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ABSTRACT
For many years it has been a challenge to analyze the time
complexity of Genetic Algorithms (GAs) using stochastic
selection together with crossover and mutation. This paper
presents a rigorous runtime analysis of the well-known Sim-
ple Genetic Algorithm (SGA) for OneMax. It is proved that
the SGA has exponential runtime with overwhelming prob-
ability for population sizes up to μ ≤ n1/8−ε for some arbi-
trarily small constant ε and problem size n. To the best of
our knowledge, this is the first time non-trivial lower bounds
are obtained on the runtime of a standard crossover-based
GA for a standard benchmark function. The presented tech-
niques might serve as a first basis towards systematic run-
time analyses of GAs.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Performance, Theory

Keywords
Simple Genetic Algorithm, Crossover, Runtime Analysis

1. INTRODUCTION
In recent years significant progress has been made in the

runtime analysis of Evolutionary Algorithms (EAs) [1]. On
one hand, nowadays it is possible to analyse the performance
of simple EAs on well known combinatorial optimization
problems [15]. On the other hand new techniques have en-
abled the analysis of more realistic EAs using populations
and stochastic selection mechansisms. The introduction of
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the simplified negative-drift theorem [17] has allowed the
analysis of population-based EAs using fitness proportional
selection while the negative-drift in populations theorem [9]
combined with the fitness levels for non-elitist populations
technique [10], permit the analysis of population based EAs
with several stochastic selection mechanisms such as comma,
tournament or linear ranking selection. However, the above
mentioned techniques cannot be directly applied to algo-
rithms using crossover operators which are at the heart of
Genetic Algorithms (GAs). In fact, it has been a challenge
for many years to analyse the runtime of standard GAs using
stochastic selection together with mutation and crossover.
Many examples using toy problems [7, 20, 8] and classical
optimisation problems [16, 2, 11] proving that crossover is
useful are available. Nevertheless, the algorithms considered
in the quoted literature rely heavily on elitism and partly on
diversity mechanisms. Moreover, mostly upper bounds on
the running time of crossover-based algorithms are obtained.
In particular, no lower bounds on the standard benchmark
function OneMax were available so far.

In this paper we present a first step towards a systematic
analysis of GAs by performing a runtime analysis of the Sim-
ple Genetic Algorithm (SGA) on OneMax. Although the
SGA is the most elementary example of GA, it has often
been considered in literature. For instance Goldberg uses
the algorithm in several chapters of his book [4], Vose has
used it for building his infinite population model [19] and
Rudolph used it for his Markov chain convergence analysis
[18]. The results that will be presented herein are a con-
tinuation of previous work. Happ et al. performed the first
runtime analysis of fitness proportional selection (f.p.s.) by
considering only one individual and bitwise mutation [5].
This work was extended by Neumann et al. to consider ar-
bitrary population sizes again on a mutation-only EA [12].
In particular, it was proved that the runtime of an EA us-
ing f.p.s. and bitwise mutation for OneMax is exponential
with overwhelming probability (w. o. p.) whatever the poly-
nomial population size. Also if the population is not too
large (i. e., logarithmic in the problem size), then the algo-
rithm cannot optimize any function with unique optimum in
polynomial time w. o. p. The main result in this paper is the
rigorous proof that even by adding crossover the obtained
SGA cannot optimize OneMax.

The well-known SGA is displayed in Figure 1. For anal-
yses convenience we will also consider simplified versions of
the SGA along the way, by either removing mutation or
even by changing the selection operator. If no mutation
is used and the rest of the SGA is kept the same we will
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Algorithm (SGA) [4]

1. Create a parent population P consisting of μ randomly
chosen individuals;

2. C := ∅.
3. While |C| < μ do

• Fitness proportional selection: Select two in-
dividuals x′ and x′′ from P according to fitness-
proportional selection without replacement.

• Uniform crossover: Create an offspring x by
setting each bit xi = x′

i with probability 1/2 and
xi = x′′

i otherwise, for 1 ≤ i ≤ n.

• Standard Bit Mutation: Flip each bit xi of x
with probability 1/n, for 1 ≤ i ≤ n.

• C := C ∪ {x}.
4. Set P := C and go to 2.

Figure 1: The Simple GA

call the algorithm fitness-Proportional Recombinative
SGA and refer to it as PR-SGA. If no mutation is used
and uniform selection is used instead of a proportional one,
then we will call the algorithm Uniform Recombinative
SGA and refer to it as UR-SGA.

The whole analysis depends on the fact that we bound
three quantities: The first two are h (the best OneMax-
value of a population), and � (the worst OneMax-value).
Obviously, if h < n then the optimum has not been found.
The third quantity, denoted by s, is defined as the number
of bit positions that are not converged, which means that
both bit values are taken by individuals in the population.
The number of non-converged positions is a simple measure
of diversity; for simplicity s is also called the diversity here-
inafter. We study this measure since crossover does not have
any effect on bit positions that are converged. Good bounds
on the diversity will be obtained under the condition that
the selection operator chooses individuals uniformly or al-
most uniformly.

Fitness-proportional selection is close to uniform if h/� is
close to 1. We will formalize this by limiting the so-called
bandwidth of the population, where we distinguish between
the additive bandwidth h − � and the multiplicative band-
width h/�. One simple, but absolutely crucial observation
is that h − � ≤ s, i. e., the additive bandwidth cannot be
larger than the number of non-converged positions. From a
bound on the diversity, hence a bound on the additive band-
width, we can also easily get a bound on the multiplicative
bandwidth, which in this way is proved to stay close to 1.
The idea of bounding the bandwidth is not new. It has been
previously used to derive runtime results for elitist EAs [6,
21] and stochastic selection EAs without crossover [12].

