
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Planar Case of the Maximum Box and Related Problems∗

Ying Liu† Mikhail Nediak‡

Abstract

Given two finite sets of points X+ and X− in R
d, the

maximum box problem is the problem of finding a box
(hyperrectangle) B = {x : l ≤ x ≤ u} such that
B ∩ X− = ∅, and the cardinality of B ∩ X+ is maxi-
mized. The maximum bichromatic discrepancy problem
is to find a box B maximizing the difference between
the number of the points of X+ and X− inside the box,
i.e. max ||B ∩ X+| − |B ∩ X−||.

In this paper, we discuss an exact algorithm for the
maximum box problem on the plane. In addition, we
provide factor 2 approximation algorithms for planar
cases of both problems and give an extension to the
numerical discrepancy problem.

1 Introduction

The maximum box problem is an interesting discrete
optimization problem with application in data analy-
sis (see [7]). Given vectors l = (l1, . . . , ld) and u =
(u1, . . . , ud) in R

d, such that li ≤ ui for i = 1, . . . , d, we
define a (closed) box or hyperrectangle [l,u] to be the set

[l1, u1] × [l2, u2] × . . . × [ld, ud].

(or, equivalently, [l,u] = {x ∈ R
d : l ≤ x ≤ u}).

For a finite set X in R
d, we denote its componentwise

minimum and maximum as min X and max X, respec-
tively. We say that a box B is spanned by the set X if
B = [min X, max X].

Suppose we are given two finite disjoint sets
X+,X− ⊆ R

d, which will be referred to as positive and
negative, respectively. Let us denote |X+| = r, |X−| =
s. A box is called homogeneous if it contains no negative
points. We define the size of a box as the cardinality
of its intersection with X+. The maximum box problem
then consists in finding a homogeneous box of the max-
imum size. Note that the problem is equivalent to that
of finding a maximum spanned homogeneous box.

A decision version of the maximum box problem,
when dimension of the space d is not bounded, was

∗First author greatfully acknowledges a partial support of DI-
MACS. Authors would also like to thank Mario Szegedy of Rut-
gers University for valuable comments and suggestions.

†RUTCOR, Rutgers University, 640 Bartholomew Road, Pis-
cataway, NJ 08854, USA. E-mail: yingliu@rutcor.rutgers.edu

‡Department of Mathematics and Statistics, McMaster Uni-
versity, 1280 Main Street West, Hamilton, ON, L8S 1A1, Canada.
E-mail: nediakm@math.mcmaster.ca

proved to be NP-complete by a polynomial reduction
of the independent set problem to it [7]. In this pa-
per, we shall provide an algorithm with running time
O(r2 log r + rs + s log s) for the maximum box problem
on the plane (d = 2).

The maximum box problem is related to the max-
imum empty rectangle problem (MER) on the plane:
find a rectangle of the maximum area (Euclidean mea-
sure µ(B)) which does not contain any point of a given
set X−, and which is completely inside some rectangle
containing X− (typically, a rectangle spanned by X−).
The classical MER formulation presented in [9] consid-
ers only the rectangles whose sides are aligned with
the coordinate axes (isothetic) which exactly matches
our definition of a box. The algorithms running in
O(s log3 s) and O(s log2 s) time in the worst case were
presented in [2, 6]. Examples of more recent work on
MER problem include removing the isotheticity require-
ment [1] and its extension to R

3 [3]. Note that if, given
a box B, we define its discrete measure µX+(B) as
|B ∩X+|/|X+| then the maximum box problem can be
viewed as the problem of finding an empty (with respect
to X−) rectangle B that maximizes a discrete measure
µX+(B).

