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Abstract. Improved methods are presented for learning metrics that
measure only important distances. It is assumed that changes in pri-
mary data are relevant only to the extent that they cause changes in
auxiliary data, available paired with the primary data. The metrics are
here derived from estimators of the conditional density of the auxiliary
data. More accurate estimators are compared, and a more accurate ap-
proximation to the distances is introduced. The new methods improved
the quality of Self-Organizing Maps (SOMs) significantly for four of the
five studied data sets.

1 Introduction

Variable selection or feature extraction is a burning problem especially for ex-
ploratory (descriptive) data analysis. The quality of the results is determined by
the selection since there is no other supervision. Poor features may emphasize
uninteresting properties of the data.

An alternative view to feature extraction is that the topology and the metric
of the data space need be chosen. We study the choice of the metric; if the
topology need be changed it can be done as a preprocessing step.

Assume that there exists auxiliary data ¢ paired with the primary data x.
Here x is vector-valued and ¢ categorical (finite number of possible values).
Assume further that the goal is to study the x, explore or describe them, but
that changes in x are only relevant to the extent they cause changes in ¢. An
example is analysis of the causes of bankruptcy, where the x contains features
of the financial state of a company and ¢ denotes whether the company goes
bankrupt or not.

In the learning metrics principle ([5, 9]; see [4, 5] for more detailed discussion)
the distance d between two close-by points x and x + dx of the primary data
space is measured by approximations to the distance between the important
things, the distribution of ¢:

d?(x,x + dx) = Dgr,(p(c|x), p(c|x + dx)) = dx* J(x)dx . (1)



Here Dy, is the Kullback-Leibler divergence and J(x) is the Fisher information
matrix having x as its parameters,

I(x) = Eyiepo) [(Vxlogp(c)) (Vxlogp(ex) ] - 2)

In earlier studies the metric has either been incorporated into the cost func-
tion of a method [9], or the density p(c|x) has been estimated and the Fisher
information matrix computed from the estimate [5]. Here we extend the latter
approach by more accurate density estimators and distance approximation. Since
different kinds of data sets may require different kinds of estimators, we suggest
choosing the estimator using a validation set.

2  Self-Organizing Maps in Learning Metrics

We will apply the learning metrics to Self-Organizing Maps (SOMs) [7] to im-
prove our earlier results [5].

A SOM is a regular lattice of units i. Each unit contains a model m;, a
representation of particular kinds of data in the data space. The model vectors
are adapted with an iterative training algorithm to follow the distribution of the
training data. For brevity, we call a SOM trained in learning metrics SOM-L
and a SOM in Euclidean metrics SOM-E.

The training algorithm repeats two steps, winner search and adaptation. At
each iteration ¢, an input sample x(t) is picked randomly from the data, and a
winner SOM unit w(t) is selected by

w(t) = arg miin d?(x(t), m;(t)) , (3)

where d? is the distance function. Here the distance is not in the traditional
Euclidean metric but the learning metric (1) derived from the auxiliary data.

When the winner has been selected, the model vectors are all adapted towards
the input sample in the steepest descent direction. For learning metrics the
direction is given by the natural gradient. For the local approximation (1) this
leads to the familiar update rule

my (¢ + 1) = mi(t) + a(t) i () (x(8) — my(2)) (4)

which we have used in this paper. Here «(t) is the learning rate and hy,;(t) is
the neighborhood function, a decreasing function of the distance between i and
w(t) on the SOM lattice.

In practical SOM-L training we use two approximations for calculating learn-
ing metric distances. Firstly, the matrix J(x) is computed from an estimate of
the conditional density p(c|x). The investigated alternatives are introduced in
Section 3. Secondly, the global distance between two points x and m is actually
defined as the minimal path integral of the local distances, where the minimum
is taken over all paths between x and m. Finding exact minimal path integrals is
computationally prohibitive, so in Section 4 we consider several approximations.
The approximations are compared empirically in Section 5.



3 Estimating the Auxiliary Distribution

Learning of the metric is based on the Fisher information matrix of a conditional
density estimate. Here we discuss alternative kernel estimators.

We have previously derived the conditional densities from estimators of the
joint density of x and ¢. Two standard estimators, the nonparametric Parzen ker-
nel estimate and a version of Mixture Discriminant Analysis (MDA2) were used.
Here we compare other estimators to MDA2; Parzen was too computationally
intensive to be included as such.

Since only the conditional densities p(c|x) are needed here, directly estimating
them should improve the results. We consider two alternatives. The first is a kind
of a mixture of experts (see [3]):

Prrom(cilx) =Y y;(x)tji - (5)

Here Ny is the number of mixture components. The 1);; are the parameters of
the multinomial distribution generated by the expert j. Their sum is fixed to
unity by softmax-reparameterization (not shown). The y;(x) form the gating
network; we used Gaussians normalized to sum to unity for each x.

The second method for conditional density estimation is a product of experts
[2], here

roe(ex) = 5 D ex (1500 og ) ©)

where Z(x) normalizes the density to sum to one.

