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A polytope in Rd is said to be stable on
a facet if and only if the perpendicular to that
facet through the center of gravity meets the
facet itself.  One may consider the stability of a
body with respect to an arbitrary "center of
gravity on the interior of the body [1,3,6], or one
may take the center of gravity to be determined
by the shape of the body itself.  Most typically,
the center of gravity is taken to be that point
which would be the physical center of gravity
were the body composed of a material of
uniform density[1,2,4,5,6,7]; however, other
possibilities, such as the center of mass
determined by a uniform distribution on the n-
skeleton of the body for 1≤n≤d-1 may also be
considered [5].

This type of problem seems to have
been first introduced in  two papers [1,7] that
appeared in SIAM Review  in the late 1960’s.  In
the second of these, the question of  existence of
polytopes stable only on one facet was raised.  A
19-faceted polyhedron, stable only on one facet.
was exhibited; and the construction was
modified to yield a 23-faceted polytope stable on
only its smallest facet.  It was shown that no
tetrahedron of uniform density could be
monostatic; and it was asked whether any
simplex  of uniform density could have this
property.

This was answered in the affirmative in
1985 by the first author of the present paper, who
constructed a 10-dimensional simplex with this
property [2].    In the same paper, it was shown
that no simplex in Rd could be monostatic for
d<7.  To obtain these results, a theorem of
Minkowski [8] was used, that characterized the
sets of vectors that could be the oriented facet
area vectors of a polyhedron.

In particular, Minkowski’s theorem
showed that any d+1 vectors which sum to 0 and
span Rd  with positive coefficients are the facet
vectors of a simplex.   It may be shown [2] that
such a simplex, if of uniform density, will fall
from facet i to facet j if and only if the projection
of  the jth facet vector  onto the ith facet vector  is
longer than the ith facet vector itself.  This
"projection criterion" turns out to be valuable in
rendering simplex stability problems tractable. In
[2], the negative result was obtained analytically,
using the projection criterion, while the 10-
dimensional example was obtained heuristically
and verified using that technique.

To obtain the negative result, bounds
were found analytically on the projection of a
vector xn onto an axis, subject to the existence of
a chain of vectors xn ,xn-1 ,…, x1 ,x0  such that xi

and xi-1 satisfy the projection criterion and x0 is a
unit vector on the specified axis.   These bounds
were added, and used to show that vectors
satisfying the projection criterion could not sum
to 0.   (It should be noted that there are many
possible  falling patterns in which the facet
vectors may satisfy the projection criterion;
these can be thought of as rooted directed trees,
whose vertices are vectors, with an edge from xi

to xj if  the projection criterion is satisfied. It is
necessary to eliminate all of these, not merely



that in which the simplex falls sequentially
across all its facets. )

In a later paper [5],  Mak  and the
present authors extended these results further.
On the lower bound side, still using an analytic
approach, they showed that any monostatic
simplex must have at least 8 dimensions. Here,
the sums of pairs of projections were bounded,
rather than individual projections.   As the
location of (say)  x1 that optimizes its projection
is not, typically, the location of x1 which
optimizes the projection of xn, the bound on the
projection of x1+ xn is stricter than the sum of the
two independent bounds; and the resulting
bounds were tight enough to show that a set of 8
vectors obeying the projection criteria in R7

could not sum to 0.

 In higher dimensions, the genetic
algorithm was used to search - unsuccessfully -
for an example in nine dimensions.  However,
the GA search did uncover an example, in 11
dimensions, of a simplex that was not only
monostatic, but rolled sequentially across all 12
facets from an appropriate starting point.

In [6], and later in [4], the existence of a
monostatic simplex in R8 was ruled out. To do
this, sums of projections of entire chains of
vectors were optimized.  This could not be done
analytically, so numerical optimization was
carried out.

This was done recursively.  For any
angle θ ∈[0,π],  and for n = 1,2,…9, the  sum
p(xn) +…+ p(x0)  was optimized, subject to the
conditions that:

       (i) xn is a unit vector at an angle θ to the axis
onto which p projects;
       (ii) xi  and xi-1 satisfy the projection criterion.

The bounds fn(θ) for each successive n were
tabulated at intervals of 0.001 radian,  and used
to compute the optimal values for n+1.

Bounds were calculated analytically on
dfn/dθ and d2fn/dθ2, and these were used to bound
the error in the numerical calculations.  Thus, it
was possible to prove that the values obtained
were accurate to within 10-5.  Safe bounds were
obtained that permitted it to be shown that no set
of  9 vectors in R8, obeying the projection
criterion in any falling pattern, can sum to 0.
The same methods were used to show that no
simplex in R10 can roll sequentially over all its
facets.
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