We shall also consider the maximum bichromatic and
numerical discrepancy problems in the plane which have
important applications in computational learning the-
ory, computational geometry and computer graphics
(see [4, 8]). Given finite sets of points X+,X− in R

2,
the bichromatic discrepancy of a box B is the difference
between the number of the positive and the negative
points it contains, i.e. ||X+ ∩B| − |X− ∩B||. The max-
imum bichromatic discrepancy problem is to find a box
that maximizes the bichromatic discrepancy. Let now
F be the set of all possible boxes inside [0, 1]2 and X be
a finite set in R

2. For any box B in F, its numerical dis-
crepancy with respect to X is defined as |µ(B)−µX(B)|.
The maximum numerical discrepancy problem is to find
a box that maximizes the numerical discrepancy.

Because µ(B) is the probability that the points fall
inside the box B under uniform distribution hypothe-
sis, and µX(B) is the empirical probability of points
inside the box B, the numerical discrepancy of B can
be used as a measure of the deviation of the empirical
distribution from uniform. In computational learning
theory, the problem of agnostic PAC-learning with sim-
ple geometric hypotheses can be reduced to the prob-
lem of computing the maximum bichromatic discrep-

1

15th Canadian Conference on Computational Geometry, 2003

ancy for simple geometric ranges. In computational
geometry, efficient computation of the discrepancy of
a two-colored point set is useful for the construction
of ε-approximations of point sets. Finally, in com-
puter graphics, the maximum numerical discrepancy of
a point set is a good measure on how well a sampling
pattern captures details in a picture [5].

In [5], the algorithms that compute the maximum
bichromatic discrepancy in R

2 in O((r + s)2 log(r +
s)) time, and the maximum numerical discrepancy in
O(|X|2 log2 |X|) time were given. The paper also pre-
sented the following results: first, in R

2, an approxima-
tion of the maximum bichromatic discrepancy D such
that |D −Dopt| = O((r + s)/u), where Dopt is the opti-
mum, can be computed in O((r + s) log(r + s+u4 log u)
time (for u = o(

√
r + s)). Second, given a point set X ⊂

[0, 1]2, an approximation of the maximum numerical dis-
crepancy D such that |D−Dopt| = O(1/u), where Dopt

is the optimum, can be computed in O(|X| log |X| +
u4 log2 u) time (for u = o(

�
|X|)). These results did

not necessarily provide a guaranteed performance ratio.
It was posed as an open problem in [5] to find better
approximation algorithms.

We present factor 2 approximation algorithms in a
plane with O((r + s) log2(r + s)) running time for the
maximum box and maximum bichromatic discrepancy
problems. We also present a factor 2 approximation
algorithm in a plane with O(|X| log3 |X|) running time
for the maximum numerical discrepancy problem.

2 An exact algorithm for the maximum box problem
in R

2

We will refer to an instance of the planar maximum box
problem as non-degenerate if

∀p = (px, py), q = (qx, qy) ∈ X+ ∪ X− : px �= qx. (1)

The main idea of our algorithm is the following. Sup-
pose that we have a subroutine that takes a positive
point p and the list of points to the right of p as its in-
put, and computes a maximum homogeneous spanned
box with p in its left boundary. Since a homogeneous
spanned box must always have some positive point in
its left boundary and there exists a maximum homo-
geneous box which is spanned, we can solve a problem
by calling this subroutine for every positive point and
selecting the maximum of all calls.

Let Q be a list of points in X+∪X− in the increasing
order of their x-coordinates. Note that due to the non-
degeneracy assumption (1) the ordering is unique. For
any p ∈ X+ we also define a similarly ordered list Qp =
{q ∈ Q : qx ≥ px}. We need not construct Qp explicitly
as it is specified by the position of p in Q.

The following algorithm for finding a maximum box
uses a line sweep subroutine Sweep(p, Qp) which re-

turns a maximum box with p in its left boundary and
box’s size sp.

Algorithm 1 MaxBox2(X+,X−)
Input: Sets of positive and negative points X+ and X−.
Output: The spanned maximum box Bmax and its size
smax.

