
Column Scan Acceleration in Hybrid CPU-FPGA Systems

Nusrat Jahan Lisa, Annett Ungethüm,
Dirk Habich, Wolfgang Lehner

Technische Universität Dresden
Database Systems Group

Dresden, Germany

{firstname.lastname}@tu-dresden.de

Nguyen Duy Anh Tuan, Akash Kumar
Technische Universität Dresden

Processor Design Group
Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Nowadays, in-memory column store database systems are
state-of-the-art for analytical workloads. In these column
stores, a full column scan is a fundamental key operation
and thus, the optimization of this primitive is very crucial
from a performance perspective. For this optimization, ad-
vances in hardware are always an interesting opportunity,
but represent also a major challenge. At the moment, hard-
ware systems are more and more changing from homoge-
neous CPU systems towards hybrid systems with different
computing units. Based on that, we focus on column scan
acceleration for hybrid hardware systems incorporating a
Field Programmable Gate Array (FPGA) and a CPU into
a single system in this paper. The advantage of those hy-
brid systems is that the FPGA has usually direct access to
the main memory of the CPU avoiding data copy which is a
necessary procedure in other hybrid systems like CPU-GPU
architectures. Thus, we present several FPGA designs for a
recent column scan technique to fully offload the scan opera-
tion to the FPGA. In detail, we present our basic FPGA de-
sign and different optimization techniques. Then, we present
selective results of our exhaustive evaluation showing the
benefit of our FPGA acceleration. As we are going to show,
we achieve a maximum speedup of factor 7 compared to a
single-threaded CPU scan execution.

1. INTRODUCTION
In our data-driven world, efficient query processing is still

an important aspect due to the ever-growing amount of data.
In fact, the growth of data even outnumbers Moore’s law of
digital circuit complexity [35]. Therefore, the architecture of
database systems is constantly evolving, especially by adapt-
ing novel hardware features to satisfy response times and
throughput demands [6, 20, 25, 30, 33]. For instance, the
database architecture shifted from a disk-oriented to a main
memory-oriented architecture to efficiently exploit the ever-
increasing capacities of main memory [1, 22, 27, 37]. This
in-memory database architecture is now state-of-the-art and

characterized by the fact, that all relevant data is completely
stored and processed in main memory. Additionally, rela-
tional tables are organized by column rather than by row [1,
6, 8, 22, 37] and the traditional tuple-at-a-time query pro-
cessing model was replaced by newer and adapted processing
models like column-at-a-time or vector-at-a-time [1, 6, 22,
37, 48].

To further increase the performance of queries, in particu-
lar for analytical queries in these in-memory column stores,
two key aspects play an important role. On the one hand,
data compression is used to tackle the continuously increas-
ing gap between computing power of CPUs and memory
bandwidth (also known as memory wall [6]) [2, 5, 9, 21, 47].
Aside from reducing the amount of data, compressed data
offers several advantages such as less time spent on load
and store instructions, a better utilization of the cache hier-
archy, and less misses in the translation lookaside buffer.
On the other hand, in-memory column stores constantly
adapt to novel hardware features like vectorization using
Single-Instruction Multiple Data (SIMD) extensions [34, 48],
GPUs [20, 26] or non-volatile main memory [33].

From a hardware perspective, we currently observe a shift
from homogeneous CPU systems towards hybrid systems
with different computing units mainly to overcome physical
limits of homogeneous systems [11, 29]. In particular, hybrid
hardware systems incorporating a Field Programmable Gate
Array (FPGA) and a CPU are emerging, being very inter-
esting from a performance perspective. Generally, FPGAs
are integrated circuits, which are configurable after being
manufactured. Thus, FPGAs can be used as a hardware
extension to the database system where some specialized
functionality is efficiently implemented. Additionally, FP-
GAs have usually direct access to the main memory of the
CPU in such hybrid systems. In contrast to other hybrid
systems like CPU/GPUs, this direct main memory access
is unique regarding to avoid the bottleneck of copying data
between the different computing units [14, 26].

