with their
problem encoding, since there is no way of knowing what solution (if any) is desired,
but it makes available two types of information:

Approximate models If there is no model of the set of constraints within the
parameters set by the sort and vocabulary specifications, the constraints can
be marked as “soft” and the solver asked for an assignment of values satisfying
as many of them as possible—that is, to solve the problem as a MAX-CSP.
The constraints violated by the approximate model are listed. The user may
mark some of them as “hard” and re-solve, finding a new model (if there
is one) satisfying the hard constraints and approximately modelling the soft
ones. Iterating this procedure partially automates the “commenting-out” di-
alogue, with additional functionality in that optimal approximations rather
than arbitrary models are returned.
The back-end solver can run in two modes to search for approximate models.
On the site at present, it always searches by depth-first branch and bound,
which has the advantges of a complete search method: it stops when the
search space is exhausted—often in a fraction of a second—and when it does
it returns either a provably optimal approximation or else the information that
the hard constraints are unsatisfiable. There is also an option (not currently
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Figure 4: Screenshot of diagosis tool: approximate model

used in Logic for Fun) to perform a local search somewhat in the manner
of WalkSAT [8]. Since this is an incomplete method, the results it returns
come with no guarantee of optimality, and it cannot show unsatisfiability. It
does, however, return reasonable models in a reasonable time, even for large or
complex problems, so it may have its uses as a fall-back option in cases where
the complete search fails. We shall experiment with including it in Logic for
Fun in future.

Unsatisfiable cores The solver may be asked to identify a minimal subset of the
constraints with no solution. Any such subset must contain a contradiction,
and so needs correction as at least one of its members is false in the intended
model. There may be many unsatisfiable cores in an inconsistent CSP; at
present, the diagnosis tool returns an arbitrary one. Finding an optimal (min-
imal cardinality) unsatisfiable core is computationally difficult: even with an
oracle saying whether a subset of the given first order clauses is satisfiable, the
optimisation problem would still be NP-hard. However, every unsatisfiable
core needs to be repaired in order to make the encoding consistent, so any
core gives potentially useful information. For that reason, it is not obvious
that investing time in minimising the size of the core returned is justified. The
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Figure 5: Screenshot of diagosis tool: unsatisfiable core

“Find optimal” button visible in Figure 5 provides an optionto seek an optimal
core, but in view of the complexity issues, and because with small problem en-
codings the arbitrary core is quite often optimal anyway, this feature may be
omitted from the tool when it is eventually deployed.

At present, the diagnoser works with the problem after it has been put into clause
form. Consequently, the constraints violated by approximate models and those
featuring in unsatisfiable cores are reported as clauses (with a little syntactic sugar
such as universal quantifiers binding the variables) rather than as the input first
order formulae. This is sometimes a little confusing for logically inexpert users, but
is does have its advantages as it results in more precise diagnoses.

The two services provided by the diagnosis tool are in a good sense dual to each
other [11]. More strictly, the set of unsatisfied clauses in an approximate model is
a diagnosis in that it forms a hitting set for the set of all unsatisfiable cores, and
dually each unsatisfiable core is conflict, which is a hitting set for the set of all such
diagnoses. There is no general answer to the question of which is more useful, as
it depends on the problem—and to some extent on the user. It may happen that
there is no unsatisfiable core much smaller than the entire clause set, in which case
the best strategy for the user is to ask repeatedly for approximate models, making
constraints hard if they are obviously true. In other cases, the best approximate
model may look nothing like the intended solution, and may violate many of the
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Figure 6: Number of times the solver was run on each day over 12 weeks of a logic
course

constraints. In such cases it is likely that there are several bugs in the encoding, so
a good technique is to isolate each one, in a small unsatisfiable core if possible, and
re-examine the problem after each repair.

The diagnosis tool is not a magic bullet. Sometimes it helps; sometimes it
does not. In any case, it provides only information about models or the lack of
them: repairing the problem encoding is still a task for the user and still rests on
understanding first order logical notation. It does, however, reduce frustration by
assisting with the reasoning process rather than letting “No solution found” be a
backtracking point in the dialogue between user and machine.

6 Site usage
Logfiles produced by the scripts on the site can be mined for data on usage patterns,
and provide some insight into how students set about mastering the web-based tool
and using it to solve problems of logic. At the simplest, aggregated statistics for the
number of hits on the site allow us to observe class behaviour. Figure 6 shows the
number of times the solver was run each day by a class of around 50 undergraduates
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Logic Games
Our annual logic competition came to a final showdown between five teams:
the Aces, Buccaneers, Cougars, Demons and Eagles. The contest was a
round robin, each team meeting each other team once. At the end, the
judges announced:

• Every team won at least once, and some team won all its games.
• The Buccaneers beat only the Cougars.
• Exactly one match was drawn, and it didn’t involve the Cougars.
• The Aces defeated every team that the Eagles defeated, but they didn’t

defeat the Demons.
• Not every team that defeated the Aces defeated every team that the

Aces defeated.

With that, they left us to work out the full set of results. Well?

Figure 7: The homework problem for week 7

during a 12-week semester in 2013. Note that there was a 2-week break between
weeks 6 and 7.

Students had a piece of homework to do each week, and had to hand it in for
assessment before midnight each Friday evening. These assignments in weeks 5, 7,
10 and 12 consisted of problems to be solved using Logic for Fun, as can clearly be
seen from the bursts of activity in those weeks. The assignment in week 8 was a
problem concerning the semantics of some first order formulae, which the students
were asked to compute on paper, using semantic tableaux, before comparing their
answers with models of the same formulae produced by Logic for Fun. The small
peak in week 3 is associated with the point at which they were introduced to the site
and asked to complete some easy exercises to familiarise themselves with it. The
homework in weeks 3, 4, 6, 9 and 11 did not call for students to use the site.

The heaviest usage of the semester occurred on the Friday of week 7, when
the solver was run on average almost 100 times per student. This represents an
extraordinary amount of work by the class on what was a fairly modest piece of
logic homework. The problem in question (see Figure 7) was designed to turn on
the correct handling of quantifiers, though the most awkward part of the problem is
to encode the notion of a drawn match. Since the usage log from that period only
records who ran the solver at what time, not the full text of what they sent to the
solver, we have no way now of knowing what particular difficulties caused the class
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Figure 8: More detailed plot of site usage hour by hour over 3 weeks.

to spend so much more effort on this problem than on the others.
Closer analysis of the aggregate site usage reveals further patterns in students’

work. Figure 8 shows the number of runs in each hour over a period of three weeks
culminating in an assignment which required them to encode the problem ‘Logic
Games’ (Figure 7). Darker colours indicate heavier usage. Although the amount of
work peaks as expected on the day of the assignment deadline (not at the eleventh
hour, but about three hours prior to that) there is clearly a substantial number of
students whose habit is to work on problems such as these some days in advance.
Recall that the “assignment” was only a piece of homework requiring a few hours
of work at most, so for most students it was feasible to leave the job until the last
day. The activity two days after the deadline was that of students completing the
assignment late: they were allowed to submit work up to 48 hours after the deadline,
for a marks penalty, and for unknown reasons some of them chose to exercise this
option.

Yet more detail is revealed by studying the work patterns of individual students.
Some behaviours are quite striking: there are, for example, students who will run
the solver 200 times or more on one problem, many of the runs being only seconds
apart. Figure 9 shows an example of the activity of one such student over the five
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Figure 9: Five hours of work by one student. Each point is a run of the solver,
showing the interval since the previous run plotted against the time of day. Different
shapes show whether the run was a syntax check or a “solve”, and whether the
previous run was a check or a solve.

hours before the submission deadline. Note that this is a huge amount of work
compared with the few minutes which students normally spend on a hand-written
formalisation exercise. At no point during the five hours does this student pause for
much more than 5 minutes. Most of the runs which occur within 10 seconds of the
previous run are cases in which a syntax check is immediately followed by a “solve”,
presumably because there was no syntax error. We see some patterns in the record:
for instance, at some point (a little before 10:30 pm) this student abandons explicit
syntax checks and simply uses the “Solve” button. It is unclear why.

7 Current and future work
Logic for Fun was completely re-scripted in 2013–14, partly because the look and
feel of the old site dated from another millennium, partly to extend its functionality
in significant ways, and partly to have a version built with modern tools which
would be easy to maintain. The new site is scripted entirely in Python, with a little
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Javascript for client-side functions such as insertion of logical symbols into the text,
though the solver behind it is still the original, written in C some 20 years ago. The
beta version of the new site [10] is now freely available to all web users, in contrast
to the old site which required them to have accounts and to pay fees. This is in line
with the contemporary expansion of free access to educational tools.

The biggest enhancement from the user’s viewpoint is a facility to save and reload
work, allowing it to be carried over easily from one session to another. Students who
join a class (called a “group” on the site) can also submit their work to the group
manager for feedback or assessment. Low-level improvements, such as organising the
display so that the natural language version of a puzzle can be in the same browser
window as the student’s logical encoding of it, also do much to enhance the user
experience. The syntax for declaring vocabulary has been simplified and made more
similar to that of analogous declarations in computational settings. Thus whereas
the classic site used mathematical syntax for declarations like

function f: s −> t.
function P: s −> bool.

the new site uses “computational” syntax for the same thing:
function f(s): t.
predicate P(s).

There is an ambitious plan for continued upgrading of the site. Tools currently
under development include the diagnosis assistant already noted in Section 5 above,
for use when a problem as written by the user has no solution. A prototype of this
tool looks promising, and has been positively received by users who have tested it,
but it will not be incorporated into the live site until 2016. It is also planned that the
system will maintain a detailed database of user activity, recording every character
of text sent to the solver. This information will be used in a project aimed at deeper
understanding of the logic learning process.

An important piece of future work, to be conducted when the new site is stable, is
an effectiveness study. It is obvious that doing formalisation exercises online rather
than on paper causes students to put much more effort into getting their answers
right, but measuring the extent to which they learn more as a result is much harder.
There is no naturally occurring control group for an experiment, so it is important
that institutions other than the Australian National University begin using the site
and generate comparative results between the years when it is used and years when
it is not. Such longitudinal data will take time to accumulate, and no such study is
available yet.

191



Slaney

Acknowledgements The author wishes to thank Matt Gray, Kahlil Hodgson,
Daniel Pekevski, Nathan Ryan and Wayne Tsai for help in scripting Logic for Fun,
Nursulu Kuspanova for her invaluable work on the diagnosis tool, and the many logic
students over the last 15 years who have helped by testing the site to destruction.

References
[1] Dave Barker-Plummer, Jon Barwise, and John Etchemendy. Tarski’s world, 2008.
[2] Jon Barwise and John Etchemendy. Tarski’s world, 1993.
[3] Jon Barwise and John Etchemendy. Language, Proof and Logic. CSLI Publications,

Stanford, CA, USA, 1999.
[4] Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The mod-

elling language Zinc. In Principles and Practice of Constraint Programming (CP), pages
700–705, 2006.

[5] Wilfred Hodges. Logic: An introduction to elementary logic, 2nd edn. Penguin, London,
2005.

[6] Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter Stuckey, Maria Garcia de la
Banda, and Mark Wallace. The design of the Zinc modelling language. Constraints,
13:229–267, 2008.

[7] Nicholas Nethercote, Peter Stuckey, Ralph Becket, Sebastian Brand, Gregory Duck,
and Guido Tack. MiniZinc: Towards a standard CP modelling language. In Principles
and Practice of Constraint Programming (CP), pages 529–543, 2007.

[8] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiability
testing. Theoretical Computer Science, DIMACS Series Volume: Clique, Graph col-
oring and Satisfiability—Second DIMACS implementation challenge. American Math
Soc:290–295, 1996.

[9] John Slaney. Logic for Fun (classic version). http://logic4fun.rsise.anu.edu.au/.
[10] John Slaney. Logic for Fun, Version 2 Beta. http://{L4F}.cecs.anu.edu.au/.
[11] John Slaney. Set-theoretic duality: A fundamental feature of combinatorial optimisa-

tion. In European Conference on Artificial Intelligence (ECAI), pages 843–848, 2014.
[12] Peter Stuckey and Carleton Coffrin. Modelling discrete optimization. https://www.

class-central.com/mooc/3692/coursera-modeling-discrete-optimization.

Received 11 October 2016192



Teaching natural deduction in the right
order with Natural Deduction Planner

Declan Thompson
The University of Auckland, New Zealand

declanthompsonnz@gmail.com

Jeremy Seligman
The University of Auckland, New Zealand

j.seligman@auckland.ac.nz

Abstract

We describe a strategy-based approach to teaching natural deduction using a
notation that emphasises the order in which deductions are constructed, to-
gether with a LATEX package and Java app to aid in the production of teaching
resources and classroom demonstrations. Our approach is aimed at students
with little exposure to mathematical method and has been developed while
teaching undergraduate classes for philosophy students over the last ten years.

Keywords: Natural Deduction, Strategy, Proof Assistant.

1 Natural Deduction as a Creative Process
Teaching modern logic to students with little background in mathematics is notori-
ously hard. The philosophy student, adept at reading complex prose and composing
artful essays is usually not well prepared for manipulating symbols and constructing
rigorous proofs of theorems. Acquisition of at least the following three skills are
needed.

The first is using the language of propositional and predicate logic to represent
one’s thoughts in formal notation and understand what has been written by others.
This is usually achieved by learning to translate to and from natural language. Many
resources are available.

The second is manipulating the symbols of formal notation according to precise
rules. This is a basic skill necessary for almost all of logic, from applying mechanical
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methods of argument evaluation to acquiring an appreciation of the autonomy of
the syntactic realm, without which the major theoretical results of logical theory
cannot be understood. It can be acquired by learning how to produce truth tables,
truth trees, and in many other ways. Again many resources are available.

The third is reading and writing rigorous arguments, of the kind used in math-
ematics. This is a much more difficult skill to acquire, requiring mastery of the
first two skills, and in addition, a level of mathematical maturity that is attained
by mathematics students only after years of practice with algebra, geometry, anal-
ysis, etc. Consequently, this side of logic education is often neglected by philosophy
undergraduate programmes. Although many introductory textbooks include some
discussion of logical theory, such as soundness and completeness, the emphasis is on
understanding the theorems rather than developing the skills to prove them. Few
are aimed directly at acquiring the skill of creating proofs from scratch.1

One solution is to require logic students to take a substantial number of courses
in mathematics, so that they acquire the necessary skills in the same way as math-
ematics students. In the long run, a broad experience with mathematical methods
is certainly useful for research in logic, if not absolutely essential. But the huge gap
that must be filled is daunting and dispiriting for most philosophy students, most
of whom decide that it is just too big to breach.

Is there another solution? The obvious candidate is to teach students the skill of
rigorous argumentation using the very formalisms that they have already learned:
propositional and predicate logic. From a theoretical perspective, we know that our
various systems of deduction can duplicate all that a mathematics student learns
by a much more indirect and less explicit route. Why then is it so difficult for a
philosophy student who has learned a formal system of deduction to transfer her
skills to the production of informally rigorous arguments of the kind needed for
progress in her subject?

It is generally recognised that axiomatic systems, while elegant and theoretically
parsimonious, are wholly inappropriate for learning deduction. Instead, most logic
programmes for philosophy students include some system of natural deduction, in
which axioms are replaced by rules which mirror patterns of reasoning used in natural
language argumentation. In the classic approach of Irving Copi, numerous rules are
added, so as to capture as many such patterns as possible.2 Yet there is often an
insufficient level of attention to any systematic discussion of the process of creating

1A notable exception is “How to Prove It: A Structured Approach” [1, 2]. There are also
countless introductions to mathematical method, e.g. “The Nuts and Bolts of Mathematical Proof"
[3], “How to Read and Do Proofs: An Introduction to Mathematical Thought Processes” [4].

2“Introduction to Logic" [5] is now in its 14th edition. Many other textbooks on natural deduc-
tion employ a similarly lengthy list of rules.
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deductions. Typically, students are given an introduction to the rules, motivated by
their natural language correlates, a few examples of complete deductions, and are
then left to fend for themselves on a large number of exercises, with the hope that
they will develop their own strategies by trial and error.

An alternative is to teach the strategies of creation explicitly. As well as helping
students to learn formal deduction, these are the strategies that will prepare the
student for the harder task of creating rigorous informal arguments of the kind
needed to do postgraduate work in logic, and which mathematics students learn
implicitly through their application to a wide range of mathematical topics. Teachers
of natural deduction in the traditional style may be fully aware of this point, but
the effective learning of explicit strategy is made almost impossibly hard by several
factors.

The first is simply the number of rules used by logic textbooks aimed at mirroring
patterns in informal reasoning, which include both proof by cases (Disjunction Elim-
ination, ∨E), and Disjunctive Syllogism, if not also Constructive Dilemma. While
each of these is relatively easy to explain in isolation, the more rules, the harder
it is to master their strategic interactions, which the student must consider when
creating her own deductions.

A second, related factor is the lack of structure to the set of rules. From the
perspective of teaching strategy, one would prefer a simpler set of rules, organised in
a way that corresponds to patterns of use in the creation of deductions, and exactly
this is provided by Gentzen’s original system, which uses the idea of introduction
and elimination to expose the structure and symmetry of proof. More details will
be given in Section 2, but for now a brief summary of the main points will suffice.
Firstly, the fact that the intuitionistic fragment of the system has only a pair of
rules for each logical operator allows one to develop general strategies: one for
Introduction rules and one for Elimination rules, concerning the management of
resources and simplification of goals. Moreover, an orthogonal classification of rules
allows us to distinguish between cases in which a choice is required (e.g., ∨I and ∃I)
and those that are ‘automatic’, in the sense that they can be applied without the
need for further choice. Even the symmetry-breaking oddity of the non-intuitionistic
rule ¬¬E, which can be applied to any conclusion, raises an important strategic
question: how to manage the creative steps of deduction? And this leads to an
explicit discussion of back-tracking in problem solving and the need to recognise
dead-ends. While such matters of strategy are implicit in more complicated systems,
they are highlighted in systems in which the number of rules is small and well-
balanced.

Standard presentations of Gentzen-style natural deduction, such as those of Fitch
or Lemon, still have an important deficiency. Designed for reading rather than
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writing, the argument is displayed with the premises at the top, the conclusion at
the bottom and with each line justified by lines higher up on the page, according to
a formal rule. This makes the process of checking the correctness of the deduction
relatively easy, but the process of generating the deduction itself unnecessarily hard.

1. (¬p ∨ ¬q) Prem
2. (p ∧ q) Ass
3. ¬p Ass
4. p 2,∧E
5. ⊥ 3, 4,¬E
6. ¬q Ass
7. q 2,∧E
8. ⊥ 6, 7,¬E
9. ⊥ 1, 3-5, 6-8,∨E
10. ¬(p ∧ q) 2-9,¬I

On the left is a correct deduction
using a version of Gentzen’s rules.
Hypothetical reasoning is indicated
by marking the assumption (Ass)
and a vertical bracket ending be-
low the hypothetical conclusion. The
symbol ⊥ is used to mark a contra-
diction.

Information about the process of creating the deduction is lost in this representation,
which wrongly suggests that it was written from top to bottom, starting with the
premises and ending in the conclusion. (One of the most common mistakes made
by students is to follow this order.) There is no record of the strategies used to
construct the deduction; no record even of the order in which it was constructed.
The student who fails to produce her own deduction of ¬(p ∧ q) from (¬p ∨ ¬q) will
not learn much from looking at the above solution.

If we were to display a full sequence of steps leading to the creation of this
deduction, we might write the following:

1. (¬p ∨ ¬q) Prem

10. ¬(p ∧ q)

¬I
;

1. (¬p ∨ ¬q) Prem
2. (p ∧ q) Ass

9. ⊥
10. ¬(p ∧ q) 2-9,¬I

∨E
;

1. (¬p ∨ ¬q) Prem
2. (p ∧ q) Ass
3. ¬p Ass

5. ⊥
6. ¬q Ass

8. ⊥
9. ⊥ 1, 3-5, 6-8,∨E
10. ¬(p ∧ q) 2-9,¬I

¬E,∧E
;

1. (¬p ∨ ¬q) Prem
2. (p ∧ q) Ass
3. ¬p Ass
4. p 2,∧E
5. ⊥ 3, 4,¬E
6. ¬q Ass

8. ⊥
9. ⊥ 1, 3-5, 6-8,∨E
10. ¬(p ∧ q) 2-9,¬I

¬E,∧E
;

1. (¬p ∨ ¬q) Prem
2. (p ∧ q) Ass
3. ¬p Ass
4. p 2,∧E
5. ⊥ 3, 4,¬E
6. ¬q Ass
7. q 2,∧E
8. ⊥ 6, 7,¬E
9. ⊥ 1, 3-5, 6-8,∨E
10. ¬(p ∧ q) 2-9,¬I
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This is much too cumbersome for practical use in textbooks, and leaves the assign-
ment of line numbers somewhat mysterious. How to know the deduction will use ten
lines? But a simple change in notation can help. Instead of numbering the lines of
the deduction from top to bottom, we number them in the order they were created.
The above sequence can then be represented with just one deduction, as shown:

1. (¬p ∨ ¬q) Prem
3. (p ∧ q) Ass
5. ¬p Ass
9. p 3,∧E
6. ⊥ 5, 9,¬E
7. ¬q Ass
10. q 3,∧E
8. ⊥ 7, 10,¬E
4. ⊥ 1, 5-6, 7-8,∨E
2. ¬(p ∧ q) 3-4,¬I

First, the premise and conclusion are written as lines 1 and 2, with a generous space
between. We then apply ¬I to the conclusion to get a hypothetical deduction with
assumption (p ∧ q) on line 3 and conclusion ⊥ on line 4. Next, we apply ∨E to line
1 to get two nested hypothetical deductions, from ¬p on line 5 to ⊥ on line 6, and
from ¬q on line 7 to ⊥ on line 8. The first of these is completed using ¬I to get p
on line 9 (justified by ∧E from line 3). The second is completed similarly, with line
q on line 10. In this way, the line numbers match the order of construction of the
deduction precisely, which is thereby emphasised to students as they create it.

The discipline of numbering in the order a deduction is created helps students
(and instructors) to think strategically. The goal is to provide a justification for the
conclusion given the resources in the premises, and seen this way deduction is just
planning how to use the resources to satisfy a goal. While this is a familiar idea in
automated reasoning research, it rarely enters the classroom. By using the above
system of numbering, students cannot avoid thinking in this strategic way and learn-
ing that introduction rules serve to split the goal into subgoals, whereas elimination
rules deploy resources. Strategic concepts such as back-tracking, management of
decision points, and an awareness of risk are brought to the fore. Certain rules, such
as Disjunction Introduction are seen as “choice rules" to be used with caution and
postponed as long as possible, whereas others, such as Implication Introduction are
“automatic" - they can and should be used immediately with no risk of having to
undo.

The use of a new notation has the disadvantage that teaching resources, espe-
cially solutions to exercises, have to be produced from scratch. And it was to aid in
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this that we decided to produce both a LATEX package for formatting our deductions
easily, and a Java app to aid in the generation of both LATEX code and various other
formats for classroom demonstration.

2 Teaching Strategies, Explicitly

At any stage of creating a deduction, one has to decide which rule to apply next.
One of the great advantages of using Gentzen-style systems of natural deduction
is both the relative paucity of rules and the direction one has from the syntactic
structure of premises and conclusion as to which rule to use. For intuitionistic
natural deduction, whose rules in Fitch-style are shown in Table 1, exactly one rule
applies to each formula and this fact makes it easy to teach specific strategies.

2.1 Goals and Resources

The first distinction we teach is that between “goals” and “resources”. When a
natural deduction problem is first written down in Fitch-style, it consists of a number
of lines at the top (the premises) and a line at the bottom (the conclusion). For
example:

1. (p ∧ q) Prem
2. (p→ r) Prem...
3. (p→ (q ∧ r))

Here, the goal is to prove line 3, (p→ (q ∧ r)) from resources on lines 1 and 2. We
can write this explicitly in sequent notation as

(p ∧ q), (p→ r) =⇒ (p→ (q ∧ r))

Students are not taught sequent notation initially. Instead, we discuss the role of
goals and resources by referring directly to Fitch-style deductions, written on the
whiteboard or projected from a computer. Nonetheless, they are useful here as a
way of making proof strategies explicit.

As a deduction progresses, one typically has multiple goals and resources. For
example, in the deduction shown below, we have two remaining tasks:
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Natural Deduction, NJ

Conjunction Introduction

i φ

j ψ

⇒ (φ ∧ ψ) i,j,∧I

Conjunction Elimination

i (φ ∧ ψ)

⇒ φ i,∧E

. . . .

i (φ ∧ ψ)

⇒ ψ i,∧E

Implication Introduction

i φ Ass
...

j ψ

⇒ (φ→ ψ) i−j,→ I

Implication Elimination

i (φ→ ψ)

j φ

⇒ ψ i,j,→ E

Disjunction Introduction

i φ

⇒ (φ ∨ ψ) i,∨I

. . . . . . . . . . . . . . . . . . .

i ψ

⇒ (φ ∨ ψ) i,∨I

Disjunction Elimination

i (φ ∨ ψ)

j φ Ass
...

k θ

l ψ Ass
...

m θ

⇒ θ i,j−k,l−m,∨E

Equivalence Introduction

i φ Ass
...

j ψ

k ψ Ass
...

l φ

⇒ (φ↔ ψ) i−j,k−l,↔ I

Equivalence Elimination

i (φ↔ ψ)

j φ

⇒ ψ i,j,↔ E

. . . . . . . . . . . . . . . . . . . . . . . .

i (φ↔ ψ)

j ψ

⇒ φ i,j,↔ E

Negation Introduction

i φ Ass
...

j ⊥

⇒ ¬φ i−j,¬I

Negation Elimination

i ¬φ

j φ

⇒ ⊥ i,j¬E

Falsum Introduction Falsum Elimination

i ⊥

⇒ φ i,⊥E

Universal Introduction

i φx
a

⇒ ∀xφ i,∀I

a is a parameter
not in φ,
nor any premises,
nor active assumptions

Universal Elimination

i ∀xφ

⇒ φx
t i,∀E

t is any term

Existential Introduction

i φx
t

⇒ ∃xφ i,∃I

t is any term

Existential Elimination

i ∃xφ

j φx
a Ass

...
k ψ

⇒ ψ i,j−k∃E

a is a parameter
not in φ, ψ,
nor any premises,
nor active assumptions

Table 1: The rules of intuitionistic natural deduction (NJ) in a standard presenta-
tion.

199



Thompson and Seligman

1. ((p ∧ q)→ r) Prem
2. (q ∨ ¬(p ∧ r)) Prem
4. p Ass
6. q Ass...
7. r
8. r Ass
10. q Ass
11. q 10
12. ¬(p ∧ r) Ass...
13. q
9. q 2, 10-11, 12-13, ∨E
5. (q ↔ r) 6-7,8-9, ↔ I
3. (p→ (q ↔ r)) 4-5, → I

These can be represented explicitly by listing the resources and goal in sequent form:

From 1,2,4,6 to 7: ((p ∧ q)→ r), (q ∨ ¬(p ∧ r)), p, q =⇒ r
From 1,(2),4,8,12 to 13: ((p ∧ q)→ r), p, r, ¬(p ∧ r) =⇒ q

Line 2 has been dropped as a resource for the second task because it has already
been used in the ∨E used to justify line 9. Learning to identify the remaining
goals of a deduction is relatively easy: they are simply the line which still lack
a justification. Learning the available resources requires an understanding of the
nesting of hypothesis lines, but is more apparent in the process of constructing the
deduction than in reading it.

2.2 Automatic Rules
Our second main distinction is between “automatic” application of rules and ap-
plications that involve a “choice”. A paradigmatic example of an automatic rule
application is any use of → I. Here, the goal is an implication and the deduction
is transformed by adding its antecedent as a resource and making its succedent the
new goal:

1. (p ∧ q) Prem
2. (p→ r) Prem
4. p Ass...
5. (q ∧ r)
3. (p→ (q ∧ r)) 4-5, → I

We can represent an application of → I in sequent form as:
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→ I ↔ I ¬I

Γ, φ =⇒ ψ

Γ =⇒ (φ→ ψ)
Γ, φ =⇒ ψ Γ, ψ =⇒ φ

Γ =⇒ (φ↔ ψ)
Γ, φ =⇒ ⊥
Γ =⇒ ¬A

∃E (a new) ∨E ∀I (a new)

Γ, φx
a =⇒ ψ

Γ, ∃xA =⇒ ψ

Γ, φ =⇒ θ Γ, ψ =⇒ θ

Γ, (φ ∨ ψ) =⇒ θ

Γ =⇒ φx
a

Γ =⇒ ∀xφ

⊥E ∧I ∧E

Γ, ⊥ =⇒ φ
Γ =⇒ φ Γ =⇒ ψ

Γ =⇒ (φ ∧ ψ)
Γ, φ, ψ =⇒ θ

Γ, (φ ∧ ψ) =⇒ θ

Table 2: The automatic strategy rules of NJ

Γ, φ =⇒ ψ

Γ =⇒ (φ→ ψ)
Reading upwards, this means that the deduction task with goal (φ → ψ) and re-
sources Γ is replaced by the task with goal ψ and resources Γ, φ. The rule application
is automatic because of the equivalence of these two tasks: ψ is a consequence of
Γ, φ if and only if (φ→ ψ) is a consequence of Γ. The application of the rule usually
also results in a decrease in the complexity of the deduction, splitting up the formula
(φ → ψ) into its proper parts. Students are therefore encouraged to apply the rule
of → I automatically, without the need to think strategically.

All the hypothetical rules are similarly automatic: → I, ↔ I, ¬I, ∃E and ∨E.
In addition, among the non-hypothetical rules, ∀I, ⊥E, ∧I and ∧E are automatic.
Sequent notation for these rules in shown in Table 2. Each of the automatic rules
satisfies a similar equivalence: the sequent below the line is valid iff those above the
line are all valid. Strategically, this means that nothing is lost by applying the rule.
If the task below the line is completable, then it can be completed by applying the
rule and moving to the task(s) above the line. There is no risk of failure.

The majority of rules in NJ are automatic and so students have a lot of guidance
as to how to proceed. After a certain amount of practice, they can easily be trained
to identify the automatic rules and apply them almost mechanically, giving them
confidence in following the goal-resource methodology rather than simply forward
chaining from the premises in an attempt to reach the conclusion. This breaking of
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bad habits and providing a reliable framework within which more complex strategies
can be developed is a large part of what we can do by teaching natural deduction
“in the right order”.

2.3 Choice and Procrastination
The automatic application of rules is contrasted with the application of rules that
require a choice. A paradigmatic example of a choice rule is ∨I. Faced with the goal
of proving (φ ∨ ψ), we have to decide which: φ or ψ. For example, in the problem
on the left, an application of ∨I with choice p quickly leads to impasse (right):

1. ((p→ r)↔ (r → q)) Prem
2. r Prem.....................
3. (p ∨ q)

1. ((p→ r)↔ (r → q)) Prem
2. r Prem
7. r Ass...
8. q
5. (r → q) 7-8, → I
6. (p→ r) 1, 5, ↔ E...
4. p
3. (p ∨ q) 4, ∨I

Students are presented with examples and exercises like this one to show that a real
choice is made and that one must recognise when one is stuck so as to backtrack to
the last choice. In this case, one can simply make the other choice, q and complete
the deduction:

1. ((p→ r)↔ (r → q)) Prem
2. r Prem
7. p Ass
8. r 2
5. (p→ r) 7-8, → I
6. (r → q) 1, 5, ↔ E
4. q 6, 2, → E
3. (p ∨ q) 4, ∨I

In sequent notation, the choice is displayed vividly as a choice between two rules:
Γ =⇒ φ

Γ =⇒ (φ ∨ ψ)
Γ =⇒ ψ

Γ =⇒ (φ ∨ ψ)
Neither shares the equivalence of the automatic rules. It is possible for one or more
of sequents above the line to be invalid (and so not provable) even if the sequent
below the line is provable, by some other means. So in fact, the situation is worse
than merely choosing between φ or ψ when trying to prove (φ ∨ ψ). It may be that
neither choice works:
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1. (r ∨ s) Prem
2. (r → p) Prem
3. ¬(s ∧ q) Prem

4. (p ∨ ¬q)

Here, applying ∨I at step 5 is no good no matter which disjunct we choose:

1. (r ∨ s) Prem
2. (r → p) Prem
3. ¬(s ∧ q) Prem
6. r Ass
7. p 2, 6, → E
8. s Ass...
12. q
10. (s ∧ q) 8, 12, ∧I
11. ⊥ 3, 10, ¬E
9. p 11, ⊥E
5. p 1, 6-7, 8-9, ∨E
4. (p ∨ ¬q) 5, ∨I

1. (r ∨ s) Prem
2. (r → p) Prem
3. ¬(s ∧ q) Prem
6. q Ass
9. r Ass
14. p 2, 9, → E...
13. s
10. (s ∧ q) 13, 6, ∧I
11. s Ass
12. (s ∧ q) 11, 6, ∧I
8. (s ∧ q) 1, 9-10, 11-12, ∨E
7. ⊥ 3, 8, ¬E
5. ¬q 6-7, ¬I
4. (p ∨ ¬q) 5, ∨I

The only solution is to postpone the choice (leaving the ∨I to steps 9 and 10):

1. (r ∨ s) Prem
2. (r → p) Prem
3. ¬(s ∧ q) Prem
5. r Ass
9. p 2, 5, → E
6. (p ∨ ¬q) 9, ∨I
7. s Ass
11. q Ass
13. (s ∧ q) 7, 11, ∧I
12. ⊥ 3, 13, ¬E
10. ¬q 11-12, ¬I
8. (p ∨ ¬q) 10, ∨I
4. (p ∨ ¬q) 1, 5-6, 7-8, ∨E

Teaching how to manage one’s choices and to realise that the best strategy is
often to procrastinate is a core part of our approach to natural deduction. We
strongly emphasise the distinction between automatic and choice rules, so as to
highlight when choices are made and the nature of the choice. The pure choice rules
are ∨I and ∃I, as shown in Table 3. The latter requires a choice of term t with which
to replace the bound variable x of ∃xφ. This should be taken from terms already
occurring in the deduction, or if there is none, a new individual constant. In the
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∨Il ∨Ir ∃I (t old/first)

Γ =⇒ φ

Γ =⇒ (φ ∨ ψ)
Γ =⇒ φ

Γ =⇒ (φ ∨ ψ)
Γ =⇒ φx

t

Γ =⇒ ∃xφ

Table 3: Pure choice rules of NJ

latter case, since any new constant will do, students may be tricked into thinking
that no choice is involved, but that’s not so. Just as in ∨I, there are examples in
which only the avoidance of any choice (procrastination) will enable a solution:

1. ∃x (Fx ∧Gx) Prem..................
2. ∃xFx

1. ∃x (Fx ∧Gx) Prem
4. (Fb ∧Gb) Ass
6. Fb 4, ∧E
7. Gb 4, ∧E...
5. Fa
3. Fa 1, 4-5, ∃E
2. ∃xFx 3, ∃I

1. ∃x (Fx ∧Gx) Prem
3. (Fa ∧Ga) Ass
5. Fa 3, ∧E
4. ∃xFx 5, ∃I
2. ∃xFx 1, 3-4, ∃E

The initial problem, shown on the left, is not solved by ∃I, shown in the middle,
despite there being no choice of instantiating term; only by procrastination can the
deducting be completed (right).

2.4 Rules of Deduction vs Rules of Strategy
While the distinction between automatic application of rules and those that require
choice management lines up with the natural deduction rules in all the cases consid-
ered above, the three remaining rules, of → E, ↔ E and ¬E have varying strategic
properties depending on the context. Applications of→ E, for example, can be split
into three cases, indicated below:

1. (φ→ ψ)
2. φ...
3. θ

1. (φ→ ψ)......
2. ψ

1. (φ→ ψ)......
2. θ

1. (φ→ ψ)
2. φ
4. ψ 1, 2,→ E...
3. θ

1. (φ→ ψ)......
3. φ
2. ψ 1, 3,→ E

1. (φ→ ψ)...
3. φ
4. ψ 1, 3,→ E...
2. θ
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Top left is an instance of modus ponens, in which both (φ→ ψ) and φ are available
resources and the inference to ψ (shown below, bottom left) is automatic. Top
middle is an instance of reverse modus ponens, in which (φ → ψ) is a resource and
the goal is ψ, and the replacement of this goal by φ (shown below, bottom middle)
is a matter of choice; φ may not be provable even if ψ is by another route. Finally,
when neither φ is a resource nor ψ a goal (top right), the only way of using the
resource (φ→ ψ) is to take a bold step (bottom right), which is again a choice that
may lead to impasse.

The introduction of this terminology (“modus ponens”, “reverse modus ponens”
and “bold step”) helps students distinguish between rules of strategy and the actual
rules of logic as defined in the system of deduction. A complete list, in sequent
notation is given in Table 4. To repeat: the sequent style is not used in the classroom
at this level. We teach all of these strategies through explicit examples. NDP aids
significantly in this process, since the mechanics of applying the rules is performed
by the software, allowing the student (or the instructor using the software) to focus
on strategic matters. For example, the strategic rule of ⊥ bold step is illustrated by
an example like this:

1. (p ∨ q) Prem
2. ¬(p ∧ r) Prem
3. (q → s) Prem
5. r Ass
7. p Ass...
8. s
9. q Ass
10. s 3, 9, → E
6. s 1, 7-8, 9-10, ∨E
4. (r → s) 5-6, → I

The remaining task is ¬(p∧r), (q → s), r, p =⇒ s. We have two complex resources
available: ¬(p∧ r) and (q → s). Using (q → s) would involve reverse modus ponens,
which turns out not to work. The only hope is to use ¬(p ∧ r) which requires ¬E.
But we have neither (p ∧ r) as a resource (EFQ) nor ⊥ as a goal (⊥ intro) so we
have to perform a ⊥ bold step:
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Automatic Choice

→ E (MP) → E (reverse MP) → E (bold step)

Γ, φ, ψ =⇒ θ

Γ, (φ→ ψ), φ =⇒ θ

Γ, (φ→ ψ) =⇒ φ

Γ, (φ→ ψ) =⇒ ψ

Γ, (φ→ ψ) =⇒ φ Γ, ψ =⇒ θ

Γ, (φ→ ψ) =⇒ θ

↔ E (L-R MP) ↔ E (L-R reverse MP) ↔ E (L-R bold step)

Γ, φ, ψ =⇒ θ

Γ, (φ↔ ψ), φ =⇒ θ

Γ, (φ↔ ψ) =⇒ φ

Γ, (φ↔ ψ) =⇒ ψ

Γ, (φ↔ ψ) =⇒ φ Γ, ψ =⇒ θ

Γ, (φ↔ ψ) =⇒ θ

↔ E (R-L MP) ↔ E (R-L reverse MP) ↔ E (R-L bold step)

Γ, ψ, φ =⇒ θ

Γ, (φ↔ ψ), ψ =⇒ θ

Γ, (φ↔ ψ) =⇒ ψ

Γ, (φ↔ ψ) =⇒ φ

Γ, (φ↔ ψ) =⇒ ψ Γ, φ =⇒ θ

Γ, (φ↔ ψ) =⇒ θ

¬E (EFQ) → E (⊥ intro) → E (⊥ bold step)

Γ, ⊥ =⇒ θ

Γ, ¬φ, φ =⇒ θ

Γ =⇒ φ

Γ, ¬φ =⇒ ⊥
Γ =⇒ φ Γ, ⊥ =⇒ θ

Γ, ¬φ =⇒ θ

Table 4: Mixed rules of NJ

1. (p ∨ q) Prem
2. ¬(p ∧ r) Prem
3. (q → s) Prem
5. r Ass
7. p Ass...
11. (p ∧ r)
12. ⊥ 2, 11, ¬E
8. s 12, ⊥E
9. q Ass
10. s 3, 9, → E
6. s 1, 7-8, 9-10, ∨E
4. (r → s) 5-6, → I
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The deduction is then easily completed with ∧I.

2.5 NK and beyond
This is not the place to give a complete summary of our teaching methodology for
natural deduction. We aim for the students to achieve competency in NJ within
3 weeks after which they have a test. After that, they are introduced to Classical
Natural Deduction (NK), with the addition of Double Negation Elimination (¬¬E).
This is a game-changer. NJ still provides the everyday framework within which
deductions can be created but now there is a wildcard. Whereas in NJ every formula,
whether resource or goal, has its own rule, ¬¬E can be applied to any goal. Well,
even then, our distinction between automatic and choice provides a useful heuristic:
¬¬E is never needed for automatic goals.
¬¬E provides the opportunity to introduce a new strategic concept: that of

looping. Albert Einstein once defined insanity as doing the same thing and expecting
a different result. We use this idea as encouragement: doing a different thing and
expecting a different result is not necessarily insane. The classic example of this is
the natural deduction proof of excluded middle:

3. ¬(p ∨ ¬p) Ass
7. p Ass...
8. ⊥
6. ¬p 7-8, ¬I
5. (p ∨ ¬p) 6, ∨I
4. ⊥ 3, 5, ¬E
2. ¬¬(p ∨ ¬p) 3-4, ¬I
1. (p ∨ ¬p) 2, ¬¬E

At this point in the proof you are trying to prove ⊥, again. At step 4 your goal was
also to prove ⊥. So is this looping insanity? No, because something has changed:
you now have line 7, p, as an additional resource, and a solution is only a step away.
Contrast this with the following:

3. ¬(p ∨ ¬p) Ass...
7. (p ∨ ¬p)
8. ⊥ 3, 7, ¬E
6. p 8, ⊥E
5. (p ∨ ¬p) 6, ∨I
4. ⊥ 3, 5, ¬E
2. ¬¬(p ∨ ¬p) 3-4, ¬I
1. (p ∨ ¬p) 2, ¬¬E
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Here we are trying again to prove (p ∨ ¬p). It’s the third time this has come up:
once on line 1 and again on line 5. But this time we really are looping: for the goal
on line 5, our only resource was ¬(p∨ ¬p) on line 3, and again for the goal on line 7,
we have only this as a resource. Conclusion: insanity, backtrack.

From NK we move on to identity, and consider the complexity of ∀E and ∃I in
a language with complex terms. This requires a new approach to proof search and
introduces various concepts associated with pattern matching. And finally, we move
to formal arithmetic, using natural deduction also as a way of teaching mathematical
induction. Strategically, this is also interesting because of the need for lemmas in
arithmetic. That is another teaching moment on the limits of syntax-guided proof
methods.

In summary, natural deduction taught in this way, provides both a training
ground for those who want to be able to create their own proofs, but also a wonderful
case study of general strategic reasoning, including such topics as the balance be-
tween automatic moves and those that require management of choices, the virtues of
procrastination, attention to goals and resources, the advantages and disadvantages
of too much power (¬¬E), avoiding insanity, and the need for genuine creativity.

3 Natural Deduction Planner

Efficiently creating large numbers of typeset sample deductions can be a daunting
prospect. On pen and paper, even a challenging proof can be completed within min-
utes. However typesetting a proof in software such as LATEX requires a great deal
more effort. With custom packages, structural features such as the scope lines used
above can be automated well, but the task of inputting formulas is still cumbersome.
Where the hand can draw any symbol at much the speed of any other, typesetting
special characters often requires lengthy commands. We began development of a
proof assistant software application with the primary goal of overcoming these dif-
ficulties, but the result is useful in many more ways than typesetting. We call the
result the Natural Deduction Planner (NDP). It generates LATEX code for use with
a custom package.

Our interface essentially replicates the pen and paper proof process, using the
same layout and notation of Gentzen’s system, as above. Users input sequents using
a set of special characters available onscreen. No special formatting (such as prefix
notation) is required - a correctly inputted sequent appears as it would on the page.
A range of proof systems are available, such as NJ, NK and Peano Arithmetic.
Proofs appear graphically onscreen exactly as they would be typeset.
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NDP is similar to the Proof Developer tool created by Daniel Velleman.3 The
interfaces are very alike, but where Proof Developer focusses on informal proof
writing, NDP is concerned with formal deductions. Both approaches use ideas of
strategy, goals and resources to conduct proofs. Another similar tool is PANDA,
developed at the Institut de Recherche en Informatique de Toulouse.4 PANDA uses
a proof tree style, rather than the Fitch-style calculus implemented in NDP.

3.1 Basic Use
The primary use of the Natural Deduction Planner is in the creation of deductions.
Computer based deduction systems immediately present a challenge in their par-
ticular uses of special symbols. Without a usable interface, inputting formulas can
become unnecessarily tedious. For NDP, we found it very important that formulas
would appear as they do when handwritten (or as similar as possible). To this end,
simplified and easily typed symbol sets (like using &, v and -> for ∧, ∨ and →,
respectively) are not the solution. Instead, we implemented a special symbols panel’
on the sequent input dialog. This can be seen in Figure 1. Users can input the
special symbols by selecting them. A number of intuitive shortcuts (such as Alt+>
for → and Alt+a for ∀) are also available.

The new proof dialog is designed to reflect the standard style of sequents. Premises
are listed in the uppermost textbox, separated by commas. In the lower textbox,
the conclusion is supplied. Correct bracket matching must be used, and the system
indicates when this is (and is not) the case. Users must input a conclusion in order
to begin the deduction, though premises are optional.

In the new proof dialog, users are also able to choose which ruleset to use. In
Figure 1, NJ has been selected, and so the double negation elimination rule will not
be available (though it can be activated during the course of the deduction). The
choice of ruleset allows for fine-grained control over how the deduction can proceed.
Custom rulesets can be defined, allowing an instructor to, for example, deactivate all
quantifier rules. Students can then select the appropriate ruleset for a given exercise,
and the deactivated rules will not appear, helping to reduce potential confusion from
unknown rules.

Once the sequent has been inputted, the incomplete deduction (premises at the
top, with a space before the conclusion) will appear in the main window. At each

3Proof Developer is a Java web applet built to accompany Velleman’s textbook “How to Prove
It" [1, 2] http://www.cs.amherst.edu/~djv/pd/pd.html

4PANDA is a Java application designed for teaching computer science students in logic, de-
veloped by Olivier Gasquet, François Schwarzentruber, and Martin Strecker http://www.irit.fr/
panda

209



Thompson and Seligman

Figure 1: The input dialog. The special symbols panel is on the right and bracket
match indication is shown. A conclusion is yet to be inputted.

stage of an NDP deduction, the user can apply any valid rules, and their outcome
is immediately displayed. To apply a rule, a current goal must first be selected,
which can be any unjustified line (indicated by a missing justification). This can be
achieved by simply clicking on the line in question. Upon selecting a current goal,
that line’s introduction rules (if any) appear as button(s) next to it, and the line
is highlighted. To apply one of these rules, a user can simply select that button.
This takes care of introduction rules. For elimination rules, the user must also
select a relevant current resource. Upon selection, the resource is highlighted and its
elimination rules appear alongside the current goal. Again, to use a rule it is simply
selected.

NDP checks the scope of lines available to the current goal. If a user selects a
resource out of scope of the current goal, its elimination rules appear “greyed out”,
and cannot be applied. In this way, NDP ensures the user is following rules correctly.
This behaviour is useful in teaching students the details of scope. An extension of
this is shown in Figure 2. Here lines out of scope of the goal are greyed out, to
explicitly show that they cannot be used. This feature can be activated from the
Options menu. It does not prevent users from selecting out-of-scope resources, but
does make it very clear how scope works.

Lines are numbered in the order of creation, again reinforcing the way the deduc-
tion is constructed. This is also useful when reaching a dead-end in the proof - the
user can see exactly how they reached this point, and what will happen when they
retrace their steps. Highlighting is used to indicate the current goal and resource
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Figure 2: An incomplete proof showing current goal (green), current resource (red)
and possible rules (∧E). All NK rules are available, but currently only NJ rules
have been used.

and also serves to indicate any lines out of scope of the goal. Once all lines have
been justified the proof is complete.

The requirement that users select a current goal before choosing a resource is
fundamental to the operation of NDP. Even if the first step in the proof involves an
elimination rule, the user must select a current goal. These explicit realisations of
goal and resource help to reinforce the use of strategies in deductions. Rather than
beginning with premises and working downwards, the user is encouraged to begin at
the bottom of the deduction (the goal) and efficiently choose those resources which
are needed. By breaking from a strictly linear approach, selecting goals encourages
users to consider which available rules are automatic, and which require choice.

3.2 Types of Rules

The rules of natural deduction can be broadly assigned to one of three categories:
those which are completely automatic, being applied the same way in every instance
(for example, ∧I); those requiring some level of choice, as between two options
(e.g. ∨I); and those which require further input, such as a choice of term (e.g.
∃I). Of course, further distinctions can be made between these categories, and the
boundaries between them are fairly blurred (→ E, for example, would be in the first
or second categories, depending on the case).

Knowing which rules fall into which category is very important for developing
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Figure 3: ¬E before application (left) and after (right). The user has clicked the
button ¬E and done nothing else.

the skill of creating deductions effectively. The automatic rules should be applied
quickly, and choice rules with caution. While this can be explained to students,
often experience is the best way to reinforce just why we should choose one rule
over another. As a direct consequence of the implementation of each rule in NDP, it
becomes very obvious through use which rules are automatic and which are not. As
such, practice with NDP can help students learn the best orders of rule application.

How does the behaviour of the types of rule differ in NDP? All rules are applied
by selecting the appropriate button next to the current goal. They differ in what
happens next.

For the automatic rules, the proof is immediately updated. Since there is no
further information needed to apply the rule, no further interaction with the user
is required. Figure 3 shows the application of the automatic ¬E rule. Negation
elimination behaves differently depending on the context. Here, the goal is a con-
tradiction (⊥) and the negand (p) can be found within scope. So all that needs to
be given is a justification for ⊥. In fact, this rule is always automatic, no matter
the context. If the current goal is not ⊥ then ⊥ will be introduced, justified and the
current goal justified by explosion (⊥E). If the negand does not already appear in
the proof, it will be added as the new current goal above ⊥.

A generally automatic rule which blurs the distinction between automation and
choice is ∧E, which is applied to a current resource. If the current goal is one of the
conjuncts, then it is automatically justified and nothing further happens. Otherwise,
the user is presented with a (fairly trivial) choice: would you like to extract the first
conjunct, the second conjunct or both? This is not a difficult choice - if in doubt
we can choose both and get, at worst, a proof of one line longer. But this choice,
presented to the user, reinforces the bigger picture. We’re using strategy to move
through the deduction, and it may be possible to proceed with only one of the
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Figure 4: The disjunction introduction dialog.

conjuncts. The choice reminds the user to think ahead.
A classic example of a choice rule is ∨I, disjunction introduction. Here, a choice

must be made as to which disjunct to prove from (at least in NJ - under NK we
could also double negate). In NDP, the user must choose how to proceed. This
is implemented through a dialog as shown in Figure 4. This dialog breaks the
flow of the proof. Where users click through automatic rules with little thought,
disjunction introduction requires more input. This explicit demonstration of the
location of choice helps to show when it is required, and why.

An example of the third category of rules, those which require explicit further
input from the user, is existential introduction ∃I. To justify ∃xFx the user must
choose a term to justify from (assuming the currently selected resource does not
match the pattern Fx). The user is again presented with a dialog, but now must
manually input a term to use, instead of simply choosing another button. Figure 5
shows the dialog presented in this case. The term input contains free syntax, and can
be as long as required, allowing for the input of functional terms (e.g. ffgfaffb).
Say the user inputs a, yielding Fa. NDP will then check to see if Fa already appears
in scope. If it does, the current goal will be justified. Otherwise, Fa will be added
as a new goal. A similar procedure applies for ∀E. In this case, however, the choice
of term is fairly harmless - as with ∧E we can always re-use a universal resource.
The distinction between the choices of ∃I and ∀E become clear in NDP, since once
∃I is applied that line cannot be selected again, whereas the ∀ line can.

3.3 Level of Automation
A standard feature of much proof assistant software is automation of the proof
process. NDP, by contrast, has been built with very little automation in mind. The
automation implemented is at the level of rules, rather than proofs. That is, we
have tried to automate the application of each rule as much as possible, without
automating the proof process itself. The reason for this is that the focus is on
replicating the pen-and-paper process.
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Figure 5: The existential introduction dialog. The user has inputted a.

By automating the writing of each proof line, users are able to move through
deductions faster, focussing more on the strategy involved. Speed and the ability to
easily “undo” mistakes also removes hurdles from the bulk trial and error method
of learning strategy. A student unsure of the next step in a complicated pen and
paper proof may be overly wary - a wrong move would result in writing out the
whole proof again. In NDP, however, she can chose a rule in the knowledge that the
current proof state can easily be retrieved. Similarly, students sometimes find rules
like disjunction elimination, which requires creating four new lines and two scopes,
to be intimidating and tiresome. Yet disjunction elimination is an automatic rule
and should be applied as quickly as possible. In NDP disjunction elimination is
achieved with two clicks, a less daunting task.

NDP applies rules, but the user must directly control it. Of course in some cases,
the automation can circumvent attempts at learning. For example, the universal
introduction rule always generates a new constant, that appears nowhere else in
the proof. By doing so, the requirements for terms with that rule are always met.
However, this takes some control away from the user. The ∀I rule does not always
require a completely new term - if one appears out of scope it can be reused. NDP
includes an option to disable automatic parameters. If a user chooses to do this,
they will be asked for a term when performing ∀I and ∃E. If this term is illegal
(violates the requirements for terms with those rules), the user is notified, and the
offending justification marked.

3.4 Further Features
A Rule Palette allows individual rules to be (de)activated independently of the proof
system chosen. The rule palette’s layout shows the symmetry of Gentzen’s rules,
and gives some indication as to how the rules fit into different logical systems. By
only activating certain rules, students can complete exercises in subsets of a system
before being introduced to it fully, and see where certain rules are needed. For
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Figure 6: The Rule Palette. Only simple deduction rules are available; rules involv-
ing assumptions have been deactivated.

example, the rule palette can be used to demonstrate the importance of double
negation elimination in NK, by attempting a proof of (p ∨ ¬p) without double
negation elimination to see how far it goes. Once we get stuck, we turn on double
negation elimination to finish the proof. Users can try out their own systems too,
to see how different rules interact with each other.

Upon finishing a proof, it can be saved as either an editable proof or a demon-
stration proof. A demonstration proof has interaction disabled, providing a means
to follow through an already complete proof. This is essentially the step by step
deduction given above but in electronic form. Editable proofs behave similarly, but
allow a user to take over the proof at any point. No work further than completing
the deduction is required to generate these. Proofs can also be exported to unicode
format and as an image. Complete proofs can also easily be animated in .gif for-
mat, for use in slides or online. A primary feature of NDP is its ability to export
proofs to LATEX code. This interacts with a LATEX package (based on TikZ) which
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Figure 7: The settings dialog. The constants a and b have been used in the proof, as
has the unary function f . It is still possible to change the arities of c, S, s, d, t, e, u, g
and h. “Show numbers in Robinson Arithmetic” causes terms like SSS0 to be
displayed as 3.

generates nicely typeset deductions. The task of producing exercises and their so-
lutions involves little more than completing deductions on NDP - no fiddling about
with alignment or trying to recall commands required.

In order to increase flexibility in using NDP, a number of settings are available.
Two symbol sets (¬,∧,∨,→,↔ vs. ∼,&,∨,⊃,≡) can be chosen from. The line
numbering can be tweaked in two ways. Standard top-to-bottom numbering is
possible, and an offset can be applied, so that sub-proofs can be replaced without
repeating a proof in full. Figure 7 shows the settings dialog.

Though originally intended to cover only propositional and predicate logic and
Peano Arithmetic, we have begun extending NDP to cover other logics, and to
consider new features. We’ve implemented a system of modal logic and hybrid logic
using a labelled deduction method. These rules are available in the standard rule
palette but are not thoroughly tested. A very rudimentary second order logic is also
available, easily implemented due to Java seeing no distinction between predicate
and variable symbols when making substitutions. In an attempt to automate the
proof process, a Magic Mode is provided. This applies any rules which require no
extra input for up to 10 iterations. In exceptional circumstances Magic Mode can
complete proofs, but in general will only move forward one or two steps. Finally, a
method to include custom axioms has been implemented.
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3.5 Use in Teaching

We have used NDP as part of a course teaching natural deduction strategies. All the
deduction exercises for the course were generated by the software, and it was also
made available for students to download. Many students did so, and used NDP to
complete exercises and study for tests. We released exercise solutions both as text
documents and editable proof files. A novel use NDP was put to was in catching
up on missed lectures. Since NDP applies each rule correctly, by studying what
happens students could learn the rule themselves. While the motivation and strategy
discussed in lectures was absent here, the correct manipulation of the formula was
learned. NDP’s automated rule application had some downsides though. Some
students found overuse of NDP resulted in over reliance - you don’t have to remember
how to set out implication introduction if the software does it for you. Since tests
were by pen and paper, this proved problematic. The best combination seemed to
be use of pen and paper to practise rules, and NDP to practise strategy.

In the context of tutorials, NDP allowed for greater flexibility in presentation.
Again due to “undo” it was easier to recover from bad choices, encouraging student
participation. Also, a source of potentially confusing transcription errors - the tutor’s
handwriting - was removed. In one on one situations, NDP allowed for a greater flow
of conversation. Discussed strategies for stuck proofs could be implemented quickly
and results considered in much less time than would be required to write 10 lines of
formulas by hand.

3.6 Implementation

NDP was implemented in Java using the Swing and SwingX graphical user interface
libraries. The code was written to be extendable and with a goal of modularity, to
allow different interfaces to interact with the same backend.

Formulas are held as strings in a TEX macro format, using prefix notation for
easier argument parsing. This also simplifies the process of exporting proofs to
LATEX code. For example, the formula (Fa ∧ ∀x(Fx → Gx)) would be stored as
\con{Fa}{\qa{x}{\imp{Fx}{Gx}}}. Each line of a proof is an NDLine object, which
contains information such as the formula, the line number, the type of line and the
justification. The NDLine class also has methods returning each argument of a
formula.

The ProofMethods class forms the core of the program. This holds the current
proof state as an array of NDLines. The application of a rule results in a relevant
modification of the proof array and any lines within it. For example, suppose ∧E
is applied, as possible in Figure 2. Line 3 is the resource, and ProofMethods first
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obtains line 3’s arguments (p and q) from its NDLine. Neither p nor q matches the
current goal (line 8, ⊥), and so the user will be asked whether they wish to extract
both p and q, or just one. Suppose the user selects to only extract q (this seems a
good move, since we’ll be able to get a contradiction with ¬q). The current proof
state will be extended with a new NDLine containing q, justified with 3,∧E.

Rules themselves are methods within the ProofMethods class, and the system
can be extended by adding new methods to give new rules. In practice, this means
that additional rules (such as Disjunctive Syllogism) or extensions to the system can
be added fairly easily. ProofMethods is designed to be as self-contained as possible;
methods for printing the proof array to the command line mean it could be used
without a graphical interface. In fact, this is how early development proceeded. Un-
fortunately, ProofMethods is not entirely standalone. Specifically, when interaction
from the user is required (such as choosing a term for ∀E), ProofMethods must fall
back on Swing libraries for graphical input.

On top of ProofMethods sits the ProofPanel class, a modified JPanel which
provides user interaction with ProofMethods. ProofPanel interprets the proof array
and arranges the deduction onscreen. The function of the rule palette is implemented
entirely within the ProofPanel. If conjunction introduction (∧I) is turned off then
the option to apply that rule becomes unavailable on the ProofPanel. That is, even
with ∧I “disabled” ProofMethods is still able to apply that rule - there is just no
way for the command to do so to reach it. The rule palette makes extensive use of
the SwingX library.

A modified JFrame constitutes the main window of the Proof Assistant and
controls tasks such as New Proof, Save, Open and Export. Proofs are saved in plain
text files which contain complete undo histories and settings profiles. There is no
difference between .ndp (editable) and .ndu (demonstration) files — they are read
in differently but their contents are identical.

NDP is available on SourceForge at http://sourceforge.net/p/
proofassistant/.
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