Bmax := ∅; smax := 0;
construct Q;
for all positive p ∈ Q

(Bp, sp) = Sweep(p, Qp);
if sp > smax then

Bmax := B; smax := sp;
endif

endfor
return (Bmax, smax);

The data structures used by Sweep(p, Qp) are as fol-
lows. Let x = px and x = x′, x′ ≥ px be the initial and
the current positions of the sweep line.

1. The algorithm maintains an open interval I(x′) =
(y(x′), y′(x′)) such that

y(x′) = max
�

qy :
(qx, qy) ∈ X−,

px ≤ qx ≤ x′, qy ≤ py

�
(2)

y′(x′) = min
�

qy :
(qx, qy) ∈ X−,

px ≤ qx ≤ x′, qy ≥ py

�
(3)

The value y(x′) is the lower bound on the bottom
boundary of a homogeneous box that contains p
in its left boundary while its right boundary is at
x′. Similarly, y′(x′) is the upper bound on the top
boundary. If I(x′) = ∅ the algorithms stops.

2. We shall use variables Bp and sp to record the max-
imum box and its size over all boxes found while a
position of the sweep line changed from px to x′.

3. Balanced binary search tree P(x′) will contain all
positive points between x = px and x = x′ that can
be potentially included in a homogeneous box in the
increasing order of their y-coordinates. For each
node ν of P(x′) we will also maintain a counter of
the number of positive points on the subtree rooted
at ν. The tree P(·) can be implemented by any of
the standard techniques (such as red-black or splay
trees).

While a position of the sweep line shifts to the right,
the following events can happen:

• A positive point q with qy ∈ I(qx) increases the size
of the box with p in its left boundary and should
be added to P(·).

• A negative point q changes I(·) at qx (that is, for
some small ε, we have qy ∈ I(qx − ε)).

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

If a negative or positive point does not belong to either
of these categories, it can be disregarded.

The following algorithm is built around processing
these events. For convenience of notation, we suppress
argument of I(·) and P(·) with an understanding that it
always corresponds to the x-coordinate of a point cur-
rently being processed. We will also use shorthand no-
tation “I ∩P” to denote the set of points on the current
P whose y-coordinates fall into the current I.

Algorithm 2 Sweep(p, Qp)
Input: A positive point p, queue of events Qp.
Output: A maximum spanned homogeneous box with p
on its left boundary and its size.

I := (−∞, +∞); P = ∅
Bp := ∅; sp := 0;
i := Qp.begin();
while i �= Qp.end() and I �= ∅
save Qp[i] to q = (qx, qy);
if qy ∈ I then

if q is positive then
add q to P;
s :=number of points in I ∩ P;
if s > sp then

yp :=smallest y-coordinate in I ∩ P;
y′
p :=largest y-coordinate in I ∩ P;

sp := s;
Bp := [px, qx] × [yp, y′

p];
endif

else
if qy > py then I := (y, qy);
else if qy < py then I := (qy, y′);
else I := ∅;
endif

endif
endif
i := i + 1;

endwhile
return (Bp, sp);

Proposition 1 The algorithm Sweep(p, Qp) correctly
finds a maximum box such that its left boundary contains
p in O(r log r + s) time.

Proof. First, observe that p and q, qx ≥ px can be inside
the same homogeneous box if and only if qy ∈ I(qx),
which is defined by (2)-(3). Second, observe that s is
the maximum size of any box with positive q satisfying
qy ∈ I(qx) in its right boundary. Third, the algorithm
finds maximum sp of s over the all positive q satisfying
this condition. Fourth, it is immediate to see that I(·) is
correctly computed over the execution of the algorithm.
Correctness follows.

Handling a negative event point, takes O(1) time.
Handling a positive event point takes O(log |P|) time
due to operations on the balanced binary search tree P.
Since |P| = O(r), the complexity follows. �

Corollary 1 The algorithm MaxBox2(X+,X−) cor-
rectly finds a maximum box and runs in O(r2 log r +
rs + s log s) time.

Proof. The correctness follwos from the fact that the
maximum box problem is equivalent to finding a max-
imum spanned box which, in turn, must have at least
one positive point on its left boundary.

Time spent in computing the next iteration of the
for-loop is O(r + s). Construction of Q takes O((r +
s) log(r + s)) time. Since log(r + s) = Θ(log r + log s),
construction of Q is O(r log r + s log r + r log s+ s log s).
Together with the O(r2 log r + rs) complexity of r calls
to the Sweep subroutine (from Proposition 1), the total
is O(r2 log r + rs + s log s). �

Remark 1 The non-degeneracy assumption (1) can be
relaxed if we assume that negative points always have
a priority over positive ones in Q. The complexity stays
the same, while the correctness proof requires a slightly
more complicated analysis.

Remark 2 The algorithm MaxBox2(X+,X−) can be
used as a subroutine to find a maximum box in R

d in
O(r2d−4(r2 log r + rs + s log s)) time.

Remark 3 It is straightforward to modify the algo-
rithm to solve a version of the problem (see [7]) with
general positive weights on the points in X+. In light of
our discussion of relation to MER problem, we observe
that this will solve a problem of finding a rectangle,
empty with respect to X− that maximizes an arbitrary
discrete measure whose support is X+.

Remark 4 Finally, the subroutine Sweep(p,Qp) can
be used to construct an algorithm with running time
O(r2 log r+ rs+s log s) for finding a pair of disjoint ho-
mogeneous boxes in R

2 that maximizes the sum of their
sizes (two box problem, see [5]).

3 An approximation algorithm for the maximum box
problem in R

2

While a notion of an approximation algorithm typically
arises in the context of problems for which polynomial
algorithm is not known, it may also make sense in any
application where the exact algorithm would be prohibi-
tatively slow. In data classification applications, the
number of points of either kind (positive or negative)
can be extremely large. Thus, the r2 log r component in
the complexity of the algorithm in the previous section
may make it useless. Moreover, an approximate answer
may be quite satisfactory in many heuristic approaches
for classifier construction.

First, we describe a generalized version of the line
sweep subroutine presented in the previous section. The
generalized version GeneralSweep(x′, Q′) takes as an

3

15th Canadian Conference on Computational Geometry, 2003

input the initial position of the sweep line x′ and the
queue of points Q′ to the left or right from x′. We as-
sume that points on Q′ can be traversed in both de-
creasing and increasing order of their x-coordinates but
in either case negative points have a priority over pos-
itive. The purpose of GeneralSweep(x′, Q′) is to find
a maximum box with its left or right vertical bound-
ary at x′. The main idea of the Sweep was to look at
a single interval I of y-coordinates that would bound
any homogeneous box containing a particular positive
point in its left boundary. Here, we look at all such
potential intervals by fixing a value of the x-coordinate
instead of a positive point. The generalized version will
use additional data structures:

1. Binary search tree L will contain disjoint open in-
tervals formed by the consecutive y-coordinates of
the negative points between the lines x = x′ and
x = qx. Since these intervals are disjoint, they can
be ordered by their left end-points.

2. Each interval I ∈ L together with [px, qx] deter-
mines a box [px, qx]×I. We shall use a binary search
tree S to record the sizes of the boxes correspond-
ing to the intervals in BST L. Also, each interval
record in L will keep a pointer to its size record in
S and vice versa.

Algorithm 3 GeneralSweep(x′, Q′)
Input: Initial position of the sweep line x = x′, queue
of events Q′ to the left or right from x′.
Output: A maximum box with a vertical boundary at
x′ and its size.