The MDA2 is fitted to data by maximizing the joint log-likelihood with re-
spect to the v;; and the parameters of the gating network by the EM algorithm.
For the other models the mean conditional log-likelihood of the auxiliary data is
maximized by conjugate gradient algorithms. All estimators include a free dis-
persion parameter, the variance of the Gaussians. This parameter is chosen to
maximize the conditional likelihood of auxiliary data on a validation set.

4 Distance Approximations

The true learning metric distances are minimal path integrals which must be
approximated. A simple approximation CZ% of the squared distance, used earlier
in e.g. [5], is to evaluate the metric at the input sample x and to extend the local
distance to the whole space. In winner search the distance becomes

di(x,m) = (m —x)"J(x)(m — x) . (7)

We call this the ’1-point approximation’. It is accurate when the model vec-
tors are close to x. Note that for winner selection we need not know the exact
distances but only which one is the smallest.



Table 1. The Data Sets

Data set Dimensions Classes Samples
Landsat Satellite Data * 36 6 6435
Letter Recognition Data * 16 26 20000
Phoneme Data from LVQ_PAK (8] 20 14 3656
TIMIT Data from [10] 12 41 14994
Bankruptcy Data used in [5] 23 2 6195

* from UCI Machine Learning Repository [1]

Our earlier conditional density estimates have been smooth, obtained with a
small number of wide kernels. Such estimates may fail to notice some detail in the
density but the simple local approximation (7) may be reasonably accurate be-
cause of the smoothness. However, for more accurate estimators that potentially
change more rapidly the local approximation may hold only very locally.

A more accurate but still computable approximation is obtained by assuming
that the minimal path is a line but that the metric may change along the line.
When the metric along the line connecting x and m is evaluated at T points,
the distance becomes

T

B (e m) = (Z (=73 (x+ o)) (m ) /> - ®)

t=1

We call the above the "T-point approximation’.

The T-point approximations involve more computation. The computational
complexity of a single SOM-L training iteration becomes O(Npry Ne Ny NsomT)
for Ngoar model vectors with dimensionality Nprar, Ne classes, and Ny mix-
ture components. By comparison, the complexity of the 1-point approximation
is O(NprmuNe(Nu + Nsowm))-

The T-point winner search may be speeded up by first using 1-point distances
to winnow the set of winner candidates; e.g. the W model vectors that are
closest according to CZ% are selected and the winner is chosen from these by CZ2T
In the empirical tests of Section 5 we have used T" = 10 evaluation points and
W = 10 winner candidates, resulting in a 20-fold speed-up compared to the
unwinnowed T-point approximation, but computational time compared to the
1-point approximation was still about 100-fold.

5 Empirical Testing

The methods were compared on five different data sets (Table 1). The class labels
were used as the auxiliary data and the data sets were preprocessed by removing
the classes with only a few samples.

The metric was estimated from training data with the methods presented in
Sections 3 and 4. The number of mixture components (10, 30, or 100) and the



dispersion parameter were selected using a validation set. The SOM-E and the
SOM-L were trained in the resulting metrics, using both the 1-point and T-point
(T =10, W = 10) distance approximations for SOM-L.

The accuracy of the resulting SOMs in representing the important auxiliary
data was measured by the conditional likelihood evaluated at the winner SOM
units [5]. The quality of the SOM visualizations was monitored visually.

The significance of the difference between the best SOM-L and SOM-E was
tested using 10-fold cross-validation. The dispersion (Gaussian variance) was
validated anew in each fold to maximize map accuracy, using part of the training
set for validation. The accuracy (likelihood) for the best map was then calculated
for the test set.

To reduce the consumption of computational resources, we selected a subop-
timal density estimator for the SOM-L having T-point distances: the estimator
optimal for 1-point SOM-L was chosen with 30 components.

6 Results

The learning metrics improved the accuracy of the SOMs on all data sets; the
improvements were significant by t-test (p < 0.05) between SOM-E and SOM-L
with the T-point approximation, except for the Bankruptcy data (p = 0.07).

The mixture of experts (5) was best for SOM-L in three sets, the product of
experts in one and MDAZ2 in one.

The more accurate distance approximation (8) is crucial. The SOM-L with
the 1-point approximation was only comparable or worse than SOM-E on two
data sets, while SOM-Ls trained with the improved approximation are on average
better on all sets.

Figure 1 shows the performance of the SOM-L and SOM-E on one data set
in the dispersion validation phase, averaged over the cross-validation folds. The
SOM-L with the 1-point approximation is here roughly equal to SOM-E, but
the SOM-L with the T-point approximation is clearly better for all dispersion
values.

7 Discussion

More accurate estimation of the learning metrics still improves the SOM results
from the earlier results. The computational complexity is higher but manageable
with suitable approximations.

Based on preliminary results it seems that both of the new elements, more
accurate density estimation and more accurate distance approximation, are re-
quired. The earlier one-point distance approximations are not accurate enough
for the new density estimators capable of following more accurately the details
of the conditional density.
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Fig. 1. Average accuracy of SOM-L vs. SOM-E for the TIMIT data over the 10-fold
validation sets. The likelihood given by the best pdf estimate (mixture of 100 experts)
is included for reference; it is the approximate upper limit.
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