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Abstract

The self organizing map (SOM) is one of the popular clustering and data

visualization algorithms and has evolved as a useful tool in pattern recogni-

tion, data mining since it was first introduced by Kohonen. However, it is

observed that the magnification factor for such mappings deviates from the

information-theoretically optimal value of 1 (for the SOM it is 2/3). This

can be attributed to the use of the mean square error to adapt the system,

which distorts the mapping by oversampling the low probability regions.

In this work, we first discuss the kernel SOM in terms of a similarity

measure called correntropy induced metric (CIM) and empirically show that

this can enhance the magnification of the mapping without much increase in

the computational complexity of the algorithm. We also show that adapting

the SOM in the CIM sense is equivalent to reducing the localized cross

information potential, an information-theoretic function that quantifies the

similarity between two probability distributions. Using this property we

propose a kernel bandwidth adaptation algorithm for Gaussian kernels, with

both homoscedastic and heteroscedastic components. We show that the

∗Corresponding author

Preprint submitted to Elsevier December 1, 2013



proposed model can achieve a mapping with optimal magnification and can

automatically adapt the parameters of the kernel function.
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1. Introduction

The topographic organization of the sensory cortex is one of the com-

plex phenomena in the brain and is widely studied. It is observed that

neighboring neurons in the cortex are stimulated from neighboring stimuli

in the input space and such organization of the neurons is called neigh-

borhood preservation or topology preservation map. In other words, the

cortical neural layer acts as a topographic feature map, where the locations

of the most excited neurons are correlated in a regular and continuous fash-

ion with a restricted number of signal features of interest. In such a case,

the neighboring excited locations in the cortex correspond to stimuli with

similar features [24].

Inspired by such a biological plausibility, but not intending to explain

it, Kohonen [14] proposed the Self Organizing Maps (SOM), where the con-

tinuous inputs are mapped into discrete vectors in the output space while

maintaining the neighborhood of the vector nodes in a regular lattice. Math-

ematically, Kohonen’s algorithm [15] is a neighborhood preserving vector

quantization tool working on the winner-take-all principle, where the win-

ner is determined as the most similar node to the input at an instant of

time, also called the best matching unit (BMU). The center piece of the

algorithm is to update the BMU and its neighborhood nodes concurrently.
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By performing such a mapping the input topology is preserved on the grid

of nodes in the output.

The neural mapping in the brain also performs selective magnification

of the regions of interest. Usually these regions of interest are the ones that

are often excited. Similar to the neural mapping in the brain, the SOM

also magnifies the regions that are often excited [24]. This magnification

can be explicitly expressed as a power law between the input data density

P (v) and the weight vector density P (w) at the time of convergence. The

exponent is called as themagnification factor or magnification exponent [33].

A faithful representation of the data by the weights can happen only when

this magnification factor is 1. However, it is shown that if mean square error

(MSE) is used as the similarity measure to find the BMU and also to adapt

a 1D-1D SOM, or in case of separable input, then the magnification factor

is 2/3 [24]. So, such a mapping is not able to transfer optimal information

from the input data to the weight vectors.

The reason for the sub-optimal mapping of the traditional SOM algo-

rithm can be attributed to the use of the Euclidean distance as the similarity

measure. Because of the global nature of the MSE cost function, the up-

dating of the weight vectors is greatly influenced by the outliers, which are

the data in the low probability regions. This leads to oversampling of the

low probability regions and undersampling the high probability regions by

the weight vectors. On the other hand, kernel SOM [2] is shown to im-

prove the performance in tasks like classification; however the reason for

this improvement is not discussed.

Here, we first discuss the relationship between using the kernel “trick”

and using a localized similarity measure called correntropy induced metric

(CIM) to train the SOM. The goal of this work is to show that the proper-
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ties of the CIM can help enhance the magnification of the SOM. Also, we

show that the relation between KSOM and the other information-theoretic

learning (ITL) [22] based measures can help to understand the use of the

CIM in this context. Such insight can also help to adapt the free parameter

in correntropy, the kernel bandwidth, leading to an optimal solution.

2. Back ground and previous work

2.1. Self organizing maps

Kohonen’s original algorithm [14] of self organizing maps (SOM) is in-

spired by vector quantization, in which a group of inputs are quantized by

a few weight vectors called nodes. However, in addition to the quantization

of the inputs, here the nodes are arranged in a regular, low dimensional grid

and the order of the grid is maintained throughout learning. Hence, the dis-

tribution of the input data in the high dimensional space can be preserved

on the low-dimensional grid [15].

However, Erwin et al. [9] have shown that in the case of a finite set of

training patterns the energy function of the SOM is highly discontinuous

and in the case of continuous inputs the energy function does not exist.

It is clear that things go wrong at the edges of the Voronoi regions where

the input is equally close to two nodes. To overcome this, Heskes [13] has

proposed that with a slight variation in the selection of the BMU, there can

be a well defined energy function for the SOM. We briefly describe this here.

Before going further into the details of the algorithm, please note that

the following notation is used throughout this work: The input distribution

V ⊂ Rd is mapped by the function Φ: V → A, where A is in a lattice of

M neurons, with each neuron having a weight vector wi ∈ Rd, where i are
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lattice indices.

Now, the learning algorithm for the SOM can be described as follows:

• At each instant a random sample, v, from the input distribution V

is selected, and the best matching unit (BMU) corresponding to it is

obtained using

r = argmin
s

∑
t

htsD(v(n)−wt) (1)

where node r is the index of “winning” node. Here ‘D’ is any similarity

measure that is used to compare the closeness between the two vectors.

Here, hts is the neighborhood function; a non-increasing function of

the distance between the ’s’ node and all the other nodes in the lattice.

• Once the winner is obtained the weights of all the nodes should be

updated in such a way that the local error given by (2) is minimized.

e(v,wr) =
∑
s

hrsD(v −ws) (2)

To avoid local minima, hrs is selected as a convex function, like the

middle region of Gaussian function, with a large range at the start and

is gradually reduced to a delta function (δ) [9].

• If the similarity measure considered is the Euclidean distance, D(v −

ws) = ∥v − ws∥2, then the on-line updating rule for the weights is

obtained by taking the derivative and minimizing (2). The update is

ws(n+ 1) = ws(n) + ϵhrs(v(n)−ws(n)) (3)

As discussed before, one of the important properties of the SOM is topo-

logical preservation and it is the neighborhood function that is responsible
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for this. The role played by the neighborhood function is best summarized

as described in [11]: the reason for a large neighborhood is to correlate the

direction of weight updates of a large number of weights around the BMU,

r. As the range decreases, so does the number of neurons correlated in the

same direction. This correlation ensures that similar inputs are mapped

together and hence, the topology is preserved.

2.2. Energy Function and Batch Mode

Heskes [13] has shown the above algorithm for learning SOM minimizes

a well defined energy function. With finite number fo samples, the energy

function is given by (in the discrete case)

E(W ) =

N∑
n

M∑
s

hrsD(v(n)−ws) (4)

To find the batch mode update rule, we can take the derivative of E(W )

w.r.t ws and find the value of the weight vectors at the stationary point of

the gradient. If the Euclidean distance is used, then the batch mode update

rule is

ws(n+ 1) =

∑N
n hrsv(n)∑N

n hrs

2.3. Other variants

Contrary to what is assumed in the SOM-MSE case, the weight density

at convergence, also defined as the inverse of the magnification factor, is not

proportional to the input density. It is shown by Ritter et al. [24] that in

a continuum mapping, i.e., having infinite neighborhood node density, and

a 1D map developed in a one dimensional input space (or multidimensional

space which are separable) the weight density P (w) ∝ P (v)2/3. When a

6



discrete lattice is used there is a correction in the relation given by

p(w) = p(v)α (5)

with α =
2

3
− 1

3σ2
h + 3(σh + 1)2

where σh is the neighborhood range in case of a rectangular function. There

are several other methods [31] proposed with different definitions of neigh-

borhood function, but the mapping is unable to produce an optimal map-

ping, i.e, with a magnification of 1. We observed that is all these cases, the

weights are always oversampling the low probability regions and undersam-

pling the high probability regions.

The reason for such a mapping can be attributed to the global nature of

the MSE cost function. When the Euclidean distance is used, the points at

the tail end of the input distribution have a greater influence on the overall

distortion. This is the reason why the use of the MSE as a cost function is

suitable only for thin tail distributions like the Gaussian distribution. This

property of the Euclidean distance pushes the weights into regions of low

probability and hence, oversampling that region.

By slightly modifying the updating rule, Bauer and Der [5] and Claussen

[7] have proposed different methods to obtain a mapping with magnification

factor of 1. Bauer and Der [5] have used the local input density at the

weights to adaptively control the step size of the weight update. Such a

mapping is able to produce the optimal mapping in the same continuum

conditions as mentioned earlier, but needs to estimate the unknown weight

density at a particular point, making it unstable in higher dimensions [31].

Likewise, the method proposed by Claussen [7] is not able to produce a

stable result in case of high dimensional data.

A completely different approach is taken by Linsker [18], where mu-
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tual information between the input density and the weight density is max-

imized. It is shown that such learning based on the information-theoretic

cost function leads to an optimal solution. But the complexity of the al-

gorithm makes it impractical and, strictly speaking, it is applicable only

for Gaussian distributions. Furthermore, Van Hulle [31] has proposed an-

other information-theoretic algorithm based algorithm based on Bell and

Sejnowski [6]’s Infomax principle, where the differential entropy of the out-

put nodes is maximized.

In the recent past, inspired by the use of kernel Hilbert spaces by Vapnik

[32], several kernel based topographic mapping algorithms are proposed [2,

10, 20]. Graepel [10] has used the theory of deterministic annealing [25]

to develop a new self organizing network called the soft topographic vector

quantization (STVQ). A kernel based STVQ (STMK) has also been pro-

posed where the weights are considered in the feature space rather than

the input space. To overcome this difficulty, Andras [2] proposed a kernel-

Kohonen network in which the input space is transformed, both the inputs

and the weights, into a high-dimensional reproducing kernel Hilbert space

(RKHS) and the Euclidian distance in the high-dimensional space is the cost

function to update the weights. Analyzed in the context of classification,

the idea comes from the theory of non-linear support vector machines [11]

which states:

If the boundary separating the two classes is not linear, then

there exist a transformation of the data in another space in which

the two classes are linearly separable.

Lau et al. [16] showed that the type of the kernel strongly influences the

classification accuracy and it is also shown that kernel-Kohonen network
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does not always outperform the original Kohonen network. Moreover, Yin

[36] has compared KSOM with the self organizing mixture networks (SOMN)

[35] and showed that KSOM is equivalent to SOMN, and in turn to the SOM

itself. However, they conclude that the choice of the kernel function and their

parameters does significantly effect the performance of the model.

In this work, we study the KSOM from the perspective of information

theoretic learning [22, 23] and give further insight into performance and

nature of the KSOM. We first analyze KSOM using the properties of the

Correntropy Induced Metrix (CIM) [19, 26, 34] and then show how the shape

of the kernel function influences the mapping. More precisely, we show that

using kernel functions that have strong outlier rejection properties, leads to

a mapping with better magnification factor and hence, captures the input

probability distribution more accurately. Also, this further gives insight into

the relationship between the KSOM and Parzen density estimation. We

leverage this property to find the relationship between the energy function

of KSOM and information theoretic learning [22, 23] quantities, like KL-

divergence or cross entropy, to learn the parameters of the kernel function,

particularly the kernel bandwidth of the radial basis function.

2.4. Correntropy and its properties

Correntropy is a generalized similarity measure between two random

variables X and Y defined in [19] as:

Vσ(X,Y ) = E[κσ(X − Y )] (6)

Here we use the Gaussian kernel

Gσ(x,y) =
1

(
√
2πσ)d

exp

(
− ∥x− y∥2

2σ2

)
(7)
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where d is the input dimensions and σ is the kernel bandwidth, since it is

most popularly used in the information theoretic learning (ITL) literature.

Another popular kernel is the Cauchy kernel which is given by

Cσ(x,y) =
σ

σ2 + ∥x− y∥2
(8)

In practice, only a finite number of samples of the data are available and

hence, correntropy can be estimated as

V̂N,σ =
1

N

N∑
i=1

κσ(xi − yi)

One of the important properties of correntropy is that it induces a metric

called the correntropy induced metric (CIM) in the sample space [19, 26].

Given two sample vectors {x1, x2, ..., xN} and {y1, y2, ..., yN}, CIM is defined

as

CIM(X,Y ) = (κσ(0)− V̂σ(X,Y ))1/2

=

(
1

N

N∑
n

κσ(0)− κσ(xn − yn)

)1/2

(9)

It has been observed that the CIM induces a non-linear metric, whose

shape is dependent on the kernel function. In case of Gaussian and Cauchy

kernel, the metric behaves like an L2 norm when the two vectors are close.

The CIM behaves like the L1 norm for more distant vectors, and eventually

becomes insensitive to the distance between the two vectors, as the L0 norm

does. The extent of the space over which the CIM acts as the L2 or L0

norm is directly related to the kernel bandwidth, σ. This unique property

of CIM localizes the similarity measure and is very helpful in rejecting the

outliers. In this regard it is very different from the MSE which provides a

global metric.
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Figure 1: Surface plot CIM(X,0) in 2D sample space. (kernel width is 1)

Figure 1 demonstrates the non-linear nature of the surface of the CIM,

with N=2. Note that the shape of the L2 norm depends on the kernel

function and the kernel bandwidth in turn determines the extent of the L2

regions. As we will discuss later, these parameters play an important role

in determining the quality of the final output.

3. SOM with correntropy induced metric

As discussed above, correntropy induces a non-linear metric in the input

space called the Correntropy Induced Metric (CIM). Here we show that

the CIM can be used as a similarity measure in the SOM to determine the

winner and also to update the weight vectors.

If v(n) is considered to be the input vector at a time instant n, then the

best matching unit (BMU) can be obtained using the CIM as

r = argmin
s

∑
t

htsCIM(v(n)−wt)N=1

= argmin
s

∑
t

hts(κσ(0)− κσ(∥v(n)−wt∥))
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where r is the BMU at instant n. This stochastic approximation of CIM

can be seen as being similar to kernel trick used to train the KSOM in [2].

Henceforth, we call this model SOM-CIM instead of KSOM.

Following the same procedure as described in section 2.1, the update

rule can be written as:

ws(n+ 1) = ws(n)− η△ws (10)

If the Gaussian function is used, then the gradient is

△ws = −hrsGσ(∥v(n)−ws∥)(v(n)−ws) (11)

In Cauchy kernel case, it is

△ws = −hrs
1

(σ2 + ∥v(n)−ws∥2)
(v(n)−ws) (12)

The σ terms in (11) and (12), which are left implicit, are combined with the

learning rate η, which is a free parameter.

In the batch mode, when a finite number of input samples are present

the overall cost function becomes

ECIM (W ) =

N∑
n

M∑
s

hrsCIM(v(n)−ws) (13)

Similar to the batch mode update rule obtained while using the MSE, we

find the weight vectors at the stationary point of the gradient of the above

energy function, ECIM (W ). In case of the Gaussian kernel

∂ECIM (W )

∂ws
= −

N∑
n

hrsGσ(v(n)−ws)(v(n)−ws) = 0

⇒ ws =

∑N
n hrsGσ(v(n)−ws)v(n)∑N

n hrsGσ(v(n)−ws)
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This update is the iterative fixed point update rule, indicating that the

weights are updated iteratively and can not reach minima in one iteration,

as it does with the MSE.

In the Cauchy kernel case, the update rule is

ws =

∑N
n hrsCσ(v(n)−ws)v(n)∑N

n hrsCσ(v(n)−ws)

3.1. Magnification Factor and Relationship with Density Estimation

We observe that in case of both Gaussian and Cauchy kernels, com-

pared to the update rule while using the MSE (3), the gradient to update

the weights of SOM-CIM has an additional scaling factor. This additional

scaling factor, whose value is small when ∥v(n) − ws∥ is large, in the up-

dating rule points out the strong outlier rejection (or less influenced by the

low probability samples) capability of the CIM. So, with the appropriate

choice of the kernel bandwidth σ, this property of the CIM is able to over-

come one of the key problems associated with using MSE, i.e., oversampling

the low probability regions of the input distribution. Since the weights are

less influenced by the inputs in the low probability regions, the SOM with

the CIM (SOM-CIM) emphasis more on the higher probability regions and

hence, can give a better magnification. It should be noted that since the

influence of the outliers depends on the shape and extent of the L2-norm and

L0-norm regions of the CIM, the magnification factor in turn is dependent

on the type of the kernel and its bandwidth, σ. On the other hand, when

the kernel functions that does not have this property, like the polynomial

kernel, the KSOM might not produce a better solution. This explain how

the choice of the kernel function influences the performance of KSOM.

Another property of the CIM (with a Gaussian kernel) that influences

the magnification factor is the presence of higher order moments. According
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to Zador [37], the order of the error directly influences the magnification

factor of the mapping. Again, since the kernel bandwidth, σ, determines

the influence of the higher order moments (refer to section 2.4 ) the choice

of σ plays an important role in the formation of the final mapping.

Also, it is interesting if we look back at the cost function:

ECIM (W ) =

N∑
n

M∑
s

hrs(1− κσ(ws,v(n)))

=
N∑
n

M∑
s

hrs −
M∑
s

hrsκσ(ws,v(n)) (14)

where the second term in (14) can be considered to be the estimate of the

probability of the inputs when the kernel function is of density type. In

case of a radial basis function, this is equivalent to using the sum of the

Gaussian mixtures centered at the weights, with the neighborhood function

considered equivalent to the posterior probability [36]. More formally, this

mixture model can be written as:

p(v(n)|W) ≈
∑
i

p(v(n)|wi)P (wi)

Hence, it can be said that this way of formulating the SOM is equivalent to

estimating the input probability distribution.

However, it can also be considered to be the weighted Parzen density esti-

mation [4] technique, with the neighborhood function acting as the strength

associated with each weight vector. In fact, energy function in (14) is equiv-

alent to the cross information potential (CIP) (derived from the Renyi’s

definition of cross-entropy [22]) and quantifies the similarity between two

probability distribution. Hence, by minimizing the energy function in (14),

we can expect an information-theoretically optimal mapping. This reasserts
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the argument that the SOM-CIM can increase the magnification factor of

the mapping to 1 and also gives insight into the choice of the kernel function.

Another important point regarding the kernel bandwidth should also be

considered here. If the value of σ is small, then during the ‘ordering phase’

[11] of the map, the moment of the nodes is restricted because of the small

L2 region. So, a slow annealing of the neighborhood function is required.

To overcome this in our simulations, a large σ is considered initially, which

ensures that the moment of the nodes is not restricted. It is gradually

annealed during the ordering phase and kept constant at the desired value

during the convergence phase.

3.2. Results

3.2.1. Magnification factor of the SOM-CIM

As pointed out earlier, the use of the CIM does not allow the nodes to

oversample the low probability regions of the input distribution as they do

with the MSE. Also, the presence of the higher order moments affect the

final mapping. So, it can be expected that the magnification of the SOM

can be improved using CIM. To verify this experimentally, we use a setup

similar to that used by Ritter et al. [24], to demonstrate the magnification

of the SOM using the MSE.

Here, a one-dimensional input space is mapped onto a one dimensional

map. Specifically, 100, 000 input instances drawn from the distribution

f(x) = 2x are mapped onto a 50 node one dimensional chain. A Gaus-

sian neighborhood function is considered and its range is decreased with the
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Figure 2: The figure shows the plot between ln(r) and ln(w) for different values of σ. ‘- -’

indicates the ideal plot representing the relation between w and r when the magnification

is 1 and ‘...’ indicates the ideal plot representing the magnification of 2/3. ‘-+-’ indicates

the relation obtained with SOM-CIM when σ = 0.03 and ‘-x-’ indicates when σ = 0.5.

number of epochs as follows:

hrs(n) = exp

(
− (r − s)2

2σh(n)

)
(15)

where σh(n) = σi
hexp

(
− θ ∗ σi

h

n

N

)
where r and s are node indices, σh is the range of the neighborhood function,

σi
h = initial value of σh, θ = 0.3 and N = number of iterations/epochs.

If the magnification factor is ‘1’, indicating an optimal mapping, the

relation between the weights and the nodes is ln(w) = 1
2 ln(r). In the case of

the SOM with the MSE (SOM-MSE) as the cost function, the magnification

is proved to be 2/3 and the relation comes out to be ln(w) = 3
5 ln(r). Fig 2

shows that when a smaller σ is considered for the SOM-CIM, then a better
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magnification can be achieved. As the value of the σ increases the mapping

resembles the one with the MSE as the cost function. This establishes

the nature of the surface of CIM, as discussed in Section 2.4, that with

the increase in the value of σ the surface tends to behave more like MSE.

Actually, it can be said that by varying the value of σ the magnification

factor of the SOM can vary between 2/3 and 1!

3.2.2. Maximum Entropy Mapping

Optimal information transfer from the input distribution to the weights

happens when the magnification factor is 1. Such a mapping should ensure

that every node is active with equal probability, also called the equiproba-

bilistic mapping [31]. Since the entropy is a measure that determines the

amount of information content, we use Shannon’s entropy (16) of the weights

to quantify this property.

I = −
M∑
r=1

p(r)ln(p(r)) (16)

where p(r) is the probability of the node r to be the winner.

Table 1 shows the change in I with the change in the value of the kernel

bandwidth and the performance between the SOM-MSE and the SOM-CIM

is compared. The mapping here is generated in the batch mode with the

input having 5000 2-dimensional random samples generated from a linear

distribution P (x) ∝ 5x and mapped on to a 5x5 rectangular grid. We choose

the number of epochs to be 50 and with neighborhood function parameter

going from σh = 10 → 0.0045.

From table 1, we observe that the value of the σ influences the quality

of the mapping. Figure 3 shows the weight distribution at the convergence

after 50 epoches. We also observe, for large σ, because of the wider L2
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(a) Input scatter plot (b) SOM - MSE (c) SOM - CIM

Figure 3: The figures show the input scatter plot and the mapping of the weights at the

final convergence. In case of SOM-CIM, the Gaussian kernel with σ = 0.1 is used. The

‘dots’ indicate the weight vectors and the lines indicate the connection between the nodes

in the lattice space.

region, the mapping of the SOM-CIM behaves similarly to that of the SOM-

MSE. But as σ is decreased, the nodes try to be equiprobabilistic indicating

that they are not oversampling the low probability regions. Setting the

value of σ too small distorts the mapping. This is due to the restricted

movement of the nodes, which leads to oversampling the high probability

region. This underlines the importance of the value of σ to obtain a good

quality mapping. It can also be observed how the type of the kernel also

influences the mapping. The Gaussian and the Cauchy kernels give the best

mapping at different values of σ, indicating that the shapes of the L2 norm

region for these two kernels are different.

Moreover, since it is shown that the SOM-CIM is equivalent to density

estimation, the negative log likelihood of the input given the weights is also

observed when the Gaussian kernel is used. The negative log likelihood is
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Figure 4: Negative log likelihood of the input versus the kernel bandwidth. The figure

shows how the negative log likelihood of the inputs given the weights change with the

change in the kernel bandwidth. Note that for negative value of the negative log-likelihood

in the plot indicates that the corresponding values of the model, the weights and the kernel

bandwidth, are not appropriate to estimate the input distribution.

given by

LL = − 1

N

N∑
n

log(p(v(n)/W, σ))

where p(v(n)/W, σ) =
1

M

M∑
i

Gσ(v(n),wi)

The change in its value with the change in the kernel bandwidth is plotted in

the figure 4. For an appropriate value of the kernel bandwidth, the likelihood

of estimating the input is high; whereas for large values of σ it decreases

considerably.

4. SOM-CIM with Adaptive Kernels

Now that the influence of the kernel bandwidth on the mapping is stud-

ied, one should understand the difficulty involved in setting the value of σ.
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Though it is understood from the theory of Correntropy [19] that the value

of σ should be usually less than the variance of the input data, it is not

clear how to set this value. Since the SOM-CIM can be considered as a

density estimation procedure, certain rules of thumb, like the Silverman’s

rule [27] can be used. But it is observed that these results are suboptimal

in many cases because of the Gaussian distribution assumptions put on the

underlying data. It should also be noted that for equiprobable modeling,

each node should adapt to the density of the inputs in it own vicinity and

hence, should have its own unique bandwidth. In the following section we

try to address this using an information-theoretic divergence measure.

4.1. The Algorithm

Clustering of the data is closely related to density estimation. An opti-

mal clustering should ensure that the input density can be estimated using

the weight vectors. Several density estimation based clustering algorithms

are proposed using information-theoretic quantities like divergence, entropy,

etc. There are also several clustering algorithms in the ITL literature, like

the Information Theoretic Vector Quantization [17], Vector Quantization

using KL- Divergence [12] and Principle of Relevant Information [22], where

quantities like KL-Divergence, Cauchy-Schwartz Divergence and Entropy

are estimated non-parametrically. As we have shown earlier, the SOM-CIM

with the Gaussian kernel can also be considered as a density estimation

procedure and hence, a density estimation based clustering algorithm.

In each of these cases, the value of the kernel bandwidth plays an impor-

tant role in the density estimation and should be set such that the divergence

between the true and the estimated pdf is as small as possible. Here we use

the idea proposed by Erdogmus et al. [8] of using the Kullback-Leibler diver-
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gence (DKL) to estimate the kernel bandwidth for density estimation and

extend it to the clustering algorithms.

The DKL(f∥g) can be estimated non-parametrically from the data using

Parzen window estimation. Here, if f is the estimated pdf using the data

points vi, i ∈ {1, 2, ..., N} and g is the estimated pdf using the weight vectors

wj , j ∈ {1, 2, ...,M}, then the DKL can be written as

DKL(f, g) = Ef

[
log(

N∑
i

Gσv(v − vi))

]
− Ef

[
log(

M∑
j

Gσw(v −wj))

]
(17)

where σv is the kernel bandwidth for estimating the pdf using the input data

and σw is the kernel bandwidth while using the weight vectors to estimate

the pdf. Since we want to adapt the kernel bandwidth of the weight vector,

minimizing DKL is equivalent to minimizing the second term in (17). Hence,

the cost function for adapting the kernel bandwidth is

J(σ) = −
N∑
n

[
log(

M∑
j

Gσw(v(n)−w(j)))

]
(18)

where expectation of f is replaced by summation. This is also called Shan-

non’s cross entropy.

Now, the estimation of the pdf using the weight vector can be done using

a single kernel bandwidth for all the weight vectors, called the homoscedastic

case, or using different kernel bandwidths for each weight vector, called the

heteroscedastic case. In each of these cases, the kernel bandwidth(s) are

obtained using gradient descent over J(σ).

The adaptive kernel SOM-CIM in the case of homoscedastic components

can be summarized as:

• The winner is selected using the local error as

r = argmin
s

M∑
t

hst(Gσ(n)(0)−Gσ(n)(∥v(n)−wt∥))
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• The weights and then the kernel bandwidth are updated as

△ws = −hrsGσ(n)(∥v(n)−ws∥)
(v(n)−ws)

σ(n)3

ws(n+ 1) = ws(n)− η△ws

△σ(n) = −
{∑M

j Gσ(n)(v(n)−wj(n+ 1)
[∥v(n)−wj(n+1)∥2

σ(n)
3 − d

σ(n)

]
∑M

j Gσ(n)(v(n)−wj(n+ 1)

}
σ(n+ 1) = σ(n)− ησ△σ(n)

• In batch mode, the weights and the kernel bandwidth are updated as

ws
+ =

∑N
n hrsGσ(v(n)−ws)v(n)∑N

n hrsGσ(v(n)−ws)

σ+ =
1

Nd

N∑
n

∑M
j Gσ(v(n)−wj)

[
∥v(n)−wj∥2

]∑M
j Gσ(v(n)−wj)

In case of heteroscedastic kernels, the same update rules apply for the

weights but with σ specified for each node. In this case, the kernel band-

widths are updated as

On-line mode:

△σi(n) = −
{Gσi(n)(v(n)−wi(n+ 1))

[∥v(n)−wi(n+1)∥2
σi(n)3

− d
σi(n)

]∑M
j Gσj(n)(v(n)−wj(n+ 1)

}
σi(n+ 1) = σi(n)− ησ△σi(n)

Batch mode:

σ+
i =

1

d

∑N
n

Gσi(v(n)−wi)
[
∥v(n)−wi∥2

]
∑M

j Gσ(v(n)−wj)∑N
n

Gσw(i)(v(n)−w(i))∑M
j Gσw(j)(v(n)−w(j))

However, as observed in [29] that when the input has high density parts,

the kernel bandwidth of the weights representing these shrinks too small
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to give any sensible similarity measure and makes the system unstable. To

counter this, a scaling factor ρ can be introduced as

△σi(n) = −
{Gσi(n)(v(n)−wi(n+ 1))

[∥v(n)−wi(n+1)∥2
σi(n)3

− ρd
σi(n)

]∑M
j Gσj(n)(v(n)−wj(n+ 1)

}
This ensures that the value of σ does not become too low, but at the same

time it inadvertently increases the kernel bandwidth of the rest of the nodes

and might result in a suboptimal solution.

4.2. Relationship with Other Methods

Yin and Allinson [35] and Van Hulle [28] also proposed topographic map-

ping methods with kernel bandwidth estimation based on KL-divergence,

called as self-organizing mixture network (SOMN) and local density model-

ing (LDE), respectively. However, both these methods do so using a Gaus-

sian mixture model and approximate the cost function using Bayesian statis-

tics; heuristically assuming that the neighborhood function acts as mixing

parameters of the Gaussian mixture model [29]. By using this single cost

function for updating both the centers and the kernel bandwidth, we observe

that, as the neighborhood function shrinks at convergence, the kernel band-

width become too small and does not lead to a good solution. In order to

avoid this, the neighborhood functions needs to be slowly annealed leading

to slower convergence rate overall. In addition, Yin and Allinson’s Gaussian

mixture model (SOMN) has limited lattice unfolding capability and does not

lead to a good topographic mapping [30]. Hence, is not discussed further.

On the other hand, we adopt a different approach here, where we con-

sider two different cost functions: one for updating the centers w, which

is influenced by the neighborhood function, and another for updating the

kernel bandwidth, which is independent of the neighborhood function. As
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we will show, this allows the proposed approach to model the underlying

distribution more accurately, as the kernel bandwidth does not shrink to

smaller values and model the local distribution more accurately.

4.3. Results

We first show the performance on an experiment similar to that in section

3.2.1, where 100, 000 samples from the distribution f(x) = 2x are mapped

onto a 1D chain of 50 nodes in on-line mode and the relation between the

weights and the node indices is observed. Figure 5 shows the results ob-

tained. We observe that in the homoscedastic case the mapping converges

to the ideal mapping. On the other hand, in case of the heteroscedastic

kernels, the system becomes unstable for ρ = 1. To obtain a stable solu-

tion, ρ is set to 0.7. This stabilizes the mapping by not allowing the kernel

bandwidth to shrink too small. However, it increases the kernel bandwidth

of the nodes in low probability region, and hence, distorting the mapping as

shown in 5(d).

It is also interesting to see the changes in the kernel bandwidth during

learning as shown in the figure 5(a) and figure 5(b). Initially, all the ker-

nels converge to the same bandwidth as the nodes are concentrated at the

center. As the map changes from the ordering phase to the convergence,

the kernel bandwidths adapt to the local variance of each node. This kind

of adaptation ensures that the problem of slow annealing of the neighbor-

hood function, discussed in section 3, can be resolved by having relatively

larger bandwidths at the beginning, allowing the free movement of the nodes

during the ordering phase.

1The best result from Table 1 is reproduced for comparison.
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As the adaptive kernel algorithm is able to map the nodes near to the

optimal mapping, it is expected to transfer more information about the

input density to the weights. Results obtained for the experiment similar

to the one in section 3.2.2, where the inputs are 5000 samples from the 2-

dimensional distribution with pdf f(x) = 5xmapped on to a 5x5 rectangular

grid, are shown in Table 2. With the homoscedastic kernels, the kernel

bandwidth converged to 0.0924, which is close to the value that is obtained

as the best result in Table 1 (σ = 0.1) and at the same time is able to

transfer more information to the weights. In the heteroscedastic case the

system is unstable with ρ = 1 and fails to unfold, concentrating more on

the high probability regions. On the other hand, when ρ is set to 0.5, the

resulting map does not provide a good output because of the large σ values.

Figure 6 clearly demonstrates this. When ρ = 0.5, it clearly oversample’s

the low probability regions because of the large kernel bandwidths of the

nodes representing them.

For comparison, we also show the performance of LDE [28] on the same

task. We note that, in our simulations LDE is slow to converge and requires

200 epochs with slow annealing of the neighborhood function to obtain a

stable solution. Moreover, LDE also contains a parameter ρ to find a stable

kernel width. However, the recommended value ρ = 0.4 [28] led to instability

during convergence and we set the value of ρ = 0.02 after performing a

parameter sweep to obtain the best performance. As shown in Table 2, the

proposed model performance better than LDE, in terms of both MSE and

information content (or entropy).
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5. Experiments

Now that is has been shown how to adapt the SOM using the CIM, we

apply the SOM-CIM in a few common applications of the SOM, like density

estimation, clustering and principal curves, and show how it can improve

the performance.

5.1. Density Estimation

Clustering and density estimation are closely related and one is often

used to find the other, i.e. density estimation is used to find the clusters

[3] and clustering is used to find the density estimation [31]. As we have

shown earlier, SOM-CIM is equivalent to a density estimation procedure and

with the adaptive kernels it should be able to effectively reproduce the input

density using Parzen non-parametric density estimation procedure [21].

In this experiment, we try to estimate a 2-dimensional Laplacian density

function shown in Figure 7(a). The choice of the Laplacian distribution is

appropriate to compare these methods because it is a heavy tail distribution

and hence, is difficult to estimate without the proper choice of the kernel

bandwidth.

Figure 7 and Table 3 shows the results obtained when different methods

are used to estimate the input density from the learned weights. When the

SOM-MSE is used, the kernel bandwidth is estimated using Silverman’s rule

[27]:

σ = 1.06σfN
−5

where σf is the variance of the input and N is the number of input samples.

We observe, as demonstrated in Figure 7(b), that this procedure is not able

to produce a good result because of the large number of bumps in the low
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probability regions. This is due to the oversampling of the low probability

regions when MSE is used.

On the other hand, the use of the SOM-CIM, with both homoscedastic

and heteroscedastic kernels, is able to reduce the oversampling of the low

probability regions. But in case of homoscedastic kernels, because of the

constant bandwidth of the kernels for all the nodes, the estimation of the

tail of the density is still noisy and is unable to clearly demonstrate the char-

acteristics of the main lobe of the density properly. This is resolved when

the heteroscedastic kernels are used. Because of the varying kernel band-

width, it is able to smooth out the tail of the density while still retaining the

characteristics of the main lobe and hence, is able to reduce the divergence

between the true and estimated densities.

5.2. Principal Surfaces and Clustering

5.2.1. Principal Surfaces

Topology preservation maps can be interpreted as an approximation pro-

cedure for the computation of principal curves, surfaces or higher-dimensional

principal manifolds [24]. The approximation consists in the discretization

of the function f defining the manifold. The discretization is implemented

by means of a lattice A, of corresponding dimension, where each weight

vector indicates the position of a surface point in the embedding space V .

Intuitively, these surface points, and hence the principal curve, are expected

to pass right through the middle of their defining density distribution. This

is the definition of principal surfaces in the 1-dimensional case, and can be

generalized to high dimensional principal manifolds as [24]:

Let f(s) be a surface in the vector space V , i.e, dim(f)−dim(V )−

1, and let df (v) be the shortest distance of a point v ∈ V to the
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surface f . f is a principal surface corresponding to the density

distribution P (v) in V , if the “mean squared distance”

Df =

∫
d2f (v)P (v)dLv

is extremal with respect to local variation of the surface.

But the use of the MSE as the criteria for the goodness of the princi-

pal surfaces, makes it weakly defined since only the second order moments

are used and also because of the distortion in the mapping when outliers

are present. Figure 8(a) shows this when the two crescent data is slightly

distorted by introducing some outliers. On the other hand, if the principal

surface is adapted in the correntropy induced metric sense, then the effect

of the outliers is mitigated and gives a better approximation of the principal

surfaces. Figure 8 illustrates this in case of the SOM-CIM with homoscedas-

tic kernels, where the kernel bandwidth adapts such that the outliers do not

have significant effect on the final mapping throughout learning.

5.2.2. Avoiding Dead Units

Another problem with the SOM is that it can yield nodes that are never

active, called dead units. These units will not sufficiently contribute to the

minimization of the overall distortion of the map and, hence, this will result

in a less optimal usage of the map’s resources [31]. This is acute when there

are clusters of data that are far apart in the input space.

The presence of the dead units can also be attributed to the MSE based

cost function, which pushes the nodes into these regions. Figure 9(a) in-

dicates this, where the input contains three nodes, each is skewed by 500

samples of a 2 dimensional Gaussian noise with variance equal to 0.25. On
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the other hand, when CIM is used, as indicated in section 3.2.2, the mapping

tries to be equiprobabilistic and hence, avoids dead units (Figure 9(b)).

Table 4 show the results obtained over three different datasets mapped

onto a 10 × 5 hexagonal grid. The artificial dataset is the same as the one

described above. The Iris and Blood transfusion datasets are obtained from

the UC Irvine repository [1].

The Iris dataset contains 3 classes of 50 instances each, where each class

refers to a type of iris plant. One class is linearly separable from the other

2; the latter are not linearly separable from each other, and each instance

has 4 features. It is observed that the dead units appear in between the two

linearly separable cases. The blood transfusion dataset (normalized to be

between [0,1] before mapping) contains 2 classes with 24% positive and 76%

negative instances. Though there are no dead units in this case, as we will

show later, this kind of mapping neglects the outliers and is therefore able

to give a better visualization of the data.

Another important observation is that the adaptive kernel algorithms are

unable to give a good result for both Iris and Blood Transfusion datasets.

The reason for this might be the nature of Parzen density estimation, which

is the center piece for this algorithm. As the number of dimensions in-

creases, the number of input samples required by Parzen density estimation

for proper density estimation increases exponentially. Because of the limited

amount of data in these datasets the algorithm failed to adapt the kernel

bandwidth. Also, allowing multivariate kernels Erdogmus et al. [8] (instead

of univariate kernels as in the proposed model) might provide greater flexi-

bility to model complex distributions like in this case.
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6. Conclusion

The use of the kernel Hilbert spaces by Vapnik [32] has spurred the use

of the kernel methods in several fields. This idea is also used in the self

organizing maps previously by Lau et al. [16], Andras [2], MacDonald [20],

etc. In all these cases, the use of the kernel trick is viewed in context of

pattern classification and the increase in the performance is attributed to

the assumption that the classes tend to be linearly separable when mapped

into higher dimensions.

On the other hand, the use of the correntropy induced metric gives an

idea about how the final output of the mapping is affected by the choice

of the kernel and kernel bandwidth in the cost function. As indicated, the

choice of the kernel bandwidth dictates the magnification of the mapping.

For example, larger bandwidths cause the SOM-CIM to minimize the quan-

tization error because of the large L2-norm induced, where as a smaller

bandwidth might produce a map that concentrates more on the high prob-

ability parts, and thus, distorting the mapping. As previously discussed,

the advantage of using the CIM lies in its strong outlier rejection capability

and the presence of higher order moments. Both these properties are useful

when the input distribution is non-uniform and the SOM-CIM can outper-

form the SOM only when the data is non-uniformly distributed (true for

many practical cases).

The proposed adaptive kernel algorithm based on the KL-divergence is

able to adapt the bandwidth nearly to the optimal solution. It is observed

that the algorithm is unstable in the heteroscedastic case and an additional

free parameter ρ needs to be specified. In spite of that, the final mapping

is still less sensitive to the value of ρ than the value of σ and is also able to
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give a heteroscedastic alternative.

Another point that needs to be discussed is the extension of the use

of the CIM in other clustering algorithms like neural-gas, elastic nets, soft-

topographic vector quantization. The similarity measure used in the ranking

of the weight vectors in the neural gas algorithm can be replaced by the

CIM and a similar procedure can be applied to adapt the network. This

is also expected to improve the performance of the network in terms of the

magnification factor.

Finally, although the dependence of the magnification factor on the ker-

nel bandwidth is shown experimentally, the theoretical analysis is still elu-

sive. The future work should concentrate on finding the relation between

the magnification factor and the kernel bandwidth, which in turn depends

on the variance of the data. The use of multivariate kernels might be impor-

tant when the SOM-CIM is used for density estimation and it also needs to

be studied. The proposed adaptive kernel algorithm can also be extended

to multivariate kernels using the idea proposed by Erdogmus et al. [8] but

will lead to a larger computational complexity. An effective, less computa-

tionally expensive algorithm to adapt the kernel bandwidth is necessary.
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Table 1: The information content and the mean square quantization error for various

values of σ in SOM-CIM and SOM with MSE is shown. Imax = 3.2189

Method Mean Square Entropy or

Quantization Error Info Cont., I

KSOM kernel Bandwidth, σ (. ∗ 10−3)

0.05 15.361 3.1301

Gaussian 0.1 5.724 3.2101

Kernel 0.2 5.082 3.1929

0.5 5.061 3.1833

0.8 5.046 3.1794

1.0 5.037 3.1750

1.5 5.045 3.1768

0.02 55.6635 3.1269

0.05 5.8907 3.2100

Cauchy 0.1 5.3305 3.2065

Kernel 0.2 5.1399 3.1923

0.5 5.1278 3.1816

1 5.0359 3.1725

1.5 5.0678 3.1789

MSE – 5.0420 3.1767
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Figure 5: Magnification of the map in the homoscedastic and heteroscedastic cases.The

figures [a] and [b] show the tracks of the kernel bandwidth in case of homoscedastic and

heteroscedastic kernels, respectively. Figures [c] and [d] show the plot between ln(r) and

ln(w). Refer text for explanation.
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Table 2: The information content and the mean square quantization error for homoscedas-

tic and heteroscedastic cases in SOM-CIM. Imax = 3.2189

Method Mean Square Entropy or

Quantization Error Info Cont., I

Homoscedastic kernels 5.8725 ∗ 10−3 3.2095

Heteroscedastic kernels (ρ = 0.5) 6.1179 ∗ 10−3 3.1970

Heteroscedastic kernels (ρ = 1) 15.268 ∗ 10−3 2.700

Constant kernel 1, σ = 0.1 5.7240 ∗ 10−3 3.2101

SOM-MSE 5.0420 ∗ 10−3 3.1767

LDE (ρ = 0.02) 6.250 ∗ 10−3 3.1813

(a) (b)

Figure 6: The scatter plot of the weights at convergence in the case of homoscedastic and

heteroscedastic kernels. [a] The scatter plot of weights in case of homoscedastic kernels.

[b] The scatter plot of weights in the case of heteroscedastic case. The lines indicate

the neighborhood in the lattice space. Clearly, the heteroscedastic kernels with ρ = 0.5

oversample the low probability regions when compared with the homoscedastic case.
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(a) True density function
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(b) SOM with MSE
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(c) SOM-CIM with homoscedastic kernels
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(d) SOM-CIM with heteroscedastic kernels

Figure 7: Results of the Density estimation using SOM. [a] A 2 dimensional Laplacian

density function. [b] The estimated density using SOM with MSE. The kernel bandwidth

is obtain using the Silverman’s rule. [c] The estimated density using SOM-CIM with

homoscedastic kernels. [d] The estimated density using SOM-CIM with heteroscedastic

kernels.
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Table 3: Comparison between various methods as density estimators. MSE and KLD

are the mean square error and KL-Divergence, respectively, between the true and the

estimated densities.

Method MSE (. ∗ 10−4) KLD

SOM with MSE 2.0854 308.4163

SOM-CIM,

homoscedastic 2.0189 128.6758

heteroscedastic(ρ = 0.8) 3.1432 12.6948
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Figure 8: Clustering of the two-crescent dataset in the presence of outlier noise. [a] The

mapping at the convergence of SOM with MSE. [b] - [d] The scatter plot of the weights

with the kernel bandwidth at different epochs during learning.
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Figure 9: The scatter plot of the weights showing the dead units when CIM and MSE are

used to map the SOM. [A] The boxed dots indicate the dead units mapped when MSE is

used. [B] Mapping when CIM with σ = 0.5 is used in the SOM. There are no dead units

in this case.

Table 4: Number of dead units yielded for different datasets when MSE and CIM are used

for mapping. Each entry is an average over 30 runs.

Dataset Method Dead Units MSE (10−2)

Artificial

MSE 4 1.3877

CIM, σ = 0.2147 0 8.4458

Iris

MSE 5.6 5.939

CIM, σ = 0.5 1 8.023

Blood Transfusion

MSE 0 0.7168

CIM, σ = 0.2 0 0.8163
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