L := {(−∞, +∞)};
S := {0};
P := ∅;
Bx′ := {0} × {(−∞, +∞)}; sx′ := 0;
i := Q′.begin();
while i �= Q′.end()
save Q′[i] to q;
if ∃I ∈ L such that qy ∈ I then

if q is positive then
add q to P;
update size of I in S;
s :=maximum of S;

if s > sx′ then
sx′ := s; Bx′ := [x′, qx] × I;

endif
else
delete I = (y, y′) from L;
delete size record of I from S;
add I1 := (y, qy) and I2 := (qy, y′) to L;
find sizes si of Ii, i = 1, 2 by querying P;
add si, i = 1, 2 to S;

endif
endif
i := i + 1;

endwhile
return (Bmax, smax);

Proposition 2 Let k+ = |Q′∩X+| and k− = |Q′∩X−|.
The algorithm GeneralSweep(x′, Q′) correctly finds
a maximum box with the vertical boundary at x′ in
O((k+ + k−)(log k+ + log k−)) time.

Proof. The proof is similar to the one of the Proposi-
tion 1. �

Assume that the queue of all points Q, in the order
of increase of their x-coordinates, has already been con-
structed. For any x ∈ R, let the “right” event subqueues
Q≥x = {q ∈ Q : qx ≥ x} and Q>x = {q ∈ Q : qx > x} be
ordered similarly to Q and the “left” event subqueues
Q≤x = {q ∈ Q : qx ≤ x} and Q<x = {q ∈ Q : qx < x}
be ordered in the decreasing order of the x-coordinate.
Note that we require negative points to have a priority
over positive on all of these queues. In the following al-
gorithm, we assume that the median computation takes
into account potential multiplicity of x-coordinates:

Algorithm 4 ApproxMaxBox2(Q)
Input: Q – list of positive and negative points sorted by
increasing x-coordinate.
Output: B2, s2 – a box within factor two of the maxi-
mum and its size.

if |Q| ≤ 2 then
return the maximum box and its size;

endif
x0.5 :=median of x-coordinates of points on Q;
call GeneralSweep(x0.5, Q≤x0.5);
call GeneralSweep(x0.5, Q≥x0.5);
call ApproxMaxBox2(Q<x0.5);
call ApproxMaxBox2(Q>x0.5);
s2 :=maximum size over all calls;

B2 :=corresponding box;

return (B2, s2);

Proposition 3 The algorithm ApproxMaxBox2(Q)
finds a box of size within factor two of the maximum in
O((r + s) log2(r + s)) time.

Proof. We shall prove the correctness by induction. If
|Q ∩ X+| ≤ 2 the output is correct. The calls to the
line sweep subroutine find the maximum boxes having
x = px as its left and right boundaries. If a maximum
box B intersects with x = px, then the box of at least
half of its size will be found in these calls because x = px

splits the B into two boxes of the form examined in
the GeneralSweep(x′, Q′) subroutine. Otherwise, the
recursive calls will return a box within a factor two of
the maximum either entirely to the left or to the right
of x = px.

Let T (k) be the worst case time for a recursive call
when |Q| = k. Finding the median of Q is at most O(k).
Sizes of Q≤x0.5 and Q≥x0.5 are at most k, while sizes of
Q<x0.5 and Q>x0.5 are at most k/2. Since Q contains a
union of X+ and X− and log r + log s = Θ(log(r + s)),
by using Proposition 2 we get the following recursion:

T (k) = 2T (k/2) + f(k),

4

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

where f(k) = O(k log k). The solution of this recursion
is O(k log2 k). Stated complexity follows. �

4 Approximation algorithms for the maximum
bichromatic and numerical discrepancy

In this section, we shall present approximation algo-
rithms finding maximum bichromatic discrepancy and
the maximum numerical discrepancy within factor 2 of
the optimum and running in O((r + s) log2(r + s)) and
O(|X| log3 |X|) time, respectively.

Given sets X+,X− and a point (x0, y0) ∈ X+ ∪ X−,
paper [5] presented an algorithm to find the rectangle
[l,u] with the maximum bichromatic discrepancy among
all the rectangles in the left half space x ≤ x0 such that
x0 = ux ≥ lx. Symmetrically, one can find a rectangle
[l,u] with the maximum bichromatic discrepancy among
all the rectangles in the right half space x ≥ x0 such that
x0 = lx ≤ ux. Let us denote these two calls to the algo-
rithm for the rectangles in the left and right half spaces
as D(x0,Q≤x0) and D(x0,Q≥x0), respectively. The run-
ning time of each call is O((r + s) log(r + s)).

