
A note on the path graph of a set of points in convex position in
the plane

Eduardo Rivera-Campo and Virginia Urrutia-Galicia

Extended abstract

1 Introduction

For any connected abstract graph G, the tree graph
T (G) is the graph that has one vertex for each span-
ning tree of G and an edge joining trees R and S
whenever R is obtained from S by a single edge ex-
change. R. L. Cummings proved in [C] that T (G) is
hamiltonian; see also [S] for a short proof.

A geometric variation that has been studied is the
following: For a set P of points in general position in
the plane the plane tree graph T (P ) of P is defined
as the abstract graph with one vertex for each plane
spanning tree of P , in which two trees are adjacent
if, as in the abstract case, one is obtained from the
other by a single edge exchange. D. Avis and K.
Fukuda proved in [A] that G(P ) is always connected.
In [H], C. Hernando et al show that if the points in
P are the vertices of a convex polygon, then G(P ) is
hamiltonian.

In this note we only consider sets P of points in
convex position and study the subgraph G (P ) of
T (P ), induced by the set of plane spanning paths
of P . We prove that G(P ) is itself hamiltonian.

Since for any spanning path T of P planarity de-
pends only on the relative position of its vertices
along the convex hull of P , then for any set P of
n points in convex position in the plane, the graph
G(P ) is isomorphic to G (Pn), where Pn is a regu-
lar n-gon. We denote by Gn the graph G (Pn). The
graphs G3 and G4 are shown in Figure 1.

The main result of this article is the following.

Theorem 1. If n ≥ 3, then Gn is hamiltonian.

Throughout the paper, w1, w2, . . . , wn denote the

Figure 1.- The graphs G3 and G4

vertices of Pn in clockwise order. Addition of integers
is taken modulo n.

2 Preliminary results

A natural partition of the set of plane spanning paths
of P2m+1 into 2m + 1 sets A1, A2, . . . , A2m+1 is as
follows: A path T is in At if and only if the mid-
dle point of T is wt. In this section, we prove that
the subgraph of G2m+1, induced by Am+1 contains a
particular Hamilton path which will be useful in the
prove of Theorem 1.

Let n = 2m+1 and for i = 1, 2, . . . , m+1 let ui =
wi and vi = w2m−i+2. Any path T ∈ Am+1 consists
of a left subpath TL with one end in um+1 = wm+1
and vertex set Um+1 = {u1, u2, . . . , um, um+1} and
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Figure 2.- L = u2, u3, u1, u4 and R = v4, v3, v1, v2

a right subpath TR with one end in vm+1 = wm+1
and vertex set Vm+1 = {v1, v2, . . . , vm, vm+1}. For
any plane paths L and R with one end in wm+1 and
vertex sets Um+1 and Vm+1, respectively, we denote
by L ∗ R the path in Am+1 with left subpath L and
right subpath R (see Figure 2).

Let θ : {1, 2, . . . , m} → {1, 2, . . . , m} given by
θ (k) = m + 1 − k. For any plane path L with
vertex set Um+1 and with one end in um+1 let
θ(L−um+1) be the plane path, with vertex set Um =
{u1, u2, . . . , um}, in which uθ(t) and uθ(s) are adja-
cent if and only if ut and us are adjacent in L. A path
θ(R − um+1), with vertex set Vm = {v1, v1, . . . , vm},
is defined in an analogous way for any plane path R
with one end in vm+1 and with vertex set V .

Let Fm+1 denote the subgraph of G2m+1, in-
duced by Am+1, and for t = 1, 2, . . . , m, let Lt =
u1, u2, . . . , ut, ut+1, Rt = ut+1, vt, . . . , v1, L′

t =
ut, ut−1, . . . , u1, ut+1 and R′

t = vt+1, v1, v2, . . . , vt.

Theorem 2. If m ≥ 2, then Fm+1 contains a Hamil-
ton path Jm+1 with ends Lm ∗Rm and Lm ∗R′

m and a
Hamilton path J ′

m+1 with ends Lm∗Rm and L′
m∗Rm.

Proof. Figure 3 shows the graph of F3. We proceed
by induction assuming m ≥ 3 and that the result
holds for m′ = m − 1; by symmetry, we only need to
show a Hamilton path in Fm+1 with ends Lm ∗ Rm

and Lm ∗ R′
m. For i, j ∈ {1, m} let Ai,j

m+1 be the
set of paths in Am+1 containing the edges uiwm+1
and wm+1vj . We claim that the subgraph of G2m+1,
induced by Ai,j

m+1 is isomorphic to Fm = Fm′+1.
For i, j ∈ {1, m} let αi,j : Ai,j

m+1 → Am given by

αi,j (T ) = θ
m−i
m−1 (TL − wm+1) ∗ θ

m−j
m−1 (TR − wm+1);

notice that θ
m−1
m−1 = θ1 = θ and θ

m−m
m−1 = θ0 = I

(identity function). Let T ∈ Ai,j
m+1; since uiwm+1

and wm+1vj are edges of T , then TL − wm+1 has

Figure 3.- The graph F3

an end in ui and TR − wm+1 has an end in vj

and since θ
m−1
m−1 (1) = θ(1) = m and θ

m−m
m−1 (m) =

I (m) = m, then θ
m−i
m−1 (TL − wm+1) has an end in

um and θ
m−j
m−1 (TR − wm+1) has an end in vm. There-

fore αi,j (T ) ∈ Am. Since θ preserves adjacency in the
sense that for s, t ∈ {0, 1}, the paths L∗R and M ∗S
are adjacent in Fm+1 if and only if θs(L − wm+1) ∗
θt (R − wm+1) and θs(M −wm+1)∗θt (S − wm+1) are
adjacent in Fm, then for i, j ∈ {1, m}, two paths
R and S in Ai,j

m+1 are adjacent in Fm+1 if and only if
αi,j (R) and αi,j (S) are adjacent in Fm.

By induction Fm contains a Hamilton path Jm

with ends in Lm−1 ∗ Rm−1 and Lm−1 ∗ R′
m−1; there-

fore for i, j ∈ {1, m}, the subgraph of G2m+1, in-
duced by Ai,j

m+1 contains a Hamilton path J i,j
m+1 with

ends α−1
i,j (Lm−1 ∗ Rm−1) and α−1

i,j

(
Lm−1 ∗ R′

m−1
)
.

To end the proof we show how to connect the paths
Jm,m

m+1, J1,m
m+1, J1,1

m+1 and Jm,1
m+1 to form a Hamilton

path Jm+1 of Fm+1 with ends α−1
m,m (Lm−1 ∗ Rm−1)

= Lm ∗ Rm and α−1
m,1

(
Lm−1 ∗ R′

m−1
)

= Lm ∗ R′
m.

The path α−1
1,m

(
Lm−1 ∗ R′

m−1
)

can be obtained
from α−1

m,m

(
Lm−1 ∗ R′

m−1
)

by deleting the edge
umwm+1 and adding the edge u1wm+1, therefore
α−1

m,m

(
Lm−1 ∗ R′

m−1
)

and α−1
1,m

(
Lm−1 ∗ R′

m−1
)

are
adjacent in Fm+1. Analogously α−1

1,m (Lm−1 ∗ Rm−1)
and α−1

1,1 (Lm−1 ∗ Rm−1) are adjacent in Fm+1 and
also α−1

1,1

(
Lm−1 ∗ R′

m−1
)

and α−1
m,1

(
Lm−1 ∗ R′

m−1
)

are adjacent in Fm+1.

For n = 2m, let Bm be the set of plane spanning
paths of P2m with middle edge wiwj (i ∈ {1, m}
and j ∈ {m + 1, 2m}); with left subpath TL with
one end in wi and vertex set {w1, w2, . . . , wm} and
right subpath TR with one end in wj and vertex set
{wm+1, wm+2, . . . , w2m}. Let Hm be the subgraph
of G2m, induced by Bm (see Figure 4).
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Figure 4.- The graph H3

Let C be the cycle w1, w2, . . . , w2m, w1 and Tm and
T ′

m be the paths C − w2mw1 and C − wmwm+1, re-
spectively. The following theorem is presented here
without a proof.

Theorem 3. If m ≥ 2, Hm, contains a Hamilton
path with ends Tm and T ′

m.

3 Proof of Theorem 1

For n ≥ 5 we consider two cases.
Case 1.- n = 2m + 1.

For k = 0, 1, . . . , 2m let Ak+1 be the set of plane
spanning paths of P2m+1 with middle point wk+1 and
Fk+1 be the subgraph of G2m+1, induced by Ak+1.
Let λ : P2m+1 → P2m+1 given by λ (wt) = wt+1.
Since Ak+1 is obtained from Am+1 by the rota-
tion defined by λk−m, then Fk+1 is isomorphic to
Fm+1. By Theorem 2, Fm+1 contains a Hamilton
path Jm+1 with ends Lm ∗ Rm and Lm ∗ R′

m, there-
fore Fk+1 contains a Hamilton path Jk+1 with ends
λk−m (Lm ∗ Rm) and λk−m (Lm ∗ R′

m). To end the
proof we show how to connect J1, J2, . . . , J2m+1 to
obtain a Hamilton cycle of G2m+1.

Since λm+1(Lm∗Rm) = (Lm∗R′
m−wm+1w2m+1)+

w2m+1w1, then Lm ∗ R′
m and λm+1(Lm ∗ Rm) are

adjacent in G2m+1. Therefore λt(m+1) (Lm ∗ R′
m)

and λ(t+1)(m+1) (Lm ∗ Rm) are adjacent in G2m+1
for t = 0, 1, . . . , 2m. Since 0, m + 1, 2 (m + 1) , . . . ,
2m (m + 1) are all the different residues modulo

2m + 1 and (2m + 1) (m + 1) ≡ 0 mod (2m + 1),
then Jm+1, J2(m+1), . . . , J2m(m+1) can be connected,
in this order, to form a Hamilton cycle of G2m+1.
Case 2.- n = 2m.

For k = 1, 2, . . . , m let Bk be the set
of plane spanning paths of P2m with middle
edge wiwj (with i ∈ {k, k − m + 1} and j ∈
{k + 1, k + m}) and left subpath with vertex set
{wk−m+1, wk−m+2, . . . , wk} and right subpath with
vertex set {wk+1, wk+2, . . . , wk+m}. Let Hk be the
subgraph of G2m induced by Bk

Let µ : P2m → P2m given by µ (wt) = wt+1. Since
Bk is obtained from Bm by the rotation, defined by
µk−m then Hk is isomorphic to Hm. By Theorem 3,
Hm contains a Hamilton path Im with ends Tm and
T ′

m; therefore Hk contains a Hamilton path Ik with
ends µk−m (Tm) and µk−m (T ′

m).
Since for k = 1, 2, . . . , m, all paths µk−m (Tm)

and µk−m (T ′
m) are obtained from the cycle C = w1,

w2, . . . , w2m, w1 by deleting an edge, then they are
pairwise adjacent in G2m. Therefore I1, I2, . . . , Im

can be connected to obtain a Hamilton cycle of G2m.
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