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1 Introduction

Let P be a set of n points in R2. A point q (not
necessarily in P ) is called a centerpoint of P if each
closed halfplane containing q contains at least n

3
points of P . Note that, equivalently, any convex
set that contains more than 2

3n points of P also
has to contain q. It is a well known fact that a
centerpoint always exists and the constant 2

3 is the
best possible (see, e.g., [6] for more details). Can
we improve this constant by using, say, two points,
or some other constant number of points? What
happens when we replace convex sets by, say, axis-
parallel rectangles? Let us start by generalizing the
notion of a centerpoint.

Definition 1 ([5]) Let P be an n-point set in R2.
Consider a family S of sets in R2. A set Q ⊂ R2 is
called a weak ε-net for P (with respect to S) if for
any S ∈ S with |S ∩ P | > εn we have S ∩ Q 6= ∅.
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Further, if Q ⊆ P , then Q is called a (strong) ε-net
for P with respect to S.

Any centerpoint of P constitutes a 1-point weak
2
3 -net of P with respect to the class of convex sets.
The concepts of ε-net and weak ε-net were first de-
fined by Haussler and Welzl [5] and quickly found
many applications in range searching, approxima-
tion algorithms and geometric optimization. When
the VC-dimension of the range space (P,S) is d <
∞, it is known that there exists an ε-net (and so a
weak ε-net) of size O((d/ε) log(d/ε)) [5]. When C is
the family of all convex sets, the VC-dimension of
the range space (P, C) is infinite and the previous
result does not apply. Nevertheless, it is known that
for any ε and for any set P of points in the plane,
there exists a weak ε-net for P with respect to C
with size at most O( 1

ε2 ), see [1]. The best known
lower bound is the trivial Ω( 1

ε ) bound, which holds
already when all points are on a line. See, e.g., [6]
for more details on weak ε-nets.

In this paper, we will mainly consider weak ε-
nets of small constant size. Let 0 < εSi < 1 denote
the minimum real number such that for any finite
point set P there exists a set Q of i points that is an
weak εSi -net for P with respect to S. We provide
upper and lower bounds for εSi for small sizes i,
when S is the family of all convex sets or the family
of all axis-parallel rectangles.

2 Convex sets

Let C denote the family of all convex sets in the
plane. In this section, we derive various bounds on
the quantity εCi , for i ≥ 2. We start by proving a
lower bound on εC2 and εC3 .

Theorem 2 εC2 ≥ 5
9 and εC3 ≥ 5

12 .

Proof. For any n, we construct a set P of n points
such that, for any pair of points q, r in the plane,
there is a convex set K that avoids q, r and con-
tains at least 5

9n points of P . See Figure 1. The
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set P comes in three groups, each group consist-
ing of three subsets arranged in a triangular shape.
Each of the nine subsets, call them 1, 2, . . . , 9, lies in
some disk of diameter δ (for δ sufficiently small) and
contains n

9 points. For any choice of q and r, let L
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Figure 1: Lower bound construction for εC2

be the line through q and r. By construction of P ,
line L can intersect the convex hull of at most two
of the subsets 1, . . . , 9. We may assume that L has
at least three out of the nine subsets fully contained
on each side. We may also assume that L intersects
the convex hull of at least one subset. For, oth-
erwise, at least 5

9n points of P lie in a fixed open
halfplane bounded by L. Write CH(i, j, . . .) for the
convex hull of the point set i ∪ j ∪ . . .. Without loss
of generality, assume that L intersects CH(1, 2, 3).
Then, in order to stab CH(4, 5, 6, 7, 8), one of the
points in question, say r, has to lie on or below the
upper tangent of CH(4) and CH(8). For placing
the point q, two cases remain.

Case (1) Line L intersects CH(2); see Figure 1,
left side. Exploiting symmetries, it is no loss of gen-
erality to assume that L be not closer to 6 than
to 7. As we must have q ∈ L ∩ CH(2, 3, 4, 5, 6),
q will be arbitrarily close to CH(2) if the disk we
assumed to contain the set 2 becomes arbitrarily
small. So, for sufficiently small disk diameter δ,
K = CH(1, 3, 4, 5, 6) will avoid both q and r.

Case (2) Line L intersects CH(3) (or, sym-
metrically, CH(1)); see Figure 1, right side.
If L is not closer to 8 than to 7, then we
need q ∈ L ∩ CH(1, 2, 3, 8, 9). Otherwise, we need
q ∈ L ∩ CH(3, 4, 5, 6, 7). In both cases, q becomes
arbitrarily close to CH(3) if δ is chosen to be suffi-
ciently small. But now K = CH(1, 2, 4, 5, 6) avoids
both q and r.

In conclusion, for any two given points, we can
find a convex set K that avoids both points and
satisfies |K ∩ P | ≥ 5

9n. The lower bound for εC3 fol-

lows from circularly placing 4 ’triangular shapes’ in-
stead of the 3 and using similar arguments. Details
appear in the full version. �

We now turn to upper bounds. For arbitrary sets
of n points in the plane, we want to construct weak
ε-nets of given size i and with ’deficiency’ ε as small
as possible. The tools we use are ham-sandwich
cuts [6], as well as weak ε-nets of size at most i− 1
that we will have already shown to exist (starting
with i = 1, the well-known centerpoint).

The following terminology is used. Let P be any
n-point set in the plane. Let l be a vertical line
that splits the set P into two subsets of, say, r red
points and b blue points. Denote by h a line that
simultaneously halves the red subset and the blue
subset. This so-called ham-sandwich line h is well
known to exist. Finally, define q0 = l ∩ h. Refer to
Figure 2 where the constructions described below
are shown schematically. The point q0 is drawn in
square shape, and the red side of h is shaded.

Theorem 3 εC2 ≤ 5
8 , εC3 ≤ 7

12 , εC4 ≤ 4
7 , and εC5 ≤ 1

2 .

Proof. Let us first prove εC2 ≤ 5
8 . Choose the verti-

cal line l such that r = n
4 (and thus b = 3n

4 ). Let q1

be a centerpoint for the blue subset of P . We claim
that the set {q0, q1} is a weak 5

8 -net for P .

Let K be any convex set with q0, q1 /∈ K. As q0 /∈
K, the set K avoids at least one of the four quad-
rants defined by the line l and the halving line h.
(By convexity, K would contain q0, otherwise.) If
this quadrant is blue then K avoids at least 3

8n
(blue) points. If this quadrant is red then K avoids
at least 1

8n red points. In addition, as q1 /∈ K,
and q1 is a centerpoint for the blue points, K also
avoids at least 1

3 ·
3n
4 = 1

4n blue points. Altogether,
K avoids at least 3

8n points again. So, in both cases,
K cannot contain more that 5

8n points of P .

Next, we show εC3 ≤ 7
12 . To this end, choose line l

such that r = n
2 . Then each of the quadrants de-

fined by the lines l and h contains n
4 points of P .

Take q1 as a centerpoint for the red points, and
take q2 as a centerpoint for the blue points. Put
Q = {q0, q1, q2}. Then Q is a weak 7

12 -net for P by
the arguments below.

Let K be any convex set that avoids Q. Since K
does not contain q0, it must avoid some quadrant.
Assume, without loss of generality, that this quad-
rant is blue. Then K can contain at most n

4 blue
points. Since K avoids q1, and q1 is a centerpoint
for the red points, K contains at most 2

3 ·
n
2 red
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points. In total, at most (1
3 + 1

4 ) · n = 7
12n points

of P can lie in K.

To see that εC4 ≤ 4
7 holds, we proceed as below.

Choose r = n
7 , which gives b = 6n

7 . From above, we
know that a weak 7

12 -net of size three exists for the
blue points. Let Qb be such a net. We consider the
set Q = Qb ∪ {q0} that will be a weak 4

7 -net for P .

If a convex set K avoids Q then it avoids one
quadrant defined by l and h. If it is a blue quadrant
then K contains at most 4

7n points of P . If this
quadrant is red then K contain at most ( 1

14 + 7
12 ·

6
7 ) · n = 4

7n points of P as well. This follows from
the fact that K contains at most one red quadrant
and at most a fraction of 7

12 of the blue points.

Finally, let us argue that εC5 ≤ 1
2 . As done for

the net of size three, we choose l and h such that
each quadrant contains n

4 points of P . For the cor-
responding four subsets Pj of P , let qj be a center-
point, for 1 ≤ j ≤ 4. Then Q = {q0, . . . , q4} repre-
sents a weak 1

2 -net for P .

Each convex set K that avoids Q totally avoids
one subset, say P1. In addition, K avoids a frac-
tion of 1

3 of the points in each of P2, P3, and P4,
because the centerpoints of these subsets are in Q.
Thus at least n · ( 1

4 + 1
3 ·

3
4 ) = n

2 points are avoided
by K. �

Note that there exist other possibilities of com-
bining ham-sandwich cuts with weak ε-nets. For
example, when constructing a weak ε-net of size 3,
we could use a weak 5

8 -net of size 2 rather than two
centerpoints. Then the best vertical cut, r = 1

5 ,
evaluates to ε = 3

5 , which is slightly worse than
ε = 7

12 obtained in the proof above. For weak ε-nets
of size 4 there also is another construction, namely,
using one centerpoint and a size-2 net. We obtain
the same bound, however. For size 5, no other con-
struction competes with ε = 1

2 .
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Figure 2: Small weak ε-nets for convex sets

In general, it is preferable to use nets that are
as small as possible. To obtain an upper bound
on εCi for arbitrary net size i, we may apply the
construction for εC5 recursively. This evaluates to

εCi ≤
2
3
·
(

3
4

)k

for i =
1
3
· (4k+1 − 1), k ≥ 0.

A rough calculation shows that a weak ε-net of size
O( 1

ε5 ) with respect to C is obtained. Unfortunately
(but not surprisingly) this by far falls short of the
best known bound O( 1

ε2 ) in [1]; see also [2]. Still,
for small nets, our constructions are superior. For
example, to achieve ε = 1

2 a net of size eight (rather
than five) is needed in [1, 2].

3 Axis-parallel rectangles

This section presents bounds on εRi , where R de-
notes the family of all axis-parallel rectangles in the
plane.

Theorem 4 εR1 = 1
2 , εR2 = 2

5 , εR3 = 1
3 , εR4 ≤ 5

16 ,
εR5 ≤ 1

4 , εR8 ≤ 1
5 , εR10 ≤ 1

6 , εR12 ≤ 1
7 , εR6x+4 ≤ εRx /3.

Proof. We only present here the proof of the sec-
ond equality. The other proofs appear in the full
version. We start by showing that εR2 ≤ 2

5 . Let
l1 be a vertical line with exactly 2

5n points of P to
its left and let l2 be a vertical line with exactly 2

5n
points of P to its right. Similarly consider a line
µ1 (resp., µ2) with exactly 2

5n points of P below it
(resp., above it). Let q1, q2, q3, q4 be the vertices of
the rectangle formed by the intersection points of
these lines. See Figure 3 for an illustration. We will
show that at least one of the sets Q1 = {q1, q3} or
the set Q2 = {q2, q4} is a weak 2

5 -net for P . As-
sume to the contrary that neither of these sets is a
weak 2

5 -net for P . Observe that every axis parallel
rectangle that contains at least 2

5n points of P must
contain one of the vertices {q1, q2, q3, q4}. Assume
that there exists a rectangle avoiding the set Q1 and
containing more than 2

5n points of P . Such a rect-
angle must lie either above of q1 and to the left of
q3 or to the right of q1 and below q3. Assume with-
out loss of generality that the later situation occurs.
Symmetrically, there must exists a rectangle below
q2 and to the left of q4 that contains at least 2

5n
points of P . Let A,B,C, D, E, F be the number of
points in each of the six rectangles induces by the
arrangement of the lines l1, l2, µ1, µ2 that lie below
µ2. See Figure 3. We have:

A + B + C =
n

5
(1)

D + E + F =
2n

5
(2)

B + C + E + F >
2n

5
(3)

A + B + D + E >
2n

5
(4)
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q1
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q4

A B C

D E F

l1
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l2

Figure 3: The two vertical lines l1, l2 and two
horizontal lines µ1, µ2 intersect in four points
q1, q2, q3, q4.

Notice that by summing the last two inequali-
ties and subtracting the first two equalities we get
B + E > n

5 , a contradiction. Hence, εR2 ≤ 2
5 .

To show that εR2 ≥ 2
5 , we place a set P of n

points on two diagonal lines l1, l2 as depicted in Fig-
ure 4(a). Let h1 be a horizontal line with 2

5n points
above it. Similarly h2 has 2

5n points below it, v1 is
vertical and has 2

5n points to its left and v2 is ver-
tical and has 2

5n points to its right. The four lines
h1, h2, v1, v2 partition the plane into 9 axis paral-
lel rectangles. Denote those rectangles by Ai,j for
i, j = 1, . . . , 3 where Ai,j is the rectangle defined
by the i’th row and the j’th column. If a pair of
points q1, q2 is a weak 2

5 -net for P with respect to
axis parallel rectangles, then it is easily seen that
either A1,3 ∪ A3,1 contains {q1, q2} or A1,1 ∪ A3,3

contains {q1, q2}. Assume without loss of general-
ity the former case. Then A1,1 ∪ A1,2 ∪ A2,1 ∪ A2,2

is an axis-parallel rectangle containing at least 2
5n

points of P and avoiding {q1, q2}, a contradiction.
The other case is treated similarly. �

4 Remarks

It is interesting to note that some results on weak
ε-nets follow rather directly from classical results.
We illustrate this fact for D, the collection of all
discs in the plane.

Theorem 5 εD4 ≤ 1
2 .

Proof. Let P be a set of n points in the plane.

1
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Figure 4: (a) A lower bound construction showing
that εR2 ≥ 2

5 . (b) A similar lower bound construc-
tion showing εR3 ≥ 1

3 .

We need to show that there exists a set Q of four
points such that every disc d for which |d ∩ P | > n

2
must intersect Q. Consider the collection D′ ⊂ D
of all discs d that contains more than n

2 points of
P . Obviously every pair of discs of D′ must have a
non-empty intersection. By the result of [3], there
exists a set Q of four points that stab all discs in
D′. This completes the proof. �

In [4] it was proved that for any finite collection
of pairwise intersecting unit discs, there exists three
points that stab those discs. Thus, using the same
analysis as in the proof above we have that εU3 ≤ 1

2 ,
where U is the collection of all unit discs in the
plane.
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