In the following, we shall use the algorithm D(x, S)
as a subroutine to obtain an approximation algorithm
for maximum bichromatic discrepancy with complexity
O((r + s) log2(r + s)) and factor 2:

Algorithm 5 ApproxMaxDiscrep(Q)
Input: Q – list of positive and negative points sorted by
increasing x-coordinate.
Output: B, s – a box with at least half of the maximum
bichromatic discrepancy and its size.

if |Q| ≤ 2 then
return the maximum box and its size;

endif
x0.5 :=median of x-coordinates of points on Q;
call D(x0.5, Q≤x0.5);
call D(x0.5, Q>x0.5);
call ApproxMaxDiscrep(Q<x0.5);
call ApproxMaxDiscrep(Q>x0.5);
s2 :=maximum discrepancy over all calls;

B2 :=corresponding box;

return (B2, s2);

Proposition 4 The algorithm ApproxMaxDiscrep(Q)
finds a box of a size within factor 2 of the maximum
discrepancy in O((r + s) log2(r + s)) time.

Proof. We will use an inductive proof similar to that
one of Proposition 3.

When a box B is split into two boxes BL, BR by a line
x = x0.5 + ε such that there is no any point of X+,X−

on the line, the bichromatic discrepancy of B is less or
equal to the sum of the bichromatic discrepancies of BL

and BR. So one of the bichromatic discrepancies of BL

and BR is at least half of the bichromatic discrepancy
of B. The calls D(x0.5,Q≤x0.5) and D(x0.5,Q>x0.5) will

find boxes with discrepancies of at least those of BL

and BR. So, by the same reasoning as in the proof of
Proposition 3, this algorithm is a factor 2 approximation
algorithm.

The running time is O((r+s) log2(r+s)) by the anal-
ysis of Proposition 3. �

Similarly, we shall obtain a factor 2 approximation
algorithm for maximum numerical discrepancy.

Proposition 5 A box of size within factor two of
the maximum numerical discrepancy can be found in
O(|X| log3 |X|) time.

References

[1] Jeet Chaudhuri, Subhas C. Nandy, and Sandip Das.
Largest empty rectangle among a point set. Journal
of Algorithms, 46(1):54–78, 2003.

[2] B. Chazelle, R. L. Drysdale, and D. T. Lee. Com-
puting the largest empty rectangle. SIAM Journal
on Computing, 15(1):300–315, 1986.

[3] Amitava Datta and Subbiah Soundaralakshmi. An
efficient algorithm for computing the maximum
empty rectangle in three dimensions. Information
Sciences, 128(1-2):43–65, 2000.

[4] D. Dobkin and D. Gunopulos. Computing the rect-
angle discrepancy. In 3rd Annual video review of
computational geometry, pages 385–386, 1994.

[5] D. P. Dobkin, D. Gunopulos, and W. Maass.
Computing the maximum bichromatic discrepancy,
with applications to computer graphics and ma-
chine learning. J. Computer and Systems Sciences,
52(3):453–470, 1996.

[6] David P. Dobkin, Herbert Edelsbrunner, and
Mark H. Overmars. Searching for empty convex
polygons. Algorithmica, 5(4):561–571, 1990.

[7] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its
application to data analysis. Computational Opti-
mization and Applications, 23(3):285–298, 2002.

[8] W. Maass. Efficient agnostic PAC-learning with sim-
ple hypotheses. In Proc. of the 7th annual ACM
conference on computational learning theory, pages
67–75, 1994.

[9] A. Naamad, D. T. Lee, and W.-L. Hsu. On the
maximum empty rectangle problem. Discrete Ap-
plied Mathematics, 8(3):267–277, 1984.

5