Our Contribution
A core primitive in in-memory column stores is a column
scan [12, 31, 40], because analytical queries usually com-
pute aggregations over full or large parts of columns. Thus,
the optimization of this scan primitive is very crucial from
a performance perspective and several software-based ap-
proaches have been proposed [12, 31, 40]. Some of these
approaches are already tailored to hardware features like
SIMD vectorization as optimization [12, 40]. Generally, the
task of a column scan is to compare each entry of a given

1

(a) Scan Througput (b) FPGA Speedup

Figure 1: Comparing Scan Throughout for CPU as well as
FPGA execution. More details can be found in Section 4.

column against a given predicate and to return all matching
entries. All recent column scan approaches have in common
that (i) they directly work on compressed data and (ii) they
process multiple compressed column values within a single
instruction [12, 31, 40]. As shown in [12, 31, 40], the more
column values are packed together in processing registers,
the more column values can be processed at once in paral-
lel leading to better performance. However, the processing
registers on common CPUs are limited to 64-bit [31] for
processor words or to the size of the available vector regis-
ters [12, 40]. Generally, vector—Single Instruction Multiple
Data (SIMD)—extensions such as Intel’s SSE (Streaming
SIMD Extensions) or AVX (Advanced Vector Extensions)
have been available in modern processors for several years.
On Intel systems, there are currently three vector sizes avail-
able: (i) 128-bit for SSE, (ii) 256-bit for AVX or AVX2, and
(iii) 512-bit for AVX-512.

However, the limited sizes of the processing registers re-
strict the scan processing capabilities, because only a limited
number of compressed column values can be processed in
parallel at once. To overcome that, the utilization of FPGAs
in hybrid hardware systems is a very interesting optimiza-
tion candidate. To investigate this optimization candidate in
a systematical way, we decided to create and to compare var-
ious FPGA designs for a recent column scan technique called
BitWeaving [31]. Our underlying hybrid hardware founda-
tion is a Xilinx R© Zynq UltraScale+TMboard featuring four
ARM cores with a maximum frequency of 1.2GHz and an
integrated FPGA [43]. The ARM cores as well as the FPGA
have direct access the main memory [43]. Figure 1(a) shows
the BitWeaving scan throughput—how many bits are pro-
cessed in a second—measured in GB/s for single-threaded
as well as for multi-threaded execution on the ARM cores1.
As we can see in Figure 1(a), the scan throughput improves
with an increasing number of cores as expected, whereby
the throughput almost saturates with four cores. Neverthe-
less, we achieve a much higher scan throughput with our
best-performing FPGA design on the same data, whereby
this FPGA design runs only at 250MHz, but processes more
compressed column values in parallel. Figure 1(b) depicts
the resulting FPGA speedups compared to different CPU
configurations. Compared to the single-threaded execution,
we achieve a speedup of seven, while the FPGA speedup to
four ARM cores is still greater than 2.

1The CPU experiments were done with the original
BitWeaving source code, which was kindly provided to us by
Jignesh M. Patel. The multi-threaded execution was done
using OpenMP, whereas each thread processed the same
amount of data (uniform distribution).

To summarize, we make the following contributions in this
paper:

1. We describe our target hybrid CPU-FPGA hardware
system as well as our used example scan technique
BitWeaving in Section 2.

2. In Section 3, we present our pipeline-based basic hard-
ware design for an FPGA-accelerated BitWeaving scan.
Based on that basic design, we introduce different opti-
mization techniques in a systematical way to increase
the scan throughput. This section already includes
some initial evaluation results to validate our optimiza-
tion techniques.

3. A more comprehensive evaluation is described in Sec-
tion 4. In particular, we also compare our FPGA op-
timization with different SIMD optimizations. As we
are going to show, the FPGA optimization is more
beneficial than SIMD.

Finally, we close the paper with related work in Section 5
and a summary including future work in Section 6.

2. PRELIMINARIES
Before we systematically describe different FPGA designs

for the scan acceleration, we have to introduce necessary
basics in this section. The basics include two points: (i) a
description of our target hybrid CPU-FPGA hardware and
(ii) a brief summary of the BitWeaving scan technique [31].

2.1 Target Hybrid CPU-FPGA System
Fundamentally, Field Programmable Gate Arrays (FP-

GAs) are integrated circuits, which are configurable after
being manufactured at any time. Internally, FPGAs are
composed of programmable logic blocks, a collection of small
on-chip memories, and arithmetic units (DSPs). To create a
custom hardware module for an FPGA, a hardware descrip-
tion language, e.g., Verilog, is used to describe the opera-
tion mode of a specific application logic. This description
is then translated via several steps to an implementation
for the FPGA. Then, this implementation behaves like an
application-specific integrated circuit (ASIC) [39]. A core
component of this implementation is the state of the pro-
grammable LookUp-Tables (LUTs). These LUTs are used
for implementing simple n-ary functions. More complex
functions are realized by using an array of LUTs enabling
the construction of custom hardware modules for any type
of application logic. Typically, this offers a higher perfor-
mance while maintaining a lower power dissipation than on
CPUs. To be competitive with common CPUs, the custom
hardware module for a specific application logic has to be
well-designed, since current FPGAs usually run at very low
clock-rates around 200−400 MHz. To enable that, the most
challenging issue is to create efficient processing pipelines
due to the close proximity of logic and memories [39].

The FPGA acceleration of database operations is becom-
ing increasingly important since hardware vendors like Intel R©
or Xilinx R© incorporate an FPGA and a CPU into a com-
mon system. In this paper, we use a hybrid CPU-FPGA
hardware system from Xilinx R© called Zynq UltraScale+TMas
foundation [43]. The architecture of this hybrid system is
depicted in Figure 2. As shown in this figure, our tar-
get system contains two major top-level blocks: the pro-
cessing system (PS) and the programmable logic (PL). All
programmable custom hardware FPGA modules are imple-
mented inside the PL, whereby the maximum frequency can

2

ARM® MaliTM-400Quad ARM® CortexTM-A53

Dual ARM® CortexTM-R5

Real Time

Processing Unit

Application

Processing Unit

Graphics

Processing Unit

Power

Platform

Management Unit

System Management

DDR Controller

DDR4

DDR3

DDR3L

LPDDR4/3

System Control

DMA

Timers

Clocking

Processing System (PS)

Programmable Logic (PL)

Connectivity

Display Port

USB 3.0

SATA 3.0

PCIe

GigE

CAN

UART

Quad SPI NOR

NAND

SD

Block RAM

Ultra RAM

DSP

Storage and Signal Processing AXI Interfaces

High Performance (HP)

High Density (HD)

Custom

Hardware

DDR4 SDRAM

MIG

Figure 2: Zynq UltraScale+TMhybrid architecture.

be 400MHz. Inside the PS, there is a common 64-bit quad
ARM R© Cortex-A53 with dedicated and shared cache mem-
ories, static dual port RAM, registers, and controllers. The
maximum frequency of these ARM cores is 1.2GHz. Addi-
tionally, the PS part features two ARM R© Cortex-R5 cores
for real time processing and a Mali-400 GPU, but both are
not considered further in this paper. Moreover, the Zynq
UltraScale+TM has two DDR4 memories. While one is lo-
cated in the Processing System (PS) (4GB in size), the other
is located in the Programmable Logic (PL) (512MB). In con-
trast to previous Xilinx R© hybrid systems, the connection
between the PS and the PL on the Zynq UltraScale+TMis
more powerful. Concretely, it has several High Performance
AXI interfaces between PL and PS providing a data bus
width of 32-bit/64-bit/128-bit. Based on that, the custom
hardware modules on the PL part have direct access to the
large main memory on the PS part, so that PS and PL can
work on the same data elements.

2.2 Investigated Column Scan Operation
With the increasing demand for in-memory data process-

ing, there is a critical need for fast scan operations in col-
umn store systems [12, 31, 40]. The BitWeaving approach
addresses this need by packing multiple compressed column
values into processor words and applying full-word instruc-
tions for predicate evaluations using a well-defined arith-
metic framework [31]. The core idea of this technique was
already published in 1975 by Lamport [28] and has been
recently extended in [31]. In this extension, BitWeaving
comes with two storage layout variants, a horizontal layout,
BitWeaving/H, and a vertical layout, BitWeaving/V.

In the remainder of this paper, we restrict ourselves to
BitWeaving/H. There are several reasons why we decided
to use BitWeaving and in particular BitWeaving/H. On the
one hand, BitWeaving in general is a simple and hardware-
independent approach, but a very efficient technique at the
same time. In contrast to that, ByteSlice and other scan ap-
proaches are tailored to specific hardware environments like
vectorization and the speedups compared to BitWeaving are
marginal [12, 40]. On the other hand, BitWeaving/H is cur-
rently the storage layout from a compression point of view,
because many compression algorithms used in column stores
are designed for a horizontal layout [9]. To convert horizon-
tal compressed column codes to a vertical BitWeaving lay-
out requires additional work, which would be an interesting
topic for future work.

1

(b) Horizontal Storage Layout

C3 C4

H2 0 1 1 0 0 1 0 0

C5 C6

H3 0 0 0 1 0 1 0 0

C7 C8

H4 0 1 1 0 0 1 1 0

Delimiter Bit

C1 C2

H1 0 0 0 1 0 0 1 1C1 = 1 0 0 1

C2 = 3 0 1 1

C3 = 6 1 1 0

C4 = 4 1 0 0

C5 = 1 0 0 1

C6 = 4 1 0 0

C7 = 6 1 1 0

C8 = 6 1 1 0

INT

Column Codes

(Length: 3-Bit)

(a)

Figure 3: Illustration of BitWeaving/H layout.

2.2.1 BitWeaving/H Storage Layout
In-memory column stores have more or less a common

storage approach: (i) encode values of each column as a se-
quence of integers using some kind of dictionary coding [2, 5]
and (ii) apply lightweight lossless data compression to each
sequence of integers resulting in a sequence of compressed
column codes [1, 2, 21]. An example is shown in Figure 3(a),
where eight 32-bit integer values Ci are represented using 3-
bit compressed column codes. Fundamentally, BitWeaving
assumes a fixed-length order preserving compression scheme,
so that all compressed column codes of a column have the
same bit length [31]. Then, the bits of the column codes
are aligned in main memory in a way that enables the ex-
ploitation of intra-cycle parallelism using ordinary processor
words. As illustrated in Figure 3(b), the column codes are
contiguously stored in processor word Hi in BitWeaving/H,
where the most significant bit of every code is used as a de-
limiter bit between adjacent column codes. In our example,
we use 8-bit processor words, so that two 3-bit column codes
fit into one processor word including one delimiter bit per
code. The delimiter bits are used later to store the result of
a predicate evaluation.

2.2.2 BitWeaving/H Predicate Evaluation
The task of a column scan is to compare each column

code with a constant C and to output a bit vector indi-
cating whether or not the corresponding code satisfies the
comparison condition. To efficiently perform such a column
scan using the BitWeaving/H storage layout, Li et al. [31]
proposed an arithmetic framework to directly execute pred-
icate evaluations on the compressed column codes. There
are two main advantages: (i) predicate evaluation is done
without decompression and (ii) multiple column codes are
simultaneously processed within a single processor word us-
ing full-word instructions (intra-cycle parallelism) [31]. The
supported predicate evaluations include equality, inequal-
ity, and range checks, whereby for each evaluation a func-
tion consisting of arithmetical and logical operations is de-
fined [31].

Figure 4 highlights the equality check in an exemplary
way, whereby the other predicate evaluations work in a sim-
ilar way. The input from Figure 3(b) is tested against the
condition Ci = 3. Then, the predicate evaluation steps are
as follows:
Initially: All given column codes and the query constant

3

Step 1:

Exclusive-OR

H1 0 0 0 1 0 0 1 1

Step 2:

Masking1

(Addition)

Given Predicate:

Ci = 3?
Initial Step: Horizontal Layout of Predicate Constant 3, Q1

Step 3:

Masking2

(Exclusive-OR)

Step 4: Sum all the

Delimiter bits

H2 0 1 1 0 0 1 0 0 H3 0 0 0 1 0 1 0 0 H4 0 1 1 0 0 1 1 0

Q1 0 0 1 1 0 0 1 1

Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1

M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1

1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0

M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0

0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 = 1

Figure 4: Equality predicate evaluation with the BitWeaving/H technique.

number 3 are converted into the BitWeaving/H stor-
age layout (H1, H2, H3, H4) and Q1, respectively.

Step 1: An Exclusive-OR operation between the words
(H1, H2, H3, H4) and Q1 is performed.

Step 2: Masking1 operation (Addition) between the inter-
mediate results of Step 1 and the M1 mask register
(where each bit of M1 is set to one, except the delim-
iter bits) is performed.

Step 3: Masking2 operation (Exclusive-OR) between the
intermediate results of Step 2 and the M2 mask register
(where only delimiter bits of M2 are set to one and the
rest of all bits is set to zero) is performed.

Step 4 (optional): Add delimiter bits to achieve the total
count (final result).

The output is a result bit vector, with one bit per input
code that indicates if the code matches the predicate on
the column. In our example in Figure 4, only the second
column code (C2) satisfies the predicate which is visible in
the resulting bit vector.

3. FPGA-BASED SCAN ACCELERATION
In this section, we present different FPGA designs for the

BitWeaving scan acceleration in a systematical way. We
start with pipeline-based basic designs, followