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Abstract—This paper presents a lipreading scheme using a
dynamic convolution mechanism. Lipreading is a technique to
convert consecutive lip images into texts, and has been investi-
gated particularly for this decade owing to deep learning. Most of
visual speech recognition systems employ Convolutional Neural
Networks (CNNs). Assuming real applications, lipreading needs
to adapt any view from frontal to profile, however, existing CNN
models do not take it into account. In our scheme, we choose
a CNN model having a dynamic convolution mechanism, where
each kernel would correspond to a particular view, which we call
”Multi-view convolution”. To induce view-dependent kernels, we
impose regularization to dynamic convolution via view metadata.
We further adapt soft attention in our scheme. We carried out
evaluation experiments using a multi-view corpus OuluVS2. Only
frontal and profile lip images were adopted to train our model,
while recognition was conducted for every views. It is found
that using a dynamic convolution with label smoothing and
cross entropy worked well, and finally our model achieved better
accuracy than conventional basic schemes.

I. INTRODUCTION

Lipreading, also known as Visual Speech Recognition
(VSR), is the process of recognizing speech content by ob-
serving only lip movements without having access to audio
signal. Recently, Automatic Speech Recognition (ASR) has
become widespread, due to the rapid progress of deep learning.
However, there is still a major challenge; the accuracy of
ASR decreases in noisy environments. Since visual features
are unaffected by acoustic noise, lipreading has a potential to
improve ASR in noisy environments. A lipreading system is
also expected to be used as an application on some devices,
such as a communication aid for people with speech disabili-
ties.

In realistic scenarios, a subject does not always face to the
front. For example, assume that in a web meeting a camera is
placed in front of a subject; the speaker may turn right or left
to look at another person, resulting a diagonal or profile face
is observed. Therefore, we should consider a pose-invariant
lipreading technique. Because most works have focused only
on frontal faces, there has been an increasing interest in
lipreading for non-frontal poses.

There are several public databases available, offering mul-
tiple synchronized views of speakers’ faces; particularly, [1],
[2] have been widely used for multi-view lipreading. Among
them, the OuluVS2 database [2] has attracted significant inter-
est to many research works e.g. [3], [4], [5], [6], [7], [8], [9],
[10], in which five synchronous movies are available recorded
at fixed angles, namely, a frontal facial view at 0◦, side views
at 30◦, 45◦, and 60◦, and a profile one at 90◦, respectively.

However, due to its small data size and vocabulary, it is
difficult to realize a non-frontal and sentence-level lipreading
system that is required in more realistic scenarios. This may
because higher cost of producing a multi-view synchronized
data set.

This paper proposes a new operator design for multi-view
lipreading. Our motivation is twofold. First, to achieve multi-
view lipreading using only a few kinds of views for training
because a multi-view synchronized data set is expensive pro-
ducing. Second, to design a mechanism that can be applied
to existing models. At present, works on pose-invariant VSR
and lipreading for large vocabularies are independent, and it is
expected that the two will be integrated in the future. For this
motivation, we propose ”Multi-view convolution” based on
dynamic convolution [11], which uses a set of multiple convo-
lutional kernels instead of using a single convolution kernel per
layer. Convolution kernels are aggregated dynamically for each
individual input feature via an attention mechanism. Although
dynamic convolution was proposed to increase the representa-
tion capability without noticeably increasing the computational
cost, we focus on the mechanism of aggregating multiple
convolution kernels. The role of each kernel in dynamic
convolution is unknown. We impose regularization giving a
black-boxed kernel an explicit role, e.g. for a particular view,
and then aggregate them to create kernels for any unknown
view. This allows us to interpolate kernels for any view that
is not used for training. Since our method only replaces
a traditional convolution operation in existing models, our
scheme can be easily applied to any multi-view lipreading.

We conducted evaluation experiments using OuluVS2. Ex-
perimental results show that imposing view regularization
to dynamic convolution with soft attention (softmax with
temperature and label smoothing) enables us to accomplish
robust lipreading for unknown views.

The rest of this paper is organized as follows. Section II
briefly introduces related works to our approach. Our former
and proposing schemes are explained in Section III. In Section
IV, we describe experimental setup and results, as well as
discussion. Section V finally concludes this article.

II. RELATED WORK

In realistic scenarios, there are two problems against real-
izing lipreading applications: pose-invariant and open-world
lipreading. This section mentions related research works re-
garding the problems.
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A. Pose-invariant lipreading

Lipreading systems should recognize different poses which
are not used for model training without accuracy decrease.
There are two main approaches for such pose-invariant lipread-
ing according to [9]. The first approach is training a recog-
nition network model using data from all available views in
order to build generalized network [10]. The second approach
applies a pose-mapping from non-frontal views to a particular
view, usually the frontal view [3], [12]. For example, the
view2view [12] transforms a non-frontal face to a frontal
one based on pix2pix [13], which is one of the generative
adversarial networks.

B. Task-invariant lipreading

There are many research works investigating lipreading,
however, due to the limitation of existing lipreading and audio-
visual speech recognition corpora, only a few works focused
on real-environment or large-vocabulary tasks [14], [15], [16].
Among such the works, for example, Lipnet [14] employed
CNN, Recurrent Neural Network (RNN), and Connectionist
Temporal Classification (CTC) loss. This indicates CNN is an
essential technique for task-invariant lipreading.

III. METHODS

A. Dynamic Convolution

First of all, we explain dynamic convolutional neural net-
works [11] used in this work. Fig 1(a) shows an overview. In
order to increase the representation capability in deep learning,
it is well known to make a network wider or deeper. However,
it costs computationally a lot, and thus are not suitable for
efficient networks. The dynamic convolution [11] aims at
increasing the representation capability with slight additional
computational cost.

Traditional convolution can be done as:

y = W ∗ x (1)

where ∗ indicates a convolution operator and W is a single
convolution kernel. In contrast, dynamic convolution employs
a dynamic kernel W̃ (x) that aggregates a set of K convolution
kernels {W k} for each input x:

y = W̃ (x) ∗ x, (2)

W̃ (x) =

K∑
k=1

πk(x)W k

s.t. 0 ≤ πk(x) ≤ 1,

K∑
k=1

πk(x) = 1 (3)

where πk is an attention weight for a kth kernel W k. Dynamic
convolution applies Squeeze-and-Excitation (SE) module [17]
to the attention weights πk. The SE module employs self
excitation to adaptively recalibrate channel-wise feature re-
sponses. The global spatial information is firstly squeezed by
global average pooling. Then we use two Fully-Connected
(FC) layers and the softmax function to generate attention
weights for K convolution kernels.

B. Multi-view Convolution

In this paper, we propose ”Multi-view convolution” based
on dynamic convolution for lipreading. Fig 1(b) shows an
overview. Although dynamic convolution sums up multiple
kernels with attention weights depending on input data, model
developers cannot control or determine the role of each kernel.
We focus on improving this mechanism and impose regu-
larization on SE modules in dynamic convolution. Imposing
regularization is expected to give each kernel an explicit role
corresponding to each view. We can then create kernels for
two views, e.g. frontal and profile facial ones, and aggregate
them to create kernels for any view between them. This allows
us to interpolate kernels for any diagonal view, which is not
used for training.

View regularization: When training, the loss function
for our model is designated to combine the visual speech
recognition loss Lrec and the penalty term L(m)

view which is
obtained from view metadata, on an mth convolutional layer:

L = Lrec + λview

M∑
m=1

L(m)
view, (4)

where λview is a hyperparameter that balances the contribution
of the recognition loss and the regularized loss, and M is the
number of multi-view convolution layers. Lview is obtained by
calculating a cross-entropy between attention outputs to each
kernel and the metadata.

Soft attention: To interpolate any view from the views
used for training, multi-view convolution applies soft attention
based on label smoothing (LS) [18], and softmax with tem-
perature. Since a softmax mechanism often generates a vector
close to a one-hot output, it is almost equivalent to selecting
the best kernel among kernels. Our goal is to combine multiple
kernels effectively and obtain a new kernel from them, thus
we need a flatter attention.

Label Smoothing is a regularization technique that intro-
duces noise for labels. Label smoothing replaces a one-hot
encoded label vector yhot into a mixture of yhot and uniform
distribution:

yls = (1− α)yhot +
α

L
, (5)

where L is the number of label classes, and α is a hyperpa-
rameter that determines the amount of smoothing. If α = 0,
we obtain the original one-hot encoded yhot. If α = 1, we get
the uniform distribution.

Compared to the original softmax, softmax with temperature
outputs a flattened attention as follows:

πk =
exp(zk/τ)∑
j exp(zj/τ)

, (6)

where zk is an output of the second FC layer in attention, and
τ is the temperature. If τ = 1, the output equals to the original
softmax. As τ increases, the output becomes increasingly flat.
In order to improve training efficiency, dynamic convolution
starts at a large temperature (e.g. τ = 30) and reducing τ
toward τ = 1 in the first 10 epochs. We set the minimum value
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(a) Dynamic convolution (b) Multi-view convolution

Fig. 1. The overview of dynamic and multi-view convolution.

TABLE I
DATA SETS IN OUR EXPERIMENTS.

Data Set Speaker IDs Views Samples

Training
1,2,3,10,11,12,13,18,19,20,

0◦, 90◦ 1,68021,22,23,24,25,27,33,35,36,
37,38,39,45,46,47,48,50,53

Validation 4,5,7,14,16,17,28,31,32,
0◦, 90◦ 72040,41,42

Test 6,8,9,15,26,30,34,43,44, 0◦, 30◦, 45◦, 1,80049,51,52 60◦, 90◦

of τ as a hyperparameter to get a flatter output compared to
the original softmax.

IV. EXPERIMENTS

We conducted experiments to investigate the effectiveness
of multi-view convolution in multi-view visual speech recog-
nition.

A. Data

The dataset used in our work is OuluVS2 [2], which is
a publicly available multi-view database with five lip views
including 0◦, 30◦, 45◦, 60◦, and 90◦. OuluVS2 contains video
recordings from 52 speakers with five different camera views.
Each subject uttered three collections of 10 continuous digit
strings, 10 daily-use short English phrases, and 5 randomly
selected TIMIT sentences.

OuluVS2 provides Region-Of-Interest (ROI) videos, which
were preprocessed by segmenting individual utterances and
cropping off ROIs, for digit strings and phrases collection.
Every phrase was uttered three times in this collection, thus
the total number of samples is 52 (speakers) × 5 (views) ×
3 (utterances) × 10 (phrases) = 7,800. The data were divided
into train, validation, and test sets with reference to Lee et al.
[4] as shown in Table I. In this work, only frontal and profile

Fig. 2. The baseline architecture for our experiment.
† The 3DConv module was replaced into dynamic

3DConv or multi-view 3DConv for comparison.

lip images were adopted to train our model, while recognition
was conducted for every views.

Each input video was gray-scaled and normalized, then we
aligned the number of frames in each utterance to 64. We
performed data augmentation with random cropping of which
size was 64× 64.

B. Models and experimental setup

The baseline architecture in this experiment was illustrated
in Fig. 2. The models was a 3DCNN-based VGGNets [19]
with the depth of 3, the kernel size of 3, batch normalization,
the ReLU activation function and two FC layers. The network
had 32 feature maps on the first layer, in which the next layer
had doubled as the network got deeper. Since the input data
were video streams, 3D convolution can deal with not only
the spatial representation but also time-series information. We
replaced each convolution layer into dynamic convolution or
multi-view convolution to compare and evaluate the models.

We used Adam optimizer [20] for all the networks with a
learning rate of 0.001 and batch size of 64 for 100 epochs.
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TABLE II
TEST ACCURACY RESULTS FOR EACH CAMERA VIEW.

Method Training Data Accuracy of Test Data (%)
0◦ 30◦ 45◦ 60◦ 90◦ Average

A : Baseline 3DCNN

0◦ + 90◦

86.9 84.3 84.5 83.3 83.7 84.6
B : Dynamic 3DCNN [11] 86.4 84,4 81.4 81.4 81.4 83.0
C : B + temperature 87.0 86.0 86.4 83.7 82.2 85.1
D : B + view regularization 85.4 78.7 73.9 78.2 80.3 79.3
E : D + temperature 86.5 82.2 80.8 81.7 82.4 82.7
F : D + LS 88.5 85.8 84.3 83.3 83.0 84.9
G : D + temperature + LS (Multi-view 3DCNN) 88.6 89.4 88.1 85.6 83.9 87.1

The learning rate decayed with rates of 10% every 5 epochs.
Through fine tuning on the validation set, we found that

the optimal values of hyperparameters are the loss weight
λview = 1, the smoothing α = 0.2 and the minimum value of
temperature in softmax τmin = 3.

C. Result and discussion

Table II shows test accuracy results for each camera view. It
is found that our multi-view convolution (Method G) achieved
the highest accuracy for all views. In particular, the accuracy
for the side views, which were not used for training, was
significantly higher. It is observed that our method can perform
robust recognition for all the views.

Since our multi-view convolution consists of several com-
ponents, we analyzed which component contributed to the
accuracy improvement much more.

• Dynamic Convolution (Method B) causes performance
degradation compared to the baseline (Method A), ir-
related to the number of kernels. The dataset used in
this paper has only lip videos, causing lower variation.
In contrast, the other datasets such as ImageNet [21]
include various kinds of images. This may affect recog-
nition performance; Method B has too many kernels to
represent such the lower variation data. On the other
hand, our proposed method seems to properly adjust the
representation capability owing to regularization.

• Comparing Methods B and D, adding only view regu-
larization to dynamic convolution significantly decrease
the accuracy. As mentioned, the softmax output, which is
the attention weight, became close to a one-hot vector for
either 0◦ or 90◦. This might cause that each kernel was
built almost only for one view, and only one kernel might
be selected for a view that was not used for training.
For example, for a 45◦ test sample, a kernel for 0◦

was selected as a result. Consequently, only adding view
regularization to dynamic convolution caused too hard
attention leading accuracy decrease.

• Next, we would like to discuss the case where view
regularization and soft attention are applied together to
dynamic convolution. We introduced two methods, soft-
max with temperature and label smoothing. When only
one of them was applied, the accuracy was improved.
It is found that introducing soft attention enables us to
combine multiple kernels for an unknown view. Further-
more, when both of them were applied, the accuracy was

also improved, indicating that both could contribute to the
improvement independently. These results it is clarified
that multi-view convolution, which combines dynamic
convolution with view regularization and soft attention
(softmax with temperature and label smoothing), is robust
against unknown views.

From these results, we can conclude that multi-view convo-
lution, which combines dynamic convolution with view regu-
larization and soft attention (softmax with temperature, label
smoothing), ensures effective for robustness against unknown
views.

V. CONCLUSION

In this paper, we introduce multi-view convolution based
on dynamic convolution for lipreading. In order to realize
multi-view lipreading using only a few kinds of views for
training and to design a mechanism that can be easily applied
to existing model, we impose view regularization to dynamic
convolution with soft attention (softmax with temperature and
label smoothing). Experimental results indicate that our multi-
view convolution is robust against unknown views.

As future works, the following can be considered. In this
work, we evaluated lipreading schemes with OuluVS2. Since
OuluVS2 has a limited vocabulary and data size, so far we
cannot evaluate our multi-view convolution in much more
realistic scenarios. Therefore, we will explore a new data
set to evaluate our method in real environments or in large-
vocabulary tasks.
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