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1 Introduction

In this paper, we study the problem of whether a polyhedron can be obtained from a net , i.e.,

a polygon and a set of creases, by folding along the creases. We consider two cases, depending

on whether we are given the dihedral angle at each crease. If these dihedral angles are given the

problem can be solved in polynomial time by the simple expedient of performing the folding. If

the dihedral angles are not given the problem is NP-complete, at least for orthogonal polyhedra.

We then turn to the actual folding process, and show an example of a net with rigid faces that

can, in the sense above, be folded to form an orthogonal polyhedron, but only by allowing faces to

intersect each other during the folding process.

In the existing literature, a few related problems have been studied. Shephard investigated when

a convex polyhedron has a convex net [She75]. Lubiw and O'Rourke showed how to test in O(n2)

time whether an n-vertex polygon (with unknown creases) can be folded into a convex polyhedron

[LO96]. Another problem is the reverse of ours: Given a polyhedron, can one obtain a net? This

can be done for all convex polyhedra [AO92], as well as for some classes of orthogonal polyhedra

[BDD+98]. A fundamental open problem in this area is whether for any convex polyhedron there

exists a net such that the edges of the net are also edges of the convex polyhedron, a so-called

unfolding with edge cuts only.

Related to our problem of folding a rigid net is the problem of straightening rigid linkages in

3D, which has been studied in [BDD+99]. In fact, our proof that some rigid net cannot be folded

without intersecting faces is based on the fact that there exists a linkage in 3D that cannot be

straightened without having links intersect [CJ98, BDD+99].

2 De�nitions

A polygonal chain is a sequence of line segments [ai; bi], i = 0; : : : ; n� 1 that are mutually disjoint,

except that bi = ai+1 for i = 0; : : : ; n� 1 (addition modulo n). The segments are called edges and

the endpoints of the edges are called vertices. A �nite region in the plane bounded by a polygonal

chain is called a polygon. A chord of a polygon is a line segment inside the polygon where both

endpoints are vertices of the polygon. A crease-set of a polygon is a set of chords of the polygon

that do not intersect each other except possibly at endpoints. A net is a polygon together with a

crease-set. An orthogonal net is a net where all edges of the polygon and all creases are parallel to

a coordinate axis.
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A net can also be viewed as a graph; in fact, it is an outer-planar graph since no two edges

cross and all vertices are on the unbounded face (the outer face). It is known that an n-vertex

outer-planar graph has at most 2n � 3 edges. The faces that are not the outer face are called

interior faces. For an outer-planar graph, the incidences between interior faces form a tree.

In a net, for each crease we may or may not specify the dihedral angle, i.e., the angle that the

two faces incident to the crease will form inside the �nished polyhedron. We impose the condition

that every crease must indeed be folded, so the dihedral angle cannot be �. Likewise, the dihedral

angle cannot be 0 or 2�, because faces are not allowed to overlap. For an orthogonal net, we

stipulate that all dihedral angles must be �=2 or ��=2.

To be able to test whether a net folds into a polyhedron, we must establish a clear de�nition of a

polyhedron. This is a non-trivial task (see [Cro97] for a history of attempts). We use the following

de�nition, based on Coxeter [Cox63]: A polyhedron is a �nite connected set of plane polygons,

called faces, such that (1) if two faces intersect, it is only at a common vertex or a common edge,

(2) every edge of every face is an edge of exactly one other face, and (3) the faces surrounding each

vertex form a single circuit (to exclude anomalies such as two pyramids with a common apex).

An orthogonal polyhedron is a polyhedron each of whose faces is perpendicular to a coordinate

axis. For such a polyhedron, we classify each face as an xy-face, a yz-face or an xz-face, depending

on which plane the face is parallel to.

3 Known Dihedral Angles

In this section, we show that if dihedral angles are given, we can determine in polynomial time

whether folding the net yields a polyhedron. Our computation model here is the real RAM; for the

case of orthogonal nets, which is our main interest, basic arithmetic su�ces.

First, we show how to �nd the coordinates of the vertices in 3D after the creases have been

folded. Compute the tree of adjacencies between the interior faces of the net. Traverse this tree

T in depth-�rst-search order, starting at an arbitrary leaf in an arbitrary position. For each face,

the positions of vertices of this face can then be computed using the positions of the vertices of the

parent of this face in T , and the dihedral angle that connects the two faces. This takes O(n) time,

where n is the number of vertices of the net, because the number of edges and faces of the net is

proportional to the number of vertices.

Now we must verify the three properties of polyhedra. We do so in four steps, not for e�ciency,

but for clarity of presentation: (1) We reject the input if we can �nd two faces that intersect in a

point that is interior to one or both of the faces; (2) We add additional vertices along the edges of

the faces, so that any vertex of the polyhedron is a vertex of all its incident faces; (3) For each edge

of each face we �nd all identical edges of other faces, simultaneously building up the the incidence

graph, a data structure to store polyhedra [Ede88]; (4) we use the incidence graph to test that the

faces surrounding each vertex form a circuit.

For step 1 we consider each pair of faces of the net. The running time of our algorithm is then

already 
(n2), so we will not worry about making other steps of the algorithm faster than this. Let

F1; : : : ; Ff be the interior faces of the net, and let mi be the number of edge of Fi. For any i < j, if

Fi and Fj lie in the same plane, we can test in O(mimj) time how they intersect by testing every

pair of edges, and doing a �nal inclusion test. If Fi and Fj lie in di�erent planes, we then compute
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the line of intersection of these planes and compute the intersections of this line with Fi and Fj ,

forming two sets of disjoint intervals. We can certainly test in O(mimj) time how these intervals

intersect.

The total running time of this step is proportional to

X

1�i<j�f

mimj �
1

2
(

fX

i=1

mi)(

fX

i=1

mi) �
1

2
(2m)2;

where m is the number of edges of the net. Since the net is an outer-planar graph, m � 2n� 3, so

this step takes O(n2) time.

The second step is necessitated by the polyhedron property that every edge of every face must

be an edge (not just part of an edge) of another face. Without the addition of extra vertices in

the net, this condition may be violated if at a vertex v of the polyhedron one incident face F has

face-angle � and v is not a vertex of F in the net. We therefore must add v as a vertex of F . We

will refer to this situation as \face F grazes vertex v".

To determine all places where a face grazes a vertex, we compare each vertex v of a face to all

edges e of faces. If v sits in the interior of e, then we introduce a new vertex to the face containing

e, thus splitting edge e into two edges. This takes O(n2) time.

To show the correctness of this approach, let v be a vertex of the polyhedron, i.e., a point where

either one face of the net has a vertex or where the sum of the face-angles of the incident faces is

not equal to 2�. Observe that no two consecutive incident faces of v can graze v, because otherwise

both faces have face-angle �, which implies that v can have only these two incident faces. But then

the sum of face-angles at v is 2�, and both incident faces have no vertex at v, contradicting the

de�nition of a vertex of a polyhedron.

Therefore, if a face F grazes a vertex v, then another face F 0 incident to v had v as a vertex;

therefore this grazing will be detected in the above procedure. Also, the total number of added

vertices is at most n, since at most half of the incident faces of a vertex v graze v, while the other

half already had v as a vertex in the original net. Therefore we end up with O(n) vertices and

edges in the net.

In the third step, we test every pair of edges to see whether they are identical. If we ever �nd an

edge that does not have exactly one identical mate, we reject this input. As we match up edges we

build the incidence graph that records the incidences of vertices, edges, and faces of the polyhedron.

This step can be performed in O(n2) time.

Finally, in the fourth step we use the incidence graph to walk around the faces incident with

each vertex and verify that they form a circuit. This can be done in time proportional to the degree

of the vertex, and therefore in O(n) time overall.

Our total time therefore is O(n2). We conjecture that this time bound can be improved to

O(n logn) by using 3D sweep techniques, rather than the brute-force approach.

4 Unknown Dihedral Angles

In this section, we show that if dihedral angles are not speci�ed, then the folding problem becomes

NP-complete|at least for the case of orthogonal polyhedra, where each dihedral angle must be

�=2 or ��=2.
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For our reductions, we use the NP-complete problemPartition [GJ79]: Can a set S of positive

integers be partitioned into S = S1 [ S2, such that the sum of the elements in S1 equals the sum

of the elements in S2?

We start by proving that a 2D version of the folding problem is NP-complete. Rather curiously,

this will not immediately imply NP-completeness of the 3D version, and more work must be done.

4.1 2D Orthogonal Foldings

In 2D, the folding problem is the following: Given a sequence of straight line segments with joints

between the segments, determine if we can bend all joints such that we obtain a simple polygon.

This problem is solvable in polynomial time, because the answer is positive if and only if no link is

longer than all other links together [LW95]. In this paper, we study the orthogonal folding problem,

which is the same problem, except that all joints have to be bent at right angles. Surprisingly, this

makes the problem NP-complete.

Given an orthogonal polygon directed counter-clockwise, the horizontal edges fall into two

classes: those directed to the right and those directed to the left; furthermore, the sum of the

lengths in each class is the same. This observation is the heart of our reduction of Partition to

the 2D orthogonal folding problem.

Theorem 1 The 2D orthogonal folding problem is NP-complete.

Proof: It is easy to verify that a given assignment of dihedral angles of �=2 or ��=2 forms a simple

polygon, so the problem is in NP. To show that it is NP-hard, let S = fx1; : : : ; xng be an instance

of Partition. Set L = 1

2

Pn
i=1 xi + 1, v = n + 1, and let S0 = (1; x1; 1; x2; 1; : : : ; 1; xn; 1; L; v;L)

be an instance of the 2D folding problem where the numbers denote the lengths of the links in

order along the chain. The sequence consisting of the �rst 2n+1 segments will be called the jagged

sequence; these segments encode the partition problem, while the other segments serve to complete

the polygon.

Assume the instance S of Partition has a solution S = S1 [ S2. We construct a solution to

the folding problem S0 as follows: Working counterclockwise, the link of length xi points left if

xi 2 S1 and right otherwise, all links of length 1 point up, and the remaining links form a \C". See

also Figure 1. The resulting polygon is simple, because from the right ends of the links of length

L, we can reach at most
P

xi2S1
xi =

1

2

Pn
i=1 xi units to the left, so L > 1

2

Pn
i=1 xi is big enough to

prevent any of the links of the jagged sequence from reaching the link of length v.

Conversely, assume that S0 can be folded into an orthogonal polygon, and after possible rotation,

assume that the link of length v is vertical. Let Hl be the lengths of the edges pointing left and Hr

be the lengths of the edges pointing right. Since all creases have dihedral angle �=2 or ��=2, we

know that Hl [Hr = fx1; : : : ; xn; L; Lg. Since S
0 folds to a closed polygon, the lengths in Hl sum

to the same as the lengths in Hr. Since L+L >
Pn

i=1 xi, the two L's cannot be in the same subset,

so each of Hl and Hr must contain exactly one L. Removing both L's, we obtain a partition of

fx1; x2; : : : ; xng with the two parts having equal sums. 2

4.2 3D Orthogonal Foldings

Theorem 2 The 3D orthogonal folding problem is NP-complete.
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L = 5

x3 = 2

v = 5

x4 = 2

x2 = 3 x1 = 1

Figure 1: Constructing S0 from the instance f1,3,2,2g of Partition.

Proof: If we are given the assignment of dihedral angles of �=2 or ��=2, then we can verify in

polynomial time whether this net folds into a polyhedron (Section 3), so the problem is in NP. To

show that it is NP-hard, let S = fx1; : : : ; xng be an instance of Partition.

We describe the construction of an instance of the 3D orthogonal folding problem in successively

more correct re�nements. We illustrate these using the Partition instance S = f1; 2; 1g.

The �rst approach is to extrude the polygon formed in Section 4.1 in the z-direction by 2 units,

see Figure 2. The sequence of links becomes in the net a sequence of rectangles all of height 2.

However, the problem then arises of how to cover the front face. Note that the right boundary of

the front face abuts the (extruded) jagged sequence, and thus the shape of this face depends upon

the partition of S into S1 and S2. Even cutting the front face into strips attached to the vertical

unit length edges of the jagged sequence as shown in Figure 2 does not resolve the problem, because

the lengths of the strips still depend on the partition.

x

y

z

jagged sequence

bottomtop

Figure 2: The construction in 2D extruded, and its net.

Our next idea is to make the strips that form the front face equally long, which can be achieved

by replicating the jagged sequence. The lengths in the x-direction of the top and bottom faces

are set to
Pn

i=1 xi + 1. The resulting polyhedron looks like a staggered pile of bricks. Its net is

independent of any particular partition of S. Unfortunately, this construction is too general: for

any input the resulting net folds into a polyhedron. The proof from the two-dimensional case does

not transfer because we cannot force the top and the bottom face to be aligned, i.e., to have the

same xz-projection. See Figure 3.

To force an alignment of the top and the bottom face, we add an extruded rectangle with x-

dimension 1

2
and z-dimension 1 down the middle of the front face. We call this extruded rectangle

the middle notch. See Figure 4.
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x

y

z

top bottom

Figure 3: Replicate the jagged sequence to form a pile of bricks. Now the top and bottom face

need not align.

x

y

z

bottomtop

Figure 4: Introducing a middle notch.

Unfortunately, now we have a problem similar to the one we had originally: Each strip now

consists of �ve pieces, the middle three forming part of the middle notch. The lengths of the �rst

and last pieces depend upon the partition of S.

We resolve this problem by scooping out rectangular notches along the front side of the poly-

hedron (see Figure 5). More precisely, starting 1

4
units to the right of the left end of the top face,

we scoop out notches of length 1

2
in the x-dimension and length 1 in the z-dimension at 1

2
unit

intervals in the x-direction, until we reach the middle notch. We proceed in a similar way from the

right end of the top face. Call the resulting net S00.

x

y

z

backbone

bottomtop

x1=1x2=2x3=1

Figure 5: Cutting notches along the front face.

The e�ect of these notches is that now the strips used to cover the front face of the polyhedron

have many creases any of which can form part of the middle notch. Therefore, we need not know

the partition to construct the net. On the other hand, we can show that the middle notch continues
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to force alignment of the top and the bottom faces, and thus that this construction works:

Claim: S has a solution S = S1 [ S2 if and only if S00 folds in an orthogonal polyhedron.

Proof: Following the steps of our construction, one can verify that if S has a solution, then S00

folds into an orthogonal polyhedron. For the other direction, assume S00 folds into an orthogonal

polyhedron. We will not show that the polyhedron is like the one shown in Figure 5 (even though

this is possible), but only use properties of the polyhedron to extract a partition of S. Rotate the

polyhedron so that the face marked \top" in the net is an xz-face; we refer to this face as T . Also

rotate such that the edge of length
Pn

i=1 xi + 1 of T is the back edge of T , i.e., it is parallel to the

x-axis and has the smallest z-coordinate of all points of T . Let the backbone be the intersection of

the net with the line through the back edge of T in the net, see Figure 5. By construction of our

net, the edges of the backbone lie in one xz-plane P in the folded polyhedron.

As a �rst step, we show that face T must be aligned with the face marked \bottom" in the

net; we refer to this face as B. Since all folds must be folded at right angles, we can read from the

net that the set of xz-faces consists exactly of the faces T and B and the faces corresponding to

x1; : : : ; xn. Notice that by construction of our net these faces have their back edge on the backbone

and thus in plane P . Note however that T and B stick farther forward in the z-direction than any

other part of any other xz-face, because of the middle notch. This implies that T and B must

be aligned, for otherwise there would be a line parallel to the y-axis intersecting the top of the

middle notch and no other xz-face, a contradiction to the even parity required for the number of

intersections between a polyhedron and a line.

In the polyhedron, the backbone forms an orthogonal chain in plane P . Let C be the subchain

joining the back edges of T andB; thus C consists of the back edges of one extruded jagged sequence.

Let Hl be the lengths of the edges of C pointing left, andHr be the lengths of the edges of C pointing

right. Since all creases have dihedral angle �=2 or ��=2, we know that Hl [ Hr = fx1; : : : ; xng.

Because T and B are aligned, chain C begins and ends with the same x-coordinate. Therefore

the lengths in Hl sum to the same as the lengths in Hr, and thus Hl and Hr form the required

partition. 2

This ends the proof of the claim, and therefore the proof of the theorem. 2

5 Rigid Nets

In this section, we show that if the net is made from sti� material, i.e., its faces are rigid, then we

cannot always execute the folding process|from net to polyhedron|while keeping faces disjoint.

Theorem 3 There exists an orthogonal net and an orthogonal polyhedron it can be folded to with

the property that the folding cannot be performed while keeping faces rigid and disjoint.

Proof: Consider the net shown in Figure 6; its folded-up version is shown in Figure 7. The ends

of this \extruded chain" are supposed to be very long.

Imagine placing an orthogonal chain on the faces that are shaded in Figure 6, with vertices

exactly on the creases that the chain crosses. Now, if we could fold this net of rigid faces without

self-intersections, then we could also fold the chain without self-intersections into the position that
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a long end

a long end

Figure 6: This rigid net cannot be folded without intersections.

it takes on the polyhedron. However, using a proof very similar to the one in [BDD+99], we can

show that if the end-links of the chain are su�ciently long, then this chain cannot be straightened,

i.e., transformed into a straight chain without self-intersections, even allowing arbitrary rotations of

links, rather than just the one degree of freedom rotations possible for the chain on the net. Since

the chain can be straightened when lying on the net (because it has a planar projection [BDD+99]),

the net of rigid faces cannot be folded into the polyhedron without self-intersections. 2

Figure 7: The polyhedron for the rigid net, and the chain embedded on it.

6 Conclusions

In this paper, we studied the problem of determining whether a net folds into a polyhedron. We

showed that if the dihedral angle at each crease is given, the question can be answered in polynomial

time. However, for orthogonal polyhedra, if the dihedral angle is not given, the problem becomes

NP-complete. Finally, we examined the di�culty of folding a net (with dihedral angles given) made
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of sti� material in which faces cannot intersect. Here we showed a net of an orthogonal polyhedron

that cannot fold into the polyhedron without any intersection of faces.

Our NP-completeness result only holds for orthogonal polyhedra. In particular, it is conceivable

that the nets we construct (see Figure 5) can fold to non-orthogonal polyhedra that no longer yield

the partition. This leads to a question interesting in its own right: can an orthogonal net ever fold

to a non-orthogonal polyhedron?

We mention one other problem concerning rigidity: can any feasible folding process be accom-

plished with rigid non-intersecting faces if extra creases (of dihedral angle �) may be introduced?
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