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Making triangulations 4-connected using flips
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Abstract

We show that any triangulation on n vertices can
be transformed into a 4-connected one using at most
b(3n − 6)/5c edge flips. We also give an example of a
triangulation that requires d(3n−10)/5e flips to be made
4-connected, showing that our bound is tight. Our re-
sult implies a new upper bound on the diameter of the
flip graph of 5.2n − 24.4, improving on the bound of
6n− 30 by Mori et al. [4].

1 Introduction

Given a triangulation (a maximal planar simple graph)
on a set of n vertices, we define an edge flip as removing
an edge (a, b) from the graph and replacing it with the
edge (c, d), where c and d are the other vertices of the
triangles that had (a, b) as an edge. Figure 1 shows an
example of an edge flip.

Flips have been studied mostly in two different set-
tings: the geometric setting, where we are given a fixed
set of points in the plane and edges are straight line seg-
ments, and the combinatorial setting, where we are only
given the clockwise order of edges around each vertex
(a combinatorial embedding). In this paper, we concern
ourselves with the number of flips required to transform
one triangulation into another in the combinatorial set-
ting. We give a brief overview of previous work on this
problem. A more detailed overview, including applica-
tions and related work, can be found in a survey by Bose
and Hurtado [2].

c

d

a

b
c

d

a

b

Figure 1: An example triangulation before and after
flipping edge (a, b).
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Given a set of n vertices, we can define its flip graph
as the graph with a vertex for each distinct triangulation
and an edge between two vertices if their corresponding
triangulations differ by a single flip. Two triangula-
tions are considered distinct if they are not isomorphic.
In his seminal paper, Wagner [7] showed that there al-
ways exists a sequence of O(n2) flips that transforms a
given triangulation into any other triangulation on the
same set of vertices. In terms of the flip graph, Wagner
showed that it is connected and has diameter O(n2).
Komuro [3] was the first to show that the diameter is
linear and Mori et al. [4] currently have the strongest
upper bound of 6n− 30.

The above results all show how to transform any tri-
angulation into a fixed canonical triangulation. Trans-
formation of one triangulation into another is then
straightforward by transforming the first into the canon-
ical triangulation and transforming the canonical trian-
gulation into the second by reversing the sequence of
flips for the second. Mori et al.’s algorithm to trans-
form a triangulation into the canonical one consists of
two steps. They first make the given triangulation 4-
connected using at most n−4 flips. Since a 4-connected
triangulation is always Hamiltonian [6], they then show
how to transform this into the canonical triangulation
by at most 2n−11 flips, using a decomposition into two
outerplanar graphs that share a Hamiltonian cycle as
their outer faces.

The problem of making triangulations 4-connected
has also been studied in the setting where many edges
may be flipped simultaneously [1]. Bose et al. showed
that any triangulation can be made 4-connected by one
simultaneous flip and that O(log n) simultaneous flips
are sufficient and sometimes necessary to transform be-
tween two given triangulations.

In Section 2, we show that any triangulation can
be made 4-connected using at most (3n − 6)/5 flips.
This improves the first step of the construction by
Mori et al. and results in a new upper bound on the
diameter of the flip graph of 5.2n−24.4. Then we show
in Section 3 that there are triangulations that require
(3n − 10)/5 flips to be made 4-connected. Since the
difference with the upper bound is less than one flip,
this bound is tight. Section 4 contains proofs for var-
ious technical lemmas that are necessary for the main
result. Section 5 contains conclusions and future work.
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2 Upper Bound

In this section we prove an upper bound on the num-
ber of flips required to make any given triangulation
4-connected. Specifically, we show that (3n− 6)/5 flips
always suffice. The proof references several technical
lemmas whose proofs can be found in Section 4.

