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Learning Metris for Self-Organizing MapsSamuel Kaski Janne Sinkkonen Jaakko PeltonenHelsinki University of TehnologyNeural Networks Researh CentreP.O. Box 5400, FIN-02015 HUT, Finlandfsamuel.kaski, janne.sinkkonen, jaakko.peltoneng�hut.�AbstratWe introdue methods that adapt the metri of the dataspae to reet relevane, as indiated by auxiliary dataassoiated with the primary data samples. The derivedmetri is espeially useful in desriptive data analysisby unsupervised methods suh as the Self-OrganizingMaps. In this work we use the new metri to re-�ne SOM-based analyses of the fators a�eting thebankrupty risk of ompanies.1 IntrodutionThe goal of this work is to develop methods for data-driven searh of statistial dependenies in data. Theso-alled unsupervised learning methods suh as lus-tering, density estimation, and visualization methodsare useful for exploring data sets without expliit priorhypotheses. It is hoped that the resulting summariesand desriptions of the properties of the data help makenew disoveries in an interative, iteratively re�nedproess.The problem with unsupervised learning is that notall statistial properties in the data set are interesting.There is noise, and not even all the \true" dependen-ies are relevant or interesting to the analyst. In pat-tern disovery it is well known that many disoveredpatterns are trivial or not interesting. In lustering thedistintions between lusters may be made over irrele-vant features. Things get worse when the sample sizeand dimensionality inrease|indeed, the urrent hal-lenge for the exploration methods lies in the massiveamounts of eletronially available data.By ontrast, in supervised methods the well-de�nedgoal, be it the minimization of lassi�ation error orpredition error or something else, impliitly deter-mines whih aspets of the data are interesting. Manysupervised methods are universal approximators: withinreasing model omplexity, they an asymptotially

approximate any funtion from the inputs to the de-sired outputs. Hene the methods are invariant to ageneral lass of data transformations and hene robustwith respet to the representation of data.In this work the novel insight is to utilize, in unsuper-vised learning, the knowledge that impliitly exists insignals that are traditionally used in supervised learn-ing. In our ase study we use the future bankruptystate of ompanies as a guiding signal to explore �nan-ial statements. Unlike in supervised learning, how-ever, the goal is to make data-driven disoveries fromthe statistial properties of the data given the supervi-sion, i.e., after the supervising signal has been utilized.Tehnially, the goal is to automatially learn metriswhih measure distanes along important or relevantdiretions pointed out by the supervisory signal, andto use the metris in unsupervised learning.Metris have been derived from probabilisti modelsbut without the supervisory signal (see e.g. [1, 2℄). Inaddition, numerous methods exist for transforming thedata for improved lassi�ation or predition auray.To our knowledge the priniple and our solution [3℄ toarry out unsupervised learning in a \supervised" met-ri is new. Below we demonstrate its use with the Self-Organizing Maps, in the analysis of the bankrupty riskof ompanies.2 The Learning MetriWe aim at �nding interesting or relevant features of theprimary data x 2 X � Rn , samples of a vetor-valuedrandom variable X . Samples , or auxiliary data, of anassoiated random variable are also available, and it isassumed that a hange in the onditional distributionp(jx) signi�es an interesting hange in x.We will represent the relevane of a variation in x asa distane. Together suh distanes onstitute a met-ri. A metri has the advantage of being a rather gen-



eral desription of the relationships of x, and even anon-Eulidean metri an be readily inorporated intomany unsupervised methods. Below we will �rst intro-due a suitable metri as a mathematial, di�erential-geometri (see e.g. [4℄) onstrution. The motivationfor why preisely that kind of a metri is partiularlyuseful for data analysis, and its relationship to alter-native approahes will be presented at the end of thesetion.Assume tentatively that the original Eulidean met-ri of the spae X is arbitrarily hosen and hene ir-relevant. The proximity relations of x or, disregard-ing possible singularities, the topology are important,however. Then all metris obtained by loal resalingsof the original Eulidean metri retain the importantstruture of X. Suh metris are of the formd2L(x;x+ dx) = dxTJ(x)dx ; (1)where J(x) is a positive semide�nite matrix dependingon x. Although not neessary for the appliation inthis paper, global distanes are de�ned as minimal pathintegrals; this gives a Riemannian metri [4℄. Note thatthe usual Eulidean metri an be expressed loally byd2(x;x+dx) = dxT Idx, where I is the identity matrix.Thus the two metris span the same topology if J(x) isnon-singular. (d and dL would then be alled equivalentmetris. In pratie J may be singular; then the hangeof the metri is projetive.)Let us then return to our original goal: measurement ofrelevant di�erenes. It was assumed that di�erenes inthe distribution p(jx) signify relevant hanges. Suhdi�erenes an be measured by the Kullbak-Leiblerdivergenes, and a proof by Kullbak [5℄ implies thatfor nearby points x and x + dx the divergene an beomputed in the form of (1), assuming the densitiesp(jx) are di�erentiable with respet to x.This makes it possible to loally measure the interest-ingness (signi�ed by hanges in p(jx)) while preserv-ing the proximities in the X spae: we plug in a Jsuh that the dL loally agree with the Kullbak-Leiblerdistanes omputed from the onditional probabilitiesp(jx). The right form for J(x) isJ(x) = Ep(jx)(� ��x log p(jx)�� ��x log p(jx)�T) ;(2)where the operator Ep(jx) denotes expetation overthe onditional distribution p(jx). The J is essen-tially a Fisher information matrix, and distanes ob-tained from the matrix are alled (Fisher) informationdistanes or (Fisher) information metris in the infor-

mation geometry literature (see, e.g., [4℄). Tradition-ally the arguments of the Fisher information matrixare parameters of generative probabilisti models, andthe metri measures distanes in the model spae. Ournew ontribution is to use the x in the role of the pa-rameters to obtain a metri in the data spae. In thegenerated metri the onditional density p(jx) hangesevenly in all diretions and at all points x of the dataspae. The metri an also be shown to be invariant toa large lass of smooth transformations of the spae X,alled di�eomorphisms.Above, the probabilities p(jx) have been assumedknown. The derivation of the metri from the p(jx) isnot a�eted by the original Eulidean struture over X,but in many appliations the p(jx) are unknown andan estimate p̂(jx) has to be used instead. The esti-mators neessarily depend somewhat on the Eulideanstruture and hene in pratie the metri dL is onlyasymptotially invariant to the original metri stru-ture of X.Note that distanes ould in priniple be mea-sured diretly as the Kullbak-Leibler divergeneD(p(jx)jjp(jy)) between any two points x and y. Thede�nition would not yield a metri, however, beausethe divergenes are asymmetrial and the triangle equa-tion does not hold. It would also ompletely ignorethe struture of the X-spae, and that is not desir-able for two reasons: (1) In data analysis appliationswe often wish to interpret the �ndings in terms of theoriginal data variables whih is harder if the topologyhas been hanged; (2) When estimating the densitiesp(jx) from a �nite data set the generalization overthe data spae x needs be based on some topology (ormetri). Usually it is based on the topology of the X-spae, whih would be inonsistent with the proximityrelationships indued by the diret Kullbak-Leibler di-vergene D(p(jx)jjp(jy)).Note that the ommon feature extration or data trans-formation methods hange the metri as well. If theyare di�eomorphisms then our metri is in priniple in-variant to them. They may, however, hange the topol-ogy as well. Our metri an, of ourse, be applied afterthe transformation, whih is bene�ial if the hange ofthe topology is.Below, we assume that only data pairs f(k;xk)gk ofauxiliary and primary data are available.



3 Self-Organizing Maps in Learning MetrisBelow we desribe how learning metris an be usedwith the Self-Organizing Map (SOM) [6℄, a methodwidely used in data analysis and visualization. A SOMonsists of a grid of NSOM units, and a model vetormi is assoiated to eah unit i. After the SOM has beenomputed the model vetors follow the input data inan ordered fashion: model vetors of lose-by units onthe lattie remain lose-by in the input spae.3.1 SOM algorithmThe SOM algorithm iterates two steps: winner sele-tion and adaptation. At eah iteration t, the index ofthe winning unit w losest to the urrent input samplex(t) is �rst sought byw(x(t)) = argmini d2(x(t);mi(t)) ; (3)where d is a distane funtion, ommonly Eulidean.Then the model vetors are adapted aording tomi(t+1) =mi(t)� 12hwi(t) ��mi d2(x(t);mi(t)) : (4)If d is the Eulidean distane, the adaptation beomesmi(t+ 1) =mi(t) + hwi(t)(x(t) �mi(t)) : (5)Here hwi(t) is the neighbourhood funtion, a dereasingfuntion of the distane between units w and i on themap lattie. Both the height and width of hwi(t) aredereased gradually as the iteration progresses [6℄.In learning metris, both steps must be modi�ed. Thewinner is seleted by the new distanes i.e. d in (3)beomes replaed by dL whih is in priniple de�nedas the minimal path integral. In pratie we simplifythe omputation by relying on the loal approximation;the winner seletion then beomesw(x(t)) = argmini (mi(t)�x(t))T J(x(t))(mi(t)�x(t)) ;(6)where (1) has been used to approximate the metriloally around x(t). The approximation is likely to beaurate for model vetors lose to x (by their truedistanes dL). We assume it to be aurate enough tokeep the seletion of the winning unit orret most ofthe time, but experimental results are of ourse neededfor �nal onlusion. The ase study in Setion 4 isfavourable.In the adaptation step, eah model vetor mi(t) is up-dated in the diretion where the distane to x(t) de-reases most rapidly. In the Eulidean metri the di-retion is that of the negative gradient, 2(mi(t)�x(t)),

but in the more general Riemannian metri the dire-tion is oposite to the natural gradient [7℄J(x)�1 ��mi(t)d2L(x;mi(t)) : (7)Using again the loal approximation this beomesJ(x)�12J(x)(mi(t)� x) = 2(mi(t)� x) ; (8)whih is just the gradient of the Eulidean metri. Thusthe model vetors will be adapted with the familiar rule(5).3.2 Probability EstimationThe winner seletion (6) depends on J(x), i.e. on theauxiliary probabilities p(jx) and their gradients. Inpratie these must be estimated from the data. Inthis paper we use two lassial estimates: Parzen ker-nels and a version of Gaussian mixtures alled MixtureDisriminant Analysis 2 (MDA2) [8, 9℄. Both estimatethe joint probabilities p(;x) with a similar parametriform, from whih p(jx) are obtained by the Bayes rule.Consider a generative mixture where the pair (x; ) isgenerated by a omponent hosen by the probabilitiesf�jgj , j = 1; : : : ; NU . The jth omponent generatesx from a density bj(x;�j), parametrized by �j , and from a multinomial distribution f�jigi, i = 1; : : : ; NC .The onditional estimates p̂(jx) are then obtainedfrom the Bayes rule:p̂(ijx) = Pj �j�jibj(x;�j)Pj �jbj(x;�j) : (9)Here bj are hosen to be Gaussian with a ommon o-variane �2I. For MDA2, the parameters �j , �j (loa-tions of the Gaussians), and �ji are estimated with theEM algorithm. In the Parzen kernel estimate, there isa kernel bj for eah data sample xj . Thus �j = xj ,�j = 1=NU , and �ji = 1 for the value of i orrespond-ing to the data sample j , and zero otherwise. It anbe shown that for these models, the loal distanes (1)beome�4d2(x;x+ dx) =Ep̂(jx) n�dxT �Ep(uj jx;i;�j)f�jg �Ep(uj jx;�j)f�jg��2o(10)where p(uj jx;�j) is the probability that the jth mix-ture omponent generated the input sample given xand the parameters, and p(uj jx; i;�j) is the probabil-ity with the auxiliary value i also given.



a b  dFigure 1: Posterior probabilities of lasses 0 and 2 ontwo SOMs representing the same data, in theEulidean (a-b) and the learning metri (-d).3.3 SummaryTo summarize, the omputation of a Self-OrganizingMap in the learning metri onsists of the followingsteps:1. Build estimates of the probabilities p(jx). Usefor example the Parzen or MDA2 estimates disussedabove.2. Train the SOM by iterating the following steps: (a)Selet a sample x(t) and winner unit w(x(t)) by (6).For Parzen and MDA2 models, use (10) to omputedistanes. (b) Adapt model vetors toward x(t) by (5).If (10) is used for distane alulation, the omputa-tional omplexity of the winner seletion step beomesO(NDIMNC(NU + NSOM )), where NDIM is the di-mensionality of X, whereas for Eulidean distanes itis O(NDIMNSOM ). The omplexity of the adaptationstep is of ourse unhanged.3.4 A DemonstrationLet us demonstrate the hange of metri by omputingSOMs for a toy data set both in the Eulidean metri(SOM-E) and in the learning metri (SOM-L).The primary data is evenly distributed within the unitube. The auxiliary data takes four values, from 0 to3. Their onditional distributions depend linearly onthe horizontal dimensions, but are indepedent of thevertial dimension. That is, only the horizontal planeis onsidered important|representing the vertial di-mension just wastes resoures.We trained the SOM-E and SOM-L to this data andvisualized the onditional distribution of the auxiliarydisrete variable on the SOMs (Fig. 1). The distri-butions are smoother on the SOM-L, and the true uni-modality of the distributions is partiularly well visible.By ontrast, the SOM-E displays give a false impres-sion of bimodality for 2. The reason for the di�erenebeomes apparent one we take a look at the distri-bution of the model vetors inside the ube (Fig. 2).

Figure 2: Projetions of the model vetors of the twoSOMs in Fig. 1. Left: SOM-E, right: SOM-L.The SOM-E folds to represent the entire data distri-bution, while the SOM-L represents only the relevantdimensions, as desired.4 Case Study: Bankrupty AnalysisIn this setion we apply the SOM and learning met-ris to bankrupty analysis. Bankrupties are widelystudied, for they have a tangible impat on businesslife. Most of the quantitative studies have aimed atpredition, the main approahes being lassi�ationand probability estimation on the basis of the �nanialstatements given by the ompanies. A omplementaryapproah is the analysis of the e�ets of orporate be-haviour on the bankrupty risk. A qualitative workwas done by Argenti [10℄, and reently the SOM hasbeen applied to this problem by Kiviluoto and Bergius[11℄. Our researh omplements their work by usingthe ompany status (bankrupt or not) to build learn-ing metris for SOM training. Sine the metri de-sribes hanges in bankrupty risk, the SOM shouldemphasize the most interesting features of the �nan-ial statements, i.e. those that ontribute loally tothe bankrupties.4.1 DataThe data onsisted of �nanial statements from about1500 Finnish ompanies. Multiple statements from dif-ferent years were treated as independent samples; of allthe 6195 statements 158 onerned ompanies whihlater ollapsed. 23 �nanial indiators were extratedfrom the statements, inluding measures of growth,pro�tability and liquidity. The auxiliary variable in-diated whether the ompany went bankrupt within 3years of the statement.The data were randomly divided into an estimation setand a test set of roughly equal sizes. For the estima-tion set, the Parzen estimate and the Gaussian mixture