Our main result is that the SGA for OneMax has ex-
ponential optimization time w. o. p. if μ ≤ n1/8−ε for some
arbitrarily small ε > 0. The high-level proof strategy is as
follows: We first show that additive and also multiplicative
bandwidths are bounded in a certain way for a certain num-
ber of generations after initialization w. o. p. This will allow
us to obtain non-trivial bounds on the diversity, which in
turn limit the effect of crossover. Then (assuming a bound

on the diversity) a drift analysis w. r. t. the best OneMax-
value h will be performed, which shows on the one hand that
the optimum is not reached in exponential time w. o. p.; sim-
ilarly � will be bounded from below. But then the limit on
the additive and multiplicative bandwidth and hence the
bound on the diversity will persist for an exponential num-
ber of generations w. o. p., which closes the proof.

The rest of the paper is structured as follows. In Section 2
we prove that the genetic drift leads to very small diversity,
i. e., many converged bit positions. Along the way we prove
that also the UR-SGA and the PR-SGA are inefficient on
OneMax. In Section 3.2 we present the drift analysis with
respect to the best fitness value, which leads to the main
result of the paper. Due to space limitations, several proofs
had to be omitted from this conference paper.

2. ANALYSIS OF DIVERSITY
The analysis of the UR-SGA reveals the main proof ideas

for controlling the diversity of the population, i. e., the num-
ber of bit positions that are not converged. After, the effects
of proportional selection and mutation will be discussed.

2.1 Uniform selection
Let X be a random variable representing the number of

individuals in the population P of size μ having a one-bit in
an arbitrary (but fixed) position i, and X ′ the value of the
random variable after one generation of the UR-SGA. In
the following lemma we show that the conditional random
variable Zk := (X ′ | X = k) is binomially distributed, with
parameters B(μ, p = k/μ).

Lemma 1. Zk := (X ′ | X = k) ∼ B(μ, p = k/μ).

Proof. The current population has k individuals with a
one-bit at position i, and μ − k individuals with a zero-bit
in that position. We consider an individual x that is created
through one crossover step and show that the probability
it has a one-bit at position i is k/μ. Then the lemma will
follow because one generation of the UR-SGA creates a
new population by performing μ independent crossover steps
each with probability k/μ.

With probability k
μ
· k−1

μ−1
two individuals with a one-bit in

position i are selected for crossover. Then x will have a one-
bit in position i after crossover with probability 1. On the
other hand, with probabilities k

μ
· μ−k

μ−1
and μ−k

μ
· k

μ−1
one of

the parents will have a one-bit in position i while the other
will have a zero-bit. In these cases x will obtain a one-bit
after the crossover step with probability 1/2. Overall the
total probability is:

p = 2
1

2

k(μ − k)

μ(μ − 1)
+

k(k − 1)

μ(μ − 1)
=

k(μ − k) + k(k − 1)

μ(μ − 1)
=

k

μ
.

Hence, E(Zk) = k and Var(Zk) = μ·p(1−p) = k(1−k/μ).
From Lemma 1 it follows that the Markov process {Xt}t≥0

described by the X-values over time behaves like a martin-
gale, i. e., in expectation the number of individuals in the
population with a one-bit in an arbitrary position remains
the same from one generation of the UR-SGA to another.
This implies that there is no drift (i. e., E(X ′ − X|X =
k) = 0). Nevertheless, random fluctuations (measured by
the variance of the random variable) will drive the process
to one of its absorbing states 0 and μ in expected polyno-
mial time. In order to capture the movement of the pro-
cess through a drift analysis, we map Xt with the potential
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function Yt := (Xt − μ
2
)2 (a well-known approach, cf. [13,

Lemma 7]). In the following lemma we show that the drift
of Yt equals the variance of Xt.

Lemma 2. Let {Xt}t≥0, be a Markov process that is a
martingale (i. e., E(Xt | Xt−1) = Xt−1) on state space

{0, 1, . . . , μ}. Then Yt :=
`
Xt − μ

2

´2
is a Markov process

with drift E(Yt − Yt−1 | Xt−1 = k) = Var(Xt | Xt−1 = k).

Proof. We evaluate the drift:

E(Yt − Yt−1 | Xt−1 = k) =

= E

„„
Xt − μ

2

«2

−
„

Xt−1 − μ

2

«2

| Xt−1 = k

«

= E

„„
Xt − μ

2

«2

−
„

k − μ

2

«2

| Xt−1 = k

«

= E

„
X2

t − μ · Xt +
μ2

4
− k2 + μ · k − μ2

4
| Xt−1 = k

«
= E(X2

t | Xt−1 = k) − μ · E(Xt | Xt−1 = k) − k2 + μ · k
= E(X2

t | Xt−1 = k) − μ · k − k2 + μ · k
= E(X2

t | Xt−1 = k) − (E(Xt | Xt−1 = k))2

= Var(Xt | Xt−1 = k).

A straightforward drift analysis using Lemma 2 bounds

the first hitting time for either 0 or μ from above by μ2

4δ
where

δ = mink Var(Xt | Xt−1 = k). This implies that by consid-
ering that the variance is minimal for k ∈ {1, μ− 1} (hence,
Var(Xt | Xt−1 = k) ≥ 1 − 1/μ) we get an expected time

(number of generations) μ2

4(1−1/μ)
= O(μ2) to obtain a pop-

ulation in the UR-SGA where an arbitrary bit position i
has converged, i. e., either all the individuals have a one-bit
or they all have a zero-bit at position i. In Lemma 4, we
look more carefully into the drift process to derive a tighter
bound on such first hitting time. The following lemma will
be useful for the purpose.

Lemma 3. Var(Xt | Xt−1) ≥ μ
4
−

√
Yt−1
2

.

Proof. We consider the potential function Yt mapping
Xt and note that Yt−1 := (Xt−1 − μ/2)2 implies Xt−1 =
μ/2 ± √

Yt−1. Since the two solutions are symmetric, we
examine the one with the negative sign (i. e., Xt−1 = μ/2−√

Yt−1 ≤ μ/2). We get

Var(Xt | Xt−1) = μ · Xt−1

μ
·
„

1 − Xt−1

μ

«

≥ Xt−1 ·
„

1 − μ/2

μ

«
=

„
μ

2
−
p

Yt−1

«
· 1

2
=

μ

4
−

√
Yt−1

2
.

Lemma 4. The expected number of generations for an ar-
bitrary bit position i in the population of the UR-SGA to
converge is O(μ log μ).

Proof. We apply the variable drift theorem [3] w. r. t.
the process Zt := μ2/4 − Yt with the aim to estimate the
expected first hitting time E(T ) for state 0. Using Lemma 3,
the drift is bounded by

E(Zt − Zt−1 | Zt−1) = E(Yt − Yt−1 | Yt−1)

= Var(Xt | Xt−1) ≥ μ

4
−

√
Yt−1

2
=

μ

4
−
p

μ2/4 − Zt−1

2
,

which is monotone increasing in Zt−1. Note that the small-
est positive value for Zt−1 equals μ2/4− (1−μ/2)2 = μ− 1.
The variable drift theorem yields

E(T ) ≤ μ − 1

1/2
+

Z μ2/4

μ−1

1

μ/4 −pμ2/4 − z/2
dz = O(μ log μ),

where a closed formula for the integral was obtained from a
computer algebra system.

Before we can prove the final result of this subsection,
we need a bound on the maximum progress achieved by
crossover in one generation. This is given in the follow-
ing lemma (using a similar reasoning as in [8]), which also
takes mutation into account for future needs. Throughout
the paper, events are proved to occur w. o. p., which means

probability 1 − 2−Ω(nδ) for some constant δ > 0.

Lemma 5. With probability at least 1−e−Ω(n2ε) the maxi-
mum progress achieved by the crossover operator in one step

is n1/2+ε. With probability at least 1 − e−Ω(n2ε) the maxi-
mum progress achieved by a crossover and mutation step is
2n1/2+ε. The maximum progress per generation is bounded
in the same way if μ = poly(n).

The main idea behind the following theorem is that w. o. p.
all the bits have converged before the optimum has been
found.

Theorem 1. Let μ ≤ n1/2−ε. With overwhelming proba-
bility the UR-SGA requires infinite time to optimize One-

Max.

Proof. By Lemma 4 the expected number of genera-
tions for an arbitrary bit position to converge is at most
cn1/2−ε log n for some constant c. By applying a union
bound and Markov’s inequality in repeated phases, we get a

probability of 2−Ω(nε/2) that more than cn1/2−ε/2 log n gen-
erations are required to have all positions converged. Due
to symmetry, the probability that all zero-bits are obtained
in a position (rather than one-bits) is 1/2. This implies a
probability that this does not happen for any of the n bits is
2−n. Hence, w. o. p. all the individuals of the population will
have a zero-bit in some position j after cn1/2−ε/2 log n gen-
erations. If this happens, the optimum will never be found
because the crossover operator cannot generate a one-bit in
position j.

We complete the proof by showing that at least n1/2−ε/4/3
generations are required w. o. p. to find the optimum. By
Lemma 5 the crossover operator gains at most n1/2+ε/4

one-bits in each generation w. o. p. (re-choosing the ε in the
lemma appropriately). Since by Chernoff bounds each indi-
vidual has at least n/3 zero-bits w. o. p. after initialisation,

at least (n/3)/n1/2+ε/4 = (1/3)n1/2−ε/4 generations are re-
quired to visit the optimum. By summing up the failure
probabilities the theorem follows.

2.2 Proportional Selection + Mutation
In this subsection we investigate how much the Xt defined

w. r. t. the SGA differs from the binomial distribution of the
UR-SGA due to proportional selection (i. e., next two lem-
mas) and its effects, combined with mutation, on the drift
of Yt (i. e., Lemmas 8 and 9). In particular, no significant

difference can be observed if μ ≤ n1/6−ε. We conclude the
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subsection by showing that after expected O(μnε/8) genera-
tions all the bit positions have converged at least once (i. e.,
Lemma 10) and use the result to prove infinite runtime of
the PR-SGA w. o. p.

Lemma 6. Let ht and �t be respectively the best and the
worst OneMax-value in the population of the SGA at gen-
eration t. Let μ ≤ n1/6−ε with ε > 0 an arbitrarily small
constant. Then h/� ≤ 1 + 1

17μ2 up to generation t = n1/6

w. o. p.

The bound on the multiplicative bandwidth h/� derived
above is crucial for the following analyses. Hereinafter, we
call populations satisfying h/� ≤ 1 + 1/(17μ2) compact.
For compact populations, fitness-proportional selection is so
close to uniform that the analyses from the previous subsec-
tion basically carry over. The straightforward proofs have
been omitted.

Lemma 7. For a compact population the probabilities of
the SGA selecting xh and x� as first parent or as second
parent are bounded as follows:

P (x′
h) ≤ 1

μ
+

1

17μ3
P (x′′

h) ≤ 1

μ − 1
+

1

17μ2(μ − 1)

and

P (x′
�) ≥ 1

μ
− 1

17μ3
P (x′′

l ) ≥ 1

μ − 1
− 1

17μ2(μ − 1)
.

Lemma 8. Let μ ≤ n1/6−ε and the population be compact.
Then for the SGA it holds that,

k − 1

7μ
≤ E(Xt | Xt−1 = k) ≤ k +

1

7μ
.

Lemma 9 (Lemma 2’). Let {Xt}t≥0, be a process de-
fined on state space {0, 1, . . . , μ} such that k − 1/(7μ) ≤
E(Xt | Xt−1 = k) ≤ k + 1/(7μ). Then Yt :=

`
Xt − μ

2

´2
is a

drift process with

E(Yt − Yt−1 | Xt−1 = k) ≥ Var(Xt | Xt−1 = k) − 4

9
.

One thing to note is that the process Xt induced by the
SGA does not necessarily have absorbing states. More pre-
cisely, a converged bit position might be turned into non-
converged as the result of a mutation.

Lemma 10 (Lemma 4’). The expected number of gen-
erations for an arbitrary bit position i in the population of
the SGA with μ ≤ n1/6−ε to converge is O(μ log μ). With

probability at least 1− 2−Ω(nε/8/log n), after O(μnε/8) gener-
ations all bit positions have been converged at least once.

The proof of the first statement of Lemma 10 is essen-
tially the same as that of Lemma 4 where we apply the
variable drift theorem again. The second statement follows
by standard arguments, i. e., applying Markov’s inequality
iteratively in repeated phases to show that w. o. p. a given
bit has converged at least once in the considered time phase
and a union bound at the end to show that the same holds
for all bits.

A byproduct of Lemma 10 is that if no mutation is used,
then the algorithm will be stuck once all the bits have con-
verged. Hence, before we present the final results on the
bandwidth of the SGA in the next section, we use the previ-
ous lemma combined with Lemma 5 to show infinite runtime
for PR-SGA w. o. p.

Theorem 2. Let μ ≤ cn1/6−ε. With overwhelming prob-
ability the PR-SGA requires infinite time to optimize One-

Max.

Proof. The proof follows the same idea and calculations
of Theorem 1. W. o. p., at least n1/2−ε/3 generations are
required to find the optimum. However, again with over-

whelming probability 1 − 2−Ω(nε/8), after μnε/8 = O(n1/6)
generations all the individuals in the population all have ei-
ther a one-bit or a zero-bit in each position (using Lemma 10,
which also applies if the mutation operator is removed).

The difference compared to Theorem 1 is that fitness-pro-
portional selection is biased towards one-bits. Hence there
is not a probability of 1/2 that all the individuals have a
zero-bit at position i rather than a one-bit. We proceed by
contradiction to prove that there is at least one position i
where all the individuals have a zero-bit at this point of
time. Assume to the contrary that after O(n1/6) genera-
tions there is no position i where all the individuals in the
population have a zero-bit. Then all the individuals have a
one-bit in every position. We conclude that the algorithm
has found the solution in O(n1/6) generations contradict-

ing the assumption that at least n1/2−ε/3 generations are
required with overwhelming probability.

3. ANALYSIS OF THE SGA
The lower bounds proved for the UR-SGA and PR-SGA

in theorems 1 and 2, respectively, rely on the fact that all bit
positions will converge in few generations w. o. p. and that
converged bits will stay converged forever since there is no
mutation. With respect to the SGA, we will prove that
almost all positions will be converged at any time w. o. p.;
in other words, the diversity s is bounded. Throughout this
section, we assume that μ ≤ n1/8−ε for some constant ε > 0.

3.1 Low Diversity and Bandwidth
To bound the diversity, we consider time phases consisting

of μnε/8 generations. In the first phase, diversity will col-
lapse, and this will be maintained for the following phases.

Lemma 11. Consider the SGA at some generation t,

where t ≥ μnε/8 and t ≤ 2nε/10
. If all populations up to

this generation are compact, then s = O(μ2nε/8) at genera-

tion t with probability 1 − 2−Ω(nε/9).

Proof. By Lemma 10, in the first μnε/8 generations,
all bits have converged at least once with probability 1 −
2−Ω(nε/9). Now we consider an upper bound on the number
of bits that have left the converged state by the end of the
phase.

We define an indicator random variable Xi,j,k for the event
that the converged state of bit k is left when creating the
j-th individual in the i-th generation of the phase, where
1 ≤ i ≤ μnε/8, 1 ≤ j ≤ μ and 1 ≤ k ≤ n.

To leave the converged state, the bit position must be
flipped at least once. Since each bit flips with probabil-
ity 1/n, we get P (Xi,j,k = 1) = 1/n, and the expected value
of the sum S of the Xi,j,k is

E(S) =
X

i

X
j

X
k

P (Xi,j,k) =
μ · T · n

n
= μ · T = μ2nε/8

Obviously, S is an upper bound on the number of posi-
tions that leave the converged state. By Chernoff bounds
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E(S) ≤ 2μ2nε/8 with probability 1 − 2−Ω(nε/8), which, to-
gether with the fact that all bits converge at least once in the
phase proves the statement for generation μnε/8. For later
generations, the statement follows by considering additional
phases of length μnε/8. The total failure probability in at

most 2nε/10
generations is still 2−Ω(nε/9).

In the following, we need to assume further properties
of the current population, namely a sharper bound on the
multiplicative bandwidth and not too extreme values of �
and h. In the end, we will conclude that all the properties
are satisfied for an exponential number of generations w. o. p.

Definition 1. A population of the SGA is called very com-
pact iff h/� ≤ 1 + 1/(20μ2). It is called centered if � ≥ n/10
and h ≤ 9n/10.

Lemma 12. Assume a very compact population and con-
sider a phase of length μnε/8 during which all populations
are centered. Then during the phase the population is at least
compact and after the phase the population is very compact

with probability 1 − 2−Ω(nε/9).

Proof. If the multiplicative bandwidth is at most 1 +
1/(20μ2) then by simple calculations, the additive band-
width is at most c�n/(20μ2), where c�n denotes the One-

Max-value of the worst individual. In a centered population,
c� ≥ 1/10. By Lemma 5, each generation increases the ad-

ditive bandwidth by at most n1/2+ε/8 w. o. p. In the proof
of Lemma 11, we consider phases of length μnε/8. Hence,
such a phase increases the additive bandwidth by at most
μn1/2+ε/4. Hence, the additive bandwidth throughout the
phase is at most

c�n

20μ2
+ μn1/2+ε/4 ≤ c�n

20μ2
+

μn

μ4n5.25ε
≤ c�n

19μ2
,

where the first inequality follows from our upper bound μ ≤
n1/8−ε and the second one holds if n is large enough. Again
by simple calculations, the multiplicative bandwidth during
the phase is at most

1 +
c�n

19μ2

1

c�n
≤ 1 +

1

17μ2
,

i. e., the populations are at least compact throughout the
phase.

For compact populations, we can apply Lemma 11, which
tells us that after every phase of length μnε/8 we have s =

O(μ2nε/8) with probability 1 − 2−Ω(nε/9). We have already
noted that h− � ≤ s. Hence, after the phase it holds w. o. p.
that the multiplicative bandwidth is bounded from above by

1 +
h − �

�
≤ 1 +

O(μ2nε/4)

c�n
≤ 1 +

O(μ2)

c�μ8n7.25ε
≤ 1 +

1

20μ2

if n large enough.

Moreover, as it will be shown in Section 3.2, the mini-
mum OneMax-value of the population remains at least c�n
for an exponential number of generations w. o. p. Hence by
Lemma 12, the population will remain compact, and by
Lemma 11 the diversity will be bounded for an exponen-
tial number of generations w. o. p. if our assumption on the
minimum OneMax-value � is valid. This will be dealt with
in the next subsection. Note also that a compact population
could still contain an optimal search point. Also this will be
proved to be unlikely in the next subsection.

3.2 Drift of Best and Worst Fitness Values
The aim is to bound h and � in a drift analysis using a

so-called potential function. Similarly as in [12], the poten-

tial of an individual x is defined by g(x) := eκOneMax(x) for
some κ := κ(n) to be chosen later, and g(X) :=

Pμ
i=1 g(xi)

for every population X := {x1, . . . , xμ} (note that popula-
tions are multisets). Let us consider a current population at
generation t and the process of creating the next population
at generation t + 1 (dropping the time indices unless there
is risk of confusion). This process consists of μ consecutive
operations choosing two parent individuals, crossing them
over and mutating the result. Let Pi and Qi be the two
random parent individuals in the i-th operation (at genera-
tion t), 1 ≤ i ≤ μ, and let Ki be the random offspring. The
next lemma notes an important observation on the One-

Max-value of the offspring.
Hereinafter, Δ(m)(j) denotes the random change in One-

Max-value when applying standard bit mutation to an in-
dividual with j one-bits, B(a, b) denotes a random variable
following the binomial distribution with parameters a and b,
and H(·, ·) denotes the Hamming distance.

Lemma 13. It holds that

|Ki| =
|Pi| + |Qi| + 2C(Pi, Qi)

2
+

+ Δ(m)(|Pi|/2 + |Qi|/2 + C(Pi, Qi)),

where C(Pi, Qi) ∼ B(H(Pi, Qi), 1/2) − H(Pi, Qi)/2. More-
over,

|Ki| =
|Pi| + 2C(Pi, Qi) + 2Δ∗(|Pi| + C(Pi, Qi))

2

+
|Qi| + 2C(Pi, Qi) + 2Δ∗(|Qi| + C(Pi, Qi))

2
,

where Δ∗(j) := B(n/2− j/2, 1/n) −B(j/2, 1/n) is the ran-
dom increase in one-bits given that each bit in a string of
length n/2 with j/2 one-bits is flipped with probability 1/n,
i. e., half the standard mutation probability.

Proof. By definition, the crossover part of the i-th op-
eration leads to |Pi ∩Qi|+B(H(Pi, Qi), 1/2) one-bits before
mutation. Moreover |Pi ∪Qi| = |Pi ∩Qi|+H(Pi, Qi), which
means that (1/2)(|Pi| + |Qi|) = |Pi ∩ Qi| + H(Pi, Qi)/2.
Therefore, an individual with (1/2)(|Pi|+ |Qi|) + C(Pi, Qi)
one-bits is subjected to mutation, which is the first state-
ment of the lemma. The increase in one-bits due to mutation
is a random variable with distribution

B(n − (|Pi|/2 + |Qi|/2 + C(Pi, Qi)), 1/n)

− B(|Pi|/2 + |Qi|/2 + C(Pi, Qi), 1/n)

= B(n/2 − |Pi|/2 − C(Pi, Qi)/2, 1/n)

+ B(n/2 − |Qi|/2 − C(Pi, Qi)/2, 1/n)

−
„

B(|Pi|/2 + C(Pi, Qi)/2, 1/n)

+ B(|Qi|/2 + C(Pi, Qi)/2, 1/n)

«
,

where the equality follows from the fact that if X1 ∼ B(n1, p)
and X2 ∼ B(n2, p) then X1 + X2 ∼ B(n1 + n2, p). The sec-
ond statement follows now by regrouping terms.

Due to linearity of expectation and E(C(Pi, Qi)) = 0, we
have E(Δ∗(|Pi| + C(Pi, Qi))) = 1/2 − |Pi|/n, and analo-
gously for Qi. This results in E(|Ki|) = (|Pi|/2 + (1/2 −
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|Pi|/n))+(|Qi|/2+(1/2−|Qi|/n)). In other words, the ran-
dom Ki depends on the random Pi and Qi, whereas E(|Ki|)
only depends on |Pi| and |Qi|, each of which has weight 1/2.
When looking at E(|Ki|), we see that one operation is “split”
into two analogous terms, whose values are determined by
|Pi| and |Qi|, respectively.

However, the random potential of the offspring is given
by eκ|Ki|, and we have to bound the expectation E(eκ|Ki|).
We will see below that E(eκ|Ki|) is not too different from

eE(|Ki|) if κ is small enough. Actually, we will also be able
to “split” an operation into two terms that “basically” only
depend on Pi and Qi, respectively.

Lemma 14.

E(eκ|Ki|) ≤ E(eκ(|Pi|+2C(Pi,Qi)+2Δ∗(|Pi|+C(Pi,Qi))))

2

+
E(eκ(|Qi|+2C(Pi,Qi)+2Δ∗(|Qi|+C(Pi,Qi))))

2

Proof. The statement follows from Lemma 13 since the
geometric mean is at most the arithmetic mean, i. e., ea/2 ·
eb/2 ≤ ea/2 + eb/2 for arbitrary a and b.

Both terms on the right-hand side have in common that
they depend on the random C(Pi, Qi). The influence of
C(Pi, Qi) will be neglegible for sufficiently small κ, as the
following lemma shows.

Lemma 15. Let s = H(Pi, Qi) ≥ 1. If |Pi| ≥ (1+ c)(n/2)
for some arbitrarily small constant c > 0 and s ≤ (c/4)n
then choosing κ ≤ c

20s
yields

E(eκ(2C(Pi,Qi)+2Δ∗(|Pi|+C(Pi,Qi)))) ≤ 1 − Ω(κ).

If the assumption on |Pi| is dropped and c is small enough
then

E(eκ(2C(Pi,Qi)+2Δ∗(|Pi|+C(Pi,Qi)))) ≤ 1 + O(κ).

Proof. Ψ(Pi, Qi) := eκ(2C(Pi,Qi)+2Δ∗(|Pi|+C(Pi,Qi))), the
random variable considered here, is dependent on the com-
bined effect of crossover and mutation. Note that Δ∗ is de-
creasing in its argument and that we have C(Pi, Qi) ≥ −s.
In the following, we work with the upper bound

Ψ(Pi, Qi) ≤ e2κC(Pi,Qi) · e2κΔ∗(|Pi|−s)

and assume that |Pi| ≥ (1 + c)(n/2).
We concentrate first on the first expectation. By defi-

nition, C(Pi, Qi) ∼ B(s, 1/2) − s/2. Using the moment-
generation of the binomial distribution, we obtain

E(e2κC(Pi,Qi)) = E(e2κ(−s/2) · e2κB(s,1/2))

= e−κs ·
„

1

2
+

1

2
e2κ

«s

.

Assuming that κ ≤ 1/2, we use the inequality ex ≤ 1 +
x + x2 for x ≤ 1 and obtain

E(e2κC(Pi,Qi)) ≤ e−κs · `1 + κ + 2κ2
´s ≤ e−κse(κ+2κ2)s

= e2κ2s,

which for κ = c/(20s) (a choice that will turn out useful
later) gives us the upper bound

E(e2κC(Pi,Qi)) ≤ e2c2/(400s) ≤ 1 +
c2

100s

using ex ≤ 1 + 2x for x ≤ 1 and assuming 2c2/(400s) ≤ 1.
Next we deal with the effect of mutation, more precisely

we bound the expected value of e2κΔ∗(|Pi|−s). Following the
proof of the simplified drift theorem [17], we first bound the
plain drift E(Δ∗(|Pi| − s)) and then its moment-generating
function. Recall that Δ∗(j) = B(n/2−j/2, 1/n)−B(j/2, 1/n)
is the random increase in OneMax-value when a bit string
of length n/2, containing j/2 ones, is subject to standard
bit mutation with probability 1/n. Hence, we have

E(Δ∗(|Pi| − s)) =
1

2
− |Pi| − s

n
≤ −c

4
,

where the last inequality follows by the assumptions made
in the lemma.

Moreover, we know that the number of flipping bits follows
an exponential decay, more precisely

Prob(Δ∗(i) = z) ≤ n/2

|z|
„

1

n

«|z|
≤ 1

|z|! ≤ e−|z|+2

for any i and any z ∈ Z. If λ(n) = 1/2, this implies

E(eλ(n)Δ∗(i)) =
X
z∈Z

eλ(n)z Prob(Δ∗(i) = z)

≤
X
z>0

eλ(n)ze−|z|+2 +
X
z≤0

e−|z|+2 ≤
X
z≥1

e2−z/2 +
e2

1 − e−1

=
e3/2

1 − e−1/2
+

e2

1 − e−1
< 24.

Now, expanding the moment-generating function, we get
for any κ = κ(n) ≤ λ(n) = 1/2 that

E(eκΔ∗(i)) = 1 + κE(Δ∗(i)) +

∞X
z=2

E((κΔ∗(i))z)

z!

≤ 1 + κE(Δ∗(i)) + κ2(n)

∞X
z=0

E((λ(n)Δ∗(i))z)
z!

λ2(n)

≤ 1 + κE(Δ∗(i)) +
κ2(n)

1/4
E(eλ(n)Δ∗(i))

≤ 1 + κE(Δ∗(i)) + 96κ2(n)

If 2κ ≤ −E(Δ∗(i))/192, a simple upper bound is obtained
from this as follows:

E(e2κΔ∗(i)) ≤ 1+2κE(Δ∗(i))−1

2
(2κ)E(Δ∗(i)) ≤ 1+κE(Δ∗(i)).

Since E(Δ∗(i)) ≤ −c/4 and thus −E(Δ∗(i))/192 ≥ c/768,
the choice κ := c/(20s) from above obviously satisfies the
condition (if n is not too small and s = ω(1)) and we get

E(e2κΔ∗(i)) ≤ 1 − c2

80s
.

Altogether, the random variable under consideration has
been bounded according to

Ψ(Pi, Qi) ≤
„

1 +
c2

100s

«„
1 − c2

80s

«
≤ 1 − c2

400s
,

which is 1 − Ω(κ).
If the assumption on |Pi| is dropped, then we work with

the trivial bound E(Δ∗(i)) ≤ 1. Recalling that E(eκΔ∗(i)) ≤
1+κE(Δ∗(i))+96κ2(n), we get E(eκΔ∗(i)) ≤ 1+192c/(20s)
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if c/s is small enough and s ≥ 1. Then (for small enough c)

Ψ(Pi, Qi) ≤
„

1 +
c2

100s

«„
1 +

192c

20s

«2

≤ 1 +
20c

s
,

which is 1 + O(κ).

Our aim is to bound E(g(Xt+1)−g(Xt) | Xt). If we know
the expected value of the random number of times Si that

individual xi := x
(t)
i is chosen as first or second parent in

the μ operations, then the inequalities from Lemma 13 and
14 allow us to bound the population drift in the following
way:

E(g(Xt+1) | Xt))

≤
μX

i=1

E(Si) · E(eκ(|xi|+2C(xi,x′
i)+2Δ∗(|xi|+C(xi,x′

i))))

2
. (1)

Here x′
i denotes the random other parent in the operation

choosing xi. The following simple lemma bounds E(Si).

Lemma 16. E(Si) ≤ 2h/�.

The straightforward proof has been omitted. More effort
is needed to bound the second expectation in (1). If g(Xt)
is large, then the following lemma will help us to obtain
a negative drift. Hereinafter, a sufficiently small constant
c > 0 and the choice κ := c/(20s) are fixed.

Lemma 17. Suppose that s ≤ n1/4−ε and μ = poly(n). If

g(X) ≥ eκ(1+2c)n/2, then there is a non-empty set X∗ ⊂ X
of individuals x ∈ X satisfying |x| ≥ (1 + c)n/2. Moreover,

g(X) = (1 + 2−Ω(n3/4))
P

x∈X∗ g(x).

Proof. Asssume X∗ = ∅. Then g(X) ≤ μeκ(1+c)n/2 =

eκ(1+c)n/2+ln μ. Since κ = c/(20s) = Ω(n−1/4) and ln μ =
O(log n) by our assumption, we arrive at the contradiction
κ(1+c)n/2+ln μ ≤ κ(1+1.5c)n/2 if n is not too small. The
second claim follows since κ(1 + 1.5c)n/2 = κ(1 + 2c)n/2 −
Ω(n3/4+ε).

From now on, also s ≤ n1/4−ε is assumed (which follows

from Lemma 11 for μ ≤ n1/8−ε). The next lemma states a
multiplicative drift of the potential away from large values.

Lemma 18. If g(Xt) ≥ eκ(1+2c)n/2, then

E(g(Xt+1) | Xt) ≤ (1 − Ω(κ)) · g(Xt).

Proof. According to Lemma 17, there is a subset X∗ ⊂
Xt such that

g(Xt) =
X

x∈X∗
g(x) + 2−Ω(n3/4)

X
x∈Xt

g(x).

We have already argued that

E(g(Xt+1) | Xt))

≤
μX

i=1

E(Si) · E(eκ(|xi|+2C(xi,x′
i)+2Δ∗(|xi|+C(xi,x′

i))))

2
.

By Lemma 16, E(Si) ≤ 2h/� ≤ 2(� + s)/�. Since a centered
population is assumed (� ≥ n/10), we get E(Si) = 2 +

O(s/n) = 2+O(n−3/4). Hence, for those i such that xi ∈ X∗

we get from Lemma 15 that

E(Si) · E(eκ(|xi|+2C(xi,x′
i)+2Δ∗(|xi|+C(xi,x′

i))))

2

≤ (1 + O(n−3/4))(1 − Ω(κ))e|xi| = (1 − Ω(κ))e|xi|

using κ = Ω(n−1/4). For the xi /∈ X∗ we know by Lemma 15
that

E(Si) · E(eκ(|xi|+2C(xi,x′
i)+2Δ∗(|xi|+C(xi,x′

i))))

2

≤ (1 + O(n−3/4))(1 + O(κ))e|xi| = (1 + O(κ))e|xi|.

Altogether,

E(g(Xt+1) | Xt))

≤ (1 − Ω(κ))

 X
x∈X∗

g(x)

!
+ 2−Ω(n3/4)(1 + O(κ))

X
x/∈X∗

g(X)

=
“
1 − Ω(κ) + 2−Ω(n3/4)

”
g(Xt) = (1 − Ω(κ))g(Xt).

We are almost ready to apply the following simplified
negative-drift theorem, whose proof follows the lines of [14].

Theorem 3 (Simplified Drift with Scaling).

Let Xt, t ≥ 0, be the random variables describing a stochas-
tic process over a finite state space S ⊆ R and denote Δt(i) :=
(Xt+1−Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist
an interval [a, b] in the state space, and, possibly depending
on � := b − a, a bound ε(�) > 0 and a scaling factor r(�)
such that for all t ≥ 0 the following three conditions hold:

1. E(Δt(i)) ≥ ε(�) for a < i < b,

2. Prob(Δt(i) ≤ −j · r(�)) ≤ e−j+1 for i > a and j ∈ N,

3. r(�) ≤ min{�,pε(�)�/(1352 log(�/ε(�))}.
For the first hitting time T ∗ := min{t ≥ 0: Xt ≤ a | X0 ≥ b}
it then holds

Prob(T ∗ ≤ eε(�)�/(1352r2(�))) = O(e−ε(�)�/(1352r2(�))).

Lemma 18 states a multiplicative drift but Theorem 3 is
for an additive setting. Hence, as in [12], we switch over to
the potential function g′(X) := ln g(X). Since ln is concave,
Jensen’s inequality yields

E(g′(Xt+1) | Xt) = E(ln(g(Xt+1)) | Xt)

≤ ln(E(g(Xt+1) | Xt).

Hence, if g′(Xt) ≥ κ(1 + 2c)n/2 then by Lemma 18

E(g′(Xt+1) | Xt) ≤ ln((1 − Ω(κ))g(Xt))

= ln(1 − Ω(κ)) + ln(g(Xt)) = −Ω(κ) + g′(Xt),

which establishes the additive drift E(g′(Xt+1) − g′(Xt) |
Xt) = −Ω(κ). Using the potential function g′′(X) := κ(1 +
4c)n/2 − g′(X), where the negation is necessary to fit the
perspective of Theorem 3, and the drift interval a := 0, b :=
κ(1 + 4c)n/2 − κ(1 + 2c)n/2 = κcn, we obtain a drift of
Ω(κ) for all g′′(X) such that a ≤ g′′(X) ≤ b. The first
condition of Theorem 3 has been established. Moreover, by
Chernoff bounds g′′(X0) ≥ b at initialization of the SGA

with probability 1 − 2−Ω(n1/2), and using Lemma 5, we still
have g′′(Xμnε/8) ≥ b, i. e., when diversity has collapsed for
the first time and the drift analysis is started in reality.

For the second condition, we set r(�) := max{s, n1/4−ε} =

O(n1/4−ε). Crossover can change the potential by at most
s ≤ r(�). To change the potential by j · r(�), at least
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(j − 1)r(�) ≥ r(�) bits have to flip in at least one of the
μ = poly(n) mutations that happen in a generation. This
probability is easily bounded by e−j+1. This verifies the
second condition. Altogether, the parameters of the drift
theorem satisfy � = b−a = Ω(n3/4+2ε), ε(�) = Ω(n−1/4+2ε).
Since ε(�)�/r2(�) = Ω(n6ε), the time to pass the drift inter-

val is 2Ω(n6ε) w. o. p. If g(X) ≤ eκ(1+4c)n/2 by definition no
individual from X can have more than (1+4c)n/2 one-bits,
in particular the optimum is not reached.

A symmetrical argument can be applied to the minimum
OneMax-value of the individuals in the population. Putting
everything together gives us the following lemma, which says
that the population is centered for an exponential number
of generations, assuming that the diversity is bounded.

Lemma 19. Assuming s ≤ n1/4−ε the whole time, all pop-

ulations up to generation 2c′n6ε

, for some constant c′ > 0,
satisfy � ≥ (1 − c)n/2 and h ≤ (1 + c)n/2 with probability

1 − 2−Ω(n6ε), where c > 0 is an arbitrarily small constant.

But since these bounds on h and � are enough to make
the analysis from the previous subsection work, we also
have s ≤ n1/4−2ε for an exponential number of generations
w. o. p., altogether a compact and centered population for
an exponential number of generations. In each generation

there is a probability of only 2−Ω(nε/9) that one of our as-
sumptions (compact and centered population) is not satis-

fied. Since the sum of the failure probabilities within 2nε/10

generations is still 2−Ω(nε/9), we have proved the following
main result.

Theorem 4. Let μ ≤ n1/8−ε for an arbitrarily small con-

stant ε > 0. Then with probability 1 − 2−Ω(nε/9), the SGA
on OneMax does not create individuals with more than
(1 + c)n/2 or less than (1 − c)n/2 one-bits, where c > 0

is an arbitrarily small constant, within the first 2nε/10
gen-

erations. In particular it does not reach the optimum then.

4. CONCLUSIONS
A runtime analysis of the SGA for OneMax has been

presented. It has been proved that the algorithm cannot
optimize the function as long as the population is not larger
than μ ≤ n1/8−ε. Preliminary experimental results do not
show significant difference in the performance of the SGA
with increased population size compared to the mutation
only fitness-proportional EA previously analysed in [12] with
arbitrary population sizes. Hence, it remains an open prob-
lem to extend the results presented herein to the SGA with
larger population sizes. In the same paper it was proved that
appropriate scaling mechanisms turn the mutation-only EA
into an efficient algorithm. The same results would carry
on for the SGA in a straightforward manner by performing
similar analyses.
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