Matching Edges and Faces in Polygonal Partitions
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Abstract

We define general Laman (count) conditions for
edges and faces of polygonal partitions in the plane.
Several well-known classes, including k-regular parti-
tions, k-angulations, and rank-k pseudo-triangulations,
are shown to fulfill such conditions. As a consequence,
non-trivial perfect matchings exist between the edge sets
(or face sets) of two such structures when they live on
the same point set. We also describe a link to span-
ning tree decompositions that applies to quadrangula-
tions and certain pseudo-triangulations.

1 Introduction

There exist several results [2] concerning matchings be-
tween the edges (or triangles) in two given triangula-
tions on top of the same point set S. For example,
for any two triangulations 77 and T of S, we can pair
each edge e; € T; with an edge es € T» such that ei-
ther e; = es or e; crosses es. Moreover, each trian-
gle Ay € T} can be paired with a triangle Ay € T, such
that either A; = Ay or A; partially overlaps with A,.
Perfect matchings of this kind prove useful for obtaining
lower bounds on the edge length of the minimum weight
triangulation of S; see [2].

Unfortunately, pseudo-triangulations (see Section 3
for a definition) do not share these properties. Figure 1
depicts two pseudo-triangulations PT; (left) and PT5
(right) on a set of five points. Note that PT; and PT»
have the same number of edges (and faces). The bold
edge in PT} neither crosses, nor coincides with, an edge
in PT,. Thus no edge matching as above is possible.
Also, the two shaded faces in PT, both overlap only
with the shaded face in PT;. This rules out a face
matching.

Figure 1: The matching theorems in [2] fail for pseudo-
triangulations

We intend to show that perfect machings can be re-
tained when ’crossing’ and ’overlap’, respectively, is re-
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laxed to vertex incidence. In fact, such incidence match-
ings also exist for polygonal partitions different from
pseudo-triangulations. We define a general condition
that guarantees the existence of incidence matchings
for edges and faces in two polygonal partitions with the
same vertex set. This condition (sometimes) also im-
plies decomposability into edge-disjoint spanning trees.

2 Generalized Laman property

Throughout, let S be a finite set of (at least three)
points in the plane. Let conv(S) denote the convex hull
of S. A polygonal partition, P, on S is a partition of
conv(S) into simple polygons (faces) such that S is the
vertex set of P, and such that each edge of P which is
not an edge of conv(S) is common to exactly two faces.

Let now P be any polygonal partition on S. Through-
out, let the term ’object’ consistently stand for either
’edge’ or face’. Consider an arbitrary subset S’ C S.
We say that an object x of P is spanned by S’ if x has
all its incident vertices in S’. Denote with a(S’) the
number of objects of P that are spanned by S’. Fur-
ther, let n(S") be the cardinality of S’, and let h(S")
be the number of vertices of conv(S"). Note that «(S)
expresses the total number of objects of P. As P de-
fines a planar straight line graph on S, a(S) is a linear
function of n(S). We call P object-Laman if there exist
three constants ¢; > ¢2 > 0 and ¢3 > —1 such that the
following two conditions hold:

a(S) = c1n(S) — e2h(S) —¢3
and, for each subset S’ C S with n(S') > 2,
a(S") < ein(S') — cah(S') —c3

the so-called hereditary Laman condition. We term
the triple (c1,c¢2,c3) the (object) characteristic of P.
Classical planar Laman graphs [10] have embeddings as
straight line graphs that yield polygonal partitions with
edge characteristic (2,0, 3); see [8]. That is, a Laman
graph on n vertices has precisely 2n — 3 edges, and each
subgraph on n' > 2 vertices has at most 2n’ — 3 edges.
In [3], the concept of bounded graph density from [10]
is extended to general functions of n. Dealing with
purely graph-theoretical concepts, they do not consider
the number of convex hull points as a parameter.



An object x of P is said to be covered by a sub-
set S’ C S if x has at least one incident vertex in S’.
Let 8(S’) denote the number of objects of P that are
covered by S’. Clearly 8(S") > a(S’) holds, as each ob-
ject spanned by S’ is also covered by S’. Polygonal
partitions that are object-Laman satisfy the following
property. (We omit most proofs due to lack of space.)

Lemma 1 Let P be any polygonal partition on S that is
object-Laman with characteristic (c1,c2,c3 > 0). Then
B(S") > e1n(S") — e2h(S") — c3 holds, for each S' C S.

The object Laman property is strong enough to imply
a non-trivial bijection between the edge sets (or face
sets) of two polygonal partitions that live on the same
configuration of points.

Theorem 2 Let S be a finite set of points in the
plane. Let Py and Py be any two polygonal partitions
on S that are object-Laman with same characteristic
(c1,c2,¢3 > 0). There exists a perfect matching between
the set of objects of Py and the set of objects of Py such
that matched objects share a vertex.

Proof. Let O; be the set of objects of P;, for i =1,2.
For a subset X C O1, let Y C O, denote the set of
objects that possibly can be matched to some object
in X. More precisely, Y contains all objects y € Oy
such that y shares some vertex with an object in O;. We
show |Y| > | X|. That is, the Hall condition [5] for the
marriage theorem is fulfilled, which implies the existence
of a perfect matching between O; and O-.

Let S’ be the subset of S that consists of all the
vertices of the objects in X. That is, X is the set
of objects of P; that are spanned by S'. If n(S') <1
then |X| = 0, and |Y|>|X]| clearly holds. Let
n(S") > 2. By the assumed Laman property for P; we
have | X| < ¢1n(S") — c2h(S") — c3. On the other hand,
Y is precisely the set of objects of P; that are covered
by S’. By the assumed Laman property for P, we now
get Y| > en(S") — coh(S") — ¢3 from Lemma 1. We
conclude |Y| > | X| again. O

The Eulerian relation for planar graphs implies a
correspondence between the edge-Laman and the face-
Laman property. From now on, let us write the number
a(S") of objects spanned by a subset S’ C S as e(S’)
if the objects are edges, and as f(S') if the objects are
faces.

Lemma 3 Let a polygonal partition P on S be given
and assume that P is edge-Laman with characteris-
tic (c1 > 1,¢0 < ¢y —1,¢3 > 1). Then P is face-Laman
with characteristic (¢ — 1,ca,c3 — 1).

3 Some relevant polygonal partitions

The edge-Laman and the face-Laman property are quite
natural; they are shared by several well-known classes of
polygonal partitions. In the sequel, we require n(S') > 2
for the considered subset S’ C S. This ensures that
the formulas below yield nonnegative values for e(S”)
and f(S"). Let us denote with A(S") the subset of ob-
jects (under consideration) spanned by S'.

3.1 Pseudo-triangulations

A pseudo-triangulation, PT, of S is a polygonal parti-
tion on S whose faces are pseudo-triangles, i.e., polygons
with exactly three convex vertices. A vertex of PT is
called pointed if its incident edges span a convex an-
gle. Let PT contain exactly p pointed vertices. In [1],
the (edge) rank of PT is defined as n(S) — p, the num-
ber of non-pointed vertices. The maximum rank of PT
is n(S) — h(S), in which case PT is a triangulation.
The minimum rank of PT is zero, and PT is commonly
called a pointed (or minimum) pseudo-triangulation in
that case.

It is well known that every rank-k pseudo-
triangulation of S has exactly e(S)=2n(S)+k—3
edges. Consider a subset S’ C S, and assume that
the set A(S') defines a pseudo-triangulation of S’. As
each vertex that is non-pointed in A(S’) has to be non-
pointed in PT as well, the rank of A(S’) is at most k. On
the other hand, if A(S') is a proper subset of a pseudo-
triangulation of S’, then A(S") can be completed to one
with rank k. This shows e(S") < 2n(S’) + k — 3. That
is, the hereditary Laman condition is fulfilled. We con-
clude that PT is edge-Laman, provided that k£ < 4. In
conjunction with Lemma 3 we obtain:

Observation 1 For k<4, every rank-k pseudo-
triangulation of S is edge-Laman with characteris-
tic (2,0,3 — k). For k<2, every rank-k pseudo-
triangulation of S is face-Laman with characteristic
(1,0,2— k).

It has been known [14] that pointed pseudo-
triangulations enjoy the edge Laman property; in fact,
they are planar Laman graphs in the classical sense [8].
A similar egde Laman condition for general pseudo-
triangulations is used in [12] to define their combinato-
rial abstractions. In Subsection 3.2 we will observe that
triangulations are both edge-Laman and face-Laman.
Pseudo-triangulations of arbitrary rank share neither
property, in general.

3.2 k-angulations

A Ek-angulation of S, k > 3, is a polygonal partition
on S all whose faces are k-gons, i.e., polygons with ex-
actly k vertices. Prominent representatives are trian-



gulations (k = 3) and quadrangulations (k = 4). Note
that we do not require convexity of the faces. It is well
known that every triangulation of S contains the same
number of edges and triangles. This fact generalizes to
k-angulations, for k > 4.

The sum of angles in any k-gon is w(k — 2). The
sum of angles in all the faces of a k-angulation, @, of S
thus is w(h(S) — 2) for angles at vertices of conv(S)
plus 27(n(S) — h(S)) for angles at vertices interior to
conv(S). Dividing by w(k — 2) gives the number of @’s
faces,

(5= 2O =2 0

Respecting the exterior face, the Eulerian relation gives
n(S) —e(S) + (f(S) +1) = 2. We plug in (1) and get
the number of edges of @,

o) = kn(S)k—_h25) —k @

Consider a subset S’ C S. If the set A(S') is a k-
angulation of S’ then (2) holds with S replaced by S'.
But this formula also describes the maximum number of
possible edges when k-gons on top of S are constructed.
Therefore, the hereditary Laman condition is fulfilled.
Together with Lemma 3 this yields:

Observation 2 FEvery k-angulation of S, k > 3, is
object-Laman with edge characteristic klj(k,l,k‘) and
face characteristic k%Q(Q, 1,2).

3.3  k-regular partitions

A polygonal partition P is called k-regular if the de-
gree of every vertex of P is exactly k. For k =3,
simple partitions (in the classical sense) are obtained.
For instance, Schlegel diagrams [6] of simple three-
dimensional polytopes, and thus power diagrams and
Voronoi diagrams [4] in suitable domains, belong to this
class. Apart from trivial cases, k-regular partitions only
exist for 3 < k < 5.

Let now P be a k-regular partition on S. Each vertex
of P is incident to exactly k£ edges, and each edge of P
has two vertices. Consequently,

e(S) = gn(S). 3)

Applying the Eulerian formula gives

k
F(8) = (5 = n(S) +1. (4)
Observe that (3) is also the maximum number of pos-
sible edges when drawing on top of S a planar straight
line graph with vertex degree at most k. But, for
any S’ C S, each vertex in the set A(S') is of degree

at most k, which shows that the hereditary Laman con-
dition holds for P’s edges.

In the edge characteristic of P, the constant c3 is
zero, and Lemma, 3 does not apply. However, by using
the arguments above on (4), P is easily seen to fulfill
the hereditary Laman condition for faces, too. We sum-
marize:

Observation 3 Every k-regular polygonal partition
on S, 3 < k < 5, is object-Laman with edge charac-
teristic (£,0,0) and face characteristic (¥ —1,0,-1).

For straight line graphs on S (as opposed to polygo-
nal partitions on S) the notion of k-regularity is mean-
ingful for general k. For example, for £ = 2 we obtain
vertex-disjoint covering cycles, and for k¥ = 1 we obtain
perfect matchings. It follows that these structures are
edge-Laman with characteristics (1,0,0) and (%,0,0),
respectively. Finally, note that any spanning tree of S
is edge-Laman with characteristic (1,0,1).

4 Incidence matching for edges and faces

Our results in Section 3 combine with Theorem 2 (the
incidence matching theorem) in the following way.

Theorem 4 Let S be a finite set of points in the plane.
Let P and @ be two structures on top of S, from
one of the following classes (k fized): Rank-k pseudo-
triangulations for k < 3, k-angulations, k-reqular parti-
tions, k-reqular straight line graphs for k < 2, spanning
trees. Then there exists a perfect matching between the
edge sets of P and @) such that matched edges share a
vertex. The same is true for the face sets of P and Q,
except for the last two classes and for rank-3 pseudo-
triangulations.

Let us demonstrate that an edge incidence match-
ing need not exist for pseudo-triangulations of gen-
eral (fixed) rank. See Figure 2. The two pseudo-
triangulations we use are the one shown there (call
it PT1) and the one we obtain when reflecting PT} along
the bold vertical edge (call this structure PT>). Note
that PT; and PT, live on the same point set. Let A
denote the shaded triangle. Consider the restrictions
of PTy and PT>, respectively, to A, and let E; and Es
be their respective edge sets. The 15 edges of E; can
only be matched to the 11 edges of Es or to the 3 ad-
ditional edges of PT5 that are incident to the vertices
of A. Thus no perfect matching is possible.

Note that Figure 2 serves as an example, that requir-
ing c3 > —1 instead of ¢3 > 0 in Theorem 2 is not strong
enough to ensure an incidence matching.

For triangulations, vertex incidence of matched tri-
angles plus overlap can be satisfied simultaneously [2].
While the overlap condition has to be dropped for



Figure 2: No edge matching exists for this rank-4
pseudo-triangulation and its reflection

general pseudo-triangulations, see Figure 1, the inci-
dence condition for pseudo-triangles can be retained
for rank k < 2, see Theorem 4. In particular, pointed
pseudo-triangulations admit such a face matching.

5 Decomposition into spanning trees

Several authors considered the question of whether a
given graph is decomposable into disjoint spanning
trees; see e.g. [7] and references therein. Using a ba-
sic theorem by Nash-Williams [11] and Tutte [15], the
following can be proved for polygonal partitions.

Theorem 5 Let P be a polygonal partition on S with
k(n(S)—1) edges. The edge set of P can be decomposed
into k spanning trees if and only if P is edge-Laman
with characteristic (k,0,k).

From Observation 1 we get the following property.

Corollary 6 FEvery rank-1 pseudo-triangulation of S
can be decomposed into two spanning trees.

It is well known that, in case conv(S) is a triangle, ev-
ery triangulation of S is decomposable into three trees
which are edge-disjoint apart from the three edges of
conv(S); see, e.g., [9, 13]. We obtain the following gen-
eralizations.

Corollary 7 FEvery triangulation of S can be decom-
posed into 3 spanning trees if the h(S) edges of conv(S)
are duplicated. Moreover, every quadrangulation of S
can be decomposed into 2 spanning trees if every other
edge of conv(S) is duplicated.

The existence of some edges in a triangulation (or
quadrangulation) whose duplication leads to a decom-
position into spanning trees also can be proved using
a result in [7]. Duplication of arbitrary edges does not
suffice, as can be shown by simple examples.
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