model (NU = 10) of the previous setion were used toompute hexagonal SOMs of 20�10 units in the learn-ing metris. A Eulidean SOM of similar size was om-puted for referene.4.2 Goodness measuresAt least the following fators ontribute to the good-ness of a learning metri SOM as a desription of thebankrupty data:(1) The quality of the probability estimate. In thispaper we will not measure this, and just resort to stan-dard estimators.(2) The auray of the SOMs in representing thebankrupty risk. The SOM units an be regarded asloal probability estimators of their Voronoi regions byassigning to them the estimated probabilities of theauxiliary data at the point of the model vetors. TheSOM as an estimator an then be evaluated by the on-ditional log-likelihood of the test data, estimated at thewinner unit loations:Xk log p̂(k jmw(xk)) : (11)(3) Visualization quality, i.e., smoothness and organi-zation. Here we will resort to visual omparisons.4.3 ResultsThe test-set likelihoods for the probability estimatorsand the SOMs were omputed over a wide range ofthe parameter � that governs the smoothness of theestimates. The likelihoods of the probability estima-tors approximately indiate the best possible SOMperformane, and a \model" always prediting priorbankrupty probabilities served as a lower limit of use-ful results.The auraies of SOMs in desribing the test set areshown in Fig. 3. As expeted, the SOM-L performsbetter than the SOM-E; the results are roughly equalonly for the Parzen estimator with very small �; thenthe estimates of the onditional probabilities are pre-sumably very uneven, resulting in an uneven metri.The auray di�erene between SOM-E and SOM-Lwas statistially signi�ant (p < 0:002; sign test forthe peaks of the auray urves with 10-fold ross-validation).Visually, the SOM-L displays were omparable or bet-ter than the SOM-E displays. Sample visualizationsof the data made by the SOM-L are shown in Fig. 4.There is a novel kind of a display inluded, depitingthe relevane of a data variable at di�erent loations
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Figure 3: The auray (11) of SOM-Es and SOM-Ls inrepresenting bankrupty risk. The p(jx) areestimated by Gaussian kernels (top) and Gaus-sian mixtures with NU = 10 (bottom).of the map. The relevane rl(x) of the variable l at xis omputed as the ontribution of the variable to thedistane, rl(x) =s eTl J(x)elPm eTmJ(x)em ; (12)where el is the unit vetor parallel to the axis orre-sponding to the lth input variable.5 DisussionIn this paper, a novel approah to data analysis is de-sribed. A relevane-indiating signal is used to guidedistane-based unsupervised learning methods to on-entrate on relevant properties of data. Put in anotherway, we have introdued a way to arry out \semisu-pervised" exploratory data analysis.The metri of the data spae is modi�ed to measure rel-evant hanges in the data. As a ase study, we use theresulting non-Eulidean metri in the Self-OrganizingMap algorithm. The modi�ed SOM method was ap-plied to �nanial statements of enterprises, and the in-diator of whether the ompany went bankrupt or notguided the analysis. The resulting SOM then desribes



a b  dFigure 4: SOM-L displays of the bankrupty data. a Pos-terior bankrupty probability, b empirial ratioof healthy to bankrupt ompanies,  distribu-tion and d relevane of a pro�tability india-tor. The hexagons orrespond to SOM unitsand light shades denote high values.only suh variation of the �nanial statements that or-relates with the bankrupty sensitivity of the ompa-nies. The results were satisfatory both qualitativelyand quantitatively in that the ompanies that laterwent bankrupt beame better separated on the learningmetri SOM, and the fators a�eting the bankruptywere well presented.The goodness of the method depends on the estimatorused to approximate the relevane-indiating signal orauxiliary data. We will later investigate the properhoie of the estimator in more detail.The method desribed in this paper is a produt ofa larger researh projet where the aim is to developlearning metri methods for exploratory data analysis.So far we have developed a related lustering methodand applied it to gene expression data [12℄ and text do-uments [13℄. More details of the bankrupty preditionappliation desribed in this paper are available in [3℄.AknowledgmentsThe authors would like to thank Finnvera Ltd. andpartiularly Pentti Bergius for the data set, KimmoKiviluoto for his help regarding its interpretation, andthe Aademy of Finland for �nanial support.Referenes[1℄ T. S. Jaakkola and D. Haussler, \Exploiting gen-erative models in disriminative lassi�ers," in Ad-vanes in Neural Information Proessing Systems 11,Mihael S. Kearns, Sara A. Solla, and David A. Cohn,
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