We are given a triangulation T , along with a com-
binatorial embedding specifying the clockwise order of
edges around each vertex of T . In addition, one of the
faces of T is marked as the outer face. A separating
triangle D is a cycle in T of length three whose removal
splits T into two non-empty connected components. We
call the component that contains vertices of the outer
face the exterior of D, and the other component the
interior of D. A vertex in the interior of D is said to
be inside D and likewise, a vertex in the exterior of D
is outside D. An edge is inside a separating triangle if
one of its endpoints is inside. A separating triangle A
contains another separating triangle B if and only if the
interior of B is a subgraph of the interior of A with a
strictly smaller vertex set. If A contains B, A is called
the containing triangle. A separating triangle that is
contained by the largest number of separating triangles
in T is called deepest. Since containment is transitive, a
deepest separating triangle cannot contain any separat-
ing triangles, as these would have a higher number of
containing triangles. Finally, we call an edge that does
not belong to any separating triangle a free edge.

We will remove all separating triangles from T by
repeatedly flipping an edge of a deepest separating tri-
angle. This makes T 4-connected, as a triangulation is
4-connected if and only if it has no separating triangles.
This technique was also used by Mori et al. [4], who
proved the following lemma.

Lemma 1 In a triangulation with n ≥ 6 vertices, flip-
ping any edge of a separating triangle D will remove that
separating triangle. This never introduces a new sepa-
rating triangle, provided that the selected edge belongs to
multiple separating triangles or none of the edges of D
belong to multiple separating triangles.

Before we can prove our new upper bound, we need
to prove another property of separating triangles.

Lemma 2 In a triangulation T , every vertex v of a
separating triangle D is incident to at least one free edge
inside D.

Proof. Consider one of the edges of D incident to v.
Since D is separating, its interior cannot be empty and
since D is part of T , there is a triangular face inside D
that uses this edge. Now consider the other edge e of
this face that is incident to v.

The remainder of the proof is by induction on the
number of separating triangles contained in D. For the

base case, assume that D does not contain any other
separating triangles. Then e must be a free edge and
we are done.

For the induction step, there are two further cases. If
e does not belong to a separating triangle, we are again
done, so assume that e belongs to a separating triangle
D′. Since D′ is itself a separating triangle contained in
D and containment is transitive, the number of separat-
ing triangles contained by D′ must be strictly smaller
than that of D. Since v is also a vertex of D′, our induc-
tion hypothesis tells us that there is a free edge incident
to v inside D′. Since D′ is contained in D, this edge is
also inside D. �

Theorem 3 A triangulation on n ≥ 6 vertices can be
made 4-connected using at most b(3n− 6)/5c flips.

Proof. We prove this using a charging scheme. We be-
gin by placing a coin on every edge of the triangulation.
Then we flip an edge of a deepest separating triangle
(preferring edges that belong to multiple separating tri-
angles) until no separating triangles are left. We pay 5
coins for every flip. During this process, we maintain
two invariants:

• Every edge of a separating triangle has a coin.

• Every vertex of a separating triangle has an inci-
dent free edge that is inside the triangle and has a
coin.

These invariants have several nice properties. First, an
edge can either be a free edge or belong to a separat-
ing triangle, but not both. So at any given time, only
one invariant applies to an edge. Second, an edge only
needs one coin to satisfy the invariants, even if it is on
multiple separating triangles or is a free edge for mul-
tiple separating triangles. These two properties imply
that the invariants hold initially, since by Lemma 2, ev-
ery vertex of a separating triangle has an incident free
edge. Third, flipping an edge that satisfies the crite-
ria of Lemma 1 cannot upset the invariants, since its
separating triangle is removed and no new separating
triangles are introduced. Finally, since we pay 5 coins
per flip and there are 3n− 6 edges, by placing a coin on
each edge, we can flip at most b(3n− 6)/5c edges.

Now let us take a closer look at the kind of edges we
can use to pay for flipping an edge of a deepest separat-
ing triangle D. We identify four types of edges here:

Type 1 ( ). The flipped edge e. By Lemma 1, e cannot
belong to any separating triangle after the flip, so the
first invariant still holds if we remove e’s coin. Before
the flip, e was not a free edge, so the second invariant
was satisfied even without e’s coin. Since the flip did
not introduce any new separating triangles, this is still
the case.
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Type 2 ( ). A non-flipped edge e of D that is not shared
with any other separating triangle. By Lemma 1, the
flip removed D and did not introduce any new separat-
ing triangles. Therefore e cannot belong to any separat-
ing triangle, so the first invariant still holds if we remove
e’s coin. By the same argument as for the previous type,
e is also not required to have a coin to satisfy the second
invariant.
Type 3 ( ). A free edge e of a vertex of D that is not
shared with any containing separating triangle. Since e
did not belong to any separating triangle and the flip
did not introduce any new ones, e is not required to have
a coin to satisfy the first invariant. Further, since the
flip removed D and e is not incident to a vertex of an-
other separating triangle that contains it, it is no longer
required to have a coin to satisfy the second invariant.
Therefore we can remove its coin without violating ei-
ther invariant.
Type 4 ( ). A free edge e incident to a vertex v of D,
where v is an endpoint of an edge e′ of D that is shared
with a non-containing separating triangle B, provided
that we flip e′. Any separating triangle that contains D
but not B must share e′ (Lemma 10) and is therefore re-
moved by the flip. So every separating triangle after the
flip that contains D also contains B. In particular, this
also holds for containing triangles that share v. Since
the second invariant requires only one free edge with a
coin for each vertex, we can safely charge the one inside
D, as long as we do not charge the free edge in B.

To decide which edges we flip and how we pay for
each flip, we distinguish five cases, based on the num-
ber of edges shared with other separating triangles and
whether any of these triangles contain D. These cases
are illustrated in Figures 2, 3, and 4.

Figure 2: The edges that are charged if the deepest
separating triangle does not share any edges with other
separating triangles. The flipped edge is dashed and
the charged edges are marked with red boxes (Type 1),
white boxes (Type 2), white disks (Type 3) or red disks
(Type 4).

Case 1. D does not share any edges with other separat-
ing triangles (Figure 2). In this case, we flip any of D’s
edges. By the first invariant, each edge of D has a coin.
These edges all fall into Types 1 and 2 above, so we use
their coins to pay for the flip. Further, D can share at
most one vertex with a containing triangle (Lemma 8),

so we charge two free edges, each incident to one of the
other two vertices (Type 3).

D

B

e

Figure 3: The edges that are charged if the deepest sep-
arating triangle only shares edges with non-containing
separating triangles.

Case 2. D does not share any edge with a containing tri-
angle, but shares one or more edges with non-containing
separating triangles (Figure 3). In this case, we flip one
of the shared edges e. We charge e (Type 1) and two
free edges inside D that are incident to the vertices of
e (Type 4). This leaves us with two more coins that we
need to charge.

Let B be the non-containing separating triangle that
shares e with D. We first show that B must be deep-
est. There can be no separating triangles that contain
D but not B, as any such triangle would have to share
e (Lemma 10) and D does not share any edge with a
containing triangle. Therefore any triangle that con-
tains D must contain B as well. Since D is contained in
the maximal number of separating triangles, this holds
for B as well. This means that B cannot contain any
separating triangles and to satisfy the second invariant
we only need to concern ourselves with triangles that
contain both B and D.

Now consider the number of vertices of the quadri-
lateral formed by B and D that can be shared with
containing triangles. Since D does not share an edge
with a containing triangle, it can share at most one ver-
tex with a containing triangle (Lemma 8). Now sup-
pose that B shares an edge with a containing triangle.
Then one of the vertices of this edge is part of D as
well. Since the other two vertices are both part of D,
they cannot be shared with containing triangles. If B
does not share an edge with a containing triangle, it too
can share at most one vertex with containing triangles.
Thus, in both cases, at most two vertices of the quadri-
lateral can be shared with containing triangles and we
charge two free edges, each incident to one of the other
two vertices, for the last two coins (Type 3).
Case 3. D shares an edge with a containing triangle A
and does not share the other edges with any separating
triangle (Figure 4a). In this case, we flip the shared
edge and charge all of D’s edges, since one is the flipped
edge (Type 1) and the others are not shared (Type 2).
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Figure 4: The edges that are charged if the deepest separating triangle shares an edge with a containing triangle.

The vertex of D that is not shared with A cannot be
shared with any containing triangle (Lemma 9), so we
charge a free edge incident to this vertex (Type 3).

Further, if A shares an edge with a containing tri-
angle, it either shares the flipped edge, which means
that the containing triangle is removed by the flip, or
it shares another edge, in which case the vertex that is
not an endpoint of this edge cannot be shared with any
containing triangle. If A does not share an edge with a
containing triangle, it can share at most one vertex with
a containing triangle (Lemma 8). In both cases, one of
the vertices of the flipped edge is not shared with any
containing triangle (Type 3), so we charge a free edge
incident to it.

Case 4. D shares an edge with a containing triangle
A and one other edge with a non-containing separating
triangle B (Figure 4b). In this case, we flip the edge that
is shared with B. Let v be the vertex of D that is not
shared with A. We charge the flipped edge (Type 1), the
unshared edge of D (Type 2) and two free edges inside
D that are incident to the vertices of the flipped edge
(Type 4). We charge the last coin from a free edge in B
that is incident to v. We can charge it, since v cannot
be shared with a triangle that contains D (Lemma 9)
and every separating triangle that contains B but not
D must share the flipped edge as well (Lemma 10) and
is therefore removed by the flip.

All that is left is to argue that there can be no sepa-
rating triangle contained in B that requires the charge
to satisfy the second invariant. Every separating trian-
gle that contains D but not B must share the flipped
edge (Lemma 10). Since D already shares another edge
with a containing triangle and it cannot share two edges
with containing triangles (Lemma 7), all separating tri-
angles that contain D must also contain B. Since D is
deepest, B must be deepest as well and therefore cannot
contain any separating triangles.

Case 5. D shares one edge with a containing triangle A
and the other two with non-containing separating tri-
angles (Figure 4c). In this case we also flip the edge

shared with one of the non-containing triangles. The
charged edges are identical to the previous case, except
that there is no unshared edge any more. Instead, we
charge the last free edge in D.

Before we argue why we are allowed to charge it, we
need to give some names. Let e be the edge of D that is
not shared with A and is not flipped. Let B be the non-
containing triangle that shares e and let v be the vertex
that is shared by A, B and D. Now, any separating
triangle that shares v and contains D must contain B
as well. If it did not, it would have to share e with D,
but D already shares an edge with a containing triangle
and cannot share more (Lemma 7). Since the second
invariant requires only a single charged free edge for
each vertex of a separating triangle, it is enough that v
still has an incident free edge in B.

This shows that we can charge 5 coins for every flip,
while maintaining the invariants. Now all that we need
to show is that after performing these flips we have in-
deed removed all separating triangles. As long as our
triangulation has a separating triangle, we can always
find a deepest separating triangle D. Since D shares at
most one edge with separating triangles (Lemma 7), one
of the cases above must apply to D. This gives us an
edge of D to flip and five edges to charge, each of which
is guaranteed by the invariants to have a coin. There-
fore the process stops only after all separating triangles
have been removed. �

Corollary 4 The diameter of the flip graph of all tri-
angulations on n vertices is at most 5.2n− 24.4.

Proof. Mori et al. [4] showed that any two 4-connected
triangulations can be transformed into each other by
at most 4n − 22 flips. By Theorem 3, we can make a
triangulation 4-connected using at most b(3n − 6)/5c
flips. Hence, we can transform any triangulation into
any other using at most 2 · (3n − 6)/5 + 4n − 22 ≤
5.2n− 24.4 flips. �
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3 Lower Bound

In this section we present a lower bound on the number
of flips that are required to remove all separating trian-
gles from a triangulation. Specifically, we present a tri-
angulation that has (3n−10)/5 edge-disjoint separating
triangles, thereby showing that there are triangulations
that require this many flips to make them 4-connected.

The triangulation that gives rise to the lower bound is
constructed recursively and is similar to the Sierpiński
triangle [5]. The construction starts with an empty tri-
angle. The recursive step consists of adding an inverted
triangle in the interior and connecting each vertex of the
new triangle to the two vertices of the opposing edge of
the original triangle. This is recursively applied to the
three new triangles that share an edge with the inserted
triangle, but not to the inserted triangle itself. After k
iterations, instead of applying the recursive step again,
we add a single vertex in the interior of each triangle
we are recursing on and connect this vertex to each ver-
tex of the triangle. We also add a single vertex in the
exterior face so that the original triangle becomes sepa-
rating. The resulting triangulation is called Tk. Figure 5
illustrates this process for T1 and T2.

a)

b)

Figure 5: Triangulations T1 (a) and T2 (b), before and
after the final step of the construction.

Theorem 5 There are triangulations that require
d(3n− 10)/5e flips to make them 4-connected.

Proof. In the construction scheme presented above,
each of the triangles we recurse on becomes a separating

triangle that does not share any edges with the original
triangle or the other triangles that we recurse on. Thus
all these separating triangles are edge-disjoint. But how
many of these triangles do we get? Let Li be the num-
ber of triangles that we recurse on after i iterations of
the construction, so L0 = 1, L1 = 3, etc. Now let Vi be
the number of vertices of Ti. We can see that V1 = 10
and if we transform T1 into T2, we have to remove each
of the interior vertices added in the final step and re-
place them with a configuration of 6 vertices. So to get
T2, we add 5 vertices in each of the L1 triangles. This
is true in general, giving

Vi = Vi−1 + 5Li−1 = 10 + 5
i∑

j=2

Lj−1 (1)

Let Si be the number of separating triangles of Ti. We
can see that S1 = 4 and each recursive refinement of a
separating triangle leaves it intact, while adding 3 new
ones. Therefore

Si = Si−1 + 3Li−1 = 4 + 3
i∑

j=2

Lj−1 (2)

From Equation (1), we get that

i∑
j=2

Lj−1 =
Vi − 10

5

Substituting this into Equation (2) gives

Si = 4 + 3
Vi − 10

5
=

3Vi − 10
5

Since each flip removes only the separating triangle that
the edge belongs to, we need (3n− 10)/5 flips to make
this triangulation 4-connected. �

4 Lemmas and proofs

This section contains proofs for the technical lemmas
used in the proof of Theorem 3. The proofs use the
following result, which is proven in Lemmas 11 and 12
in the appendix.

Lemma 6 A separating triangle A contains a separat-
ing triangle B if and only if there is a vertex of B inside
A.

Lemma 7 A separating triangle can share at most one
edge with containing triangles.

Proof. Suppose we have a separating triangle D that
shares two of its edges with separating triangles that
contain it. First of all, these triangles cannot be the
same, since then they would be forced to share the third
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edge as well, which means that they are D. Since a tri-
angle does not contain itself, this is a contradiction. So
call one of these triangles A and call one of the trian-
gles that shares the other edge B. Let x, y and z be the
vertices of D, such that x is shared with A and B, y is
shared only with A and z is shared only with B. Let v
be the vertex of B that is not shared with D.

By Lemma 6, z must be inside A, while y must be
inside B, since in both cases the other two vertices of
D are shared and therefore not in the interior. But this
means that A contains B and B contains A. This is a
contradiction, since by transitivity it would imply that
the interior of A is a subgraph of itself with a strictly
smaller vertex set. �

Lemma 8 A separating triangle D that shares no edge
with containing triangles can share at most one vertex
with containing triangles.

Proof. Suppose that D shares two of its vertices with
containing triangles. First, both vertices cannot be
shared with the same containing triangle, since then the
edge between these two vertices would also be shared.
Now let A be one of the containing triangles and let B
be one of the containing triangles sharing the other ver-
tex. By Lemma 6, there must be a vertex of D inside
A. So then both vertices of D that are not shared with
A must be inside A, otherwise there would be an edge
between the interior and the exterior of A. In particu-
lar, the vertex shared by B and D lies inside A, which
means that A contains B. But the reverse is also true,
so B contains A as well, which is a contradiction. �

Lemma 9 A separating triangle that shares an edge
with a containing triangle cannot share the unshared
vertex with another containing triangle.

Proof. Suppose we have a separating triangle D =
(x, y, z) that shares an edge (x, y) with a containing tri-
angle A and the other vertex z with another containing
triangle B. By Lemma 6, x and y have to be inside
B, since they cannot be outside B and they cannot be
shared with B by Lemma 7. Since x and y are vertices
of A, this means that B contains A. Similarly, z has to
be inside A and since it is a vertex of B, A contains B.
This is a contradiction. �

Lemma 10 Given two separating triangles A and B
that share an edge e, any separating triangle that con-
tains A but not B must use e.

Proof. Suppose that we have a separating triangle D
that contains A, but not B and that does not use one
of the vertices v of e. By Lemma 6, v must be inside D.
But then D would also contain B, as v is a vertex of B
as well. Therefore D must share both vertices of e and
hence e itself. �

5 Conclusions and future work

We showed that any triangulation can be made 4-
connected using at most b(3n− 6)/5c flips, while there
are triangulations that require d(3n−10)/5e flips. Since
the difference is less than a single flip, these bounds are
tight. An obvious question is how to compute the nec-
essary flips efficiently. If we only guarantee that we use
at most n − 4 flips, it is possible to compute the set of
edges to be flipped in O(n) time. If we want to stay
below the upper bound however, we only have an algo-
rithm that computes the set of edges used in the proof
in O(n2) time.

Another interesting problem is to minimize the num-
ber of flips to make a triangulation 4-connected. We
showed that our technique is worst-case optimal, but
there are cases where far fewer flips would suffice. There
is a natural formulation of the problem as an instance of
3-hitting set, where the subsets correspond to separating
triangles and we need to pick a minimal set of edges such
that we include at least one edge from every separating
triangle. This gives a simple 3-approximation algorithm
that picks an arbitrary separating triangle and flips all
shared edges or an arbitrary edge if there are no shared
edges. However, it is not clear whether the problem is
NP-hard, so it might even be possible to compute the
optimal sequence in polynomial time.

Our result implies a new bound of 5.2n − 24.4 on
the diameter of the flip graph. It is likely that this
can be reduced further. For example, all of the current
algorithms use the same, single, canonical form. This
leaves several interesting questions open. Is there an-
other canonical form that gives a better upper bound?
Can we gain something from using multiple canonical
forms and picking the closest? And can we find or ap-
proximate the actual shortest flip path?
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Appendix

Lemma 11 If a separating triangle A contains a separating
triangle B, then there is a vertex of B inside A and no vertex
of B can lie outside A.

Proof. Let z be a vertex in the interior of B and let y be a
vertex of A that is not shared with B. Since the interior of
B is a subgraph of the interior of A and y is not inside A, y
must be outside B. Since every triangulation is 3-connected,
there is a path from z to y that stays inside A. This path
connects the interior of B to the exterior, so there must be
a vertex of B on the path and hence inside A.

Now suppose that there is another vertex of B outside
A. Since all vertices of a triangle are connected by an edge,
there is an edge between this vertex and the vertex of B
inside A. This contradicts the fact that A is a separating
triangle, so no such vertex can exist. �

Lemma 12 If a vertex x of a separating triangle B is inside
a separating triangle A, then A contains B.

Proof. Let y be a vertex of A that is not shared with B.
There is a path from y to the outer face that stays in the
exterior of A. There can be no vertex of B on this path, since
this would create an edge between the interior and exterior
of A. Therefore y is outside B.

Now suppose that A does not contain B. Then there is a
vertex z inside B that is not inside A. There must be a path
from z to x that stays inside B. Since x is inside A, there
must be a vertex of A on this path. But since y is outside B,
this would create an edge between the interior and exterior
of B. Therefore A must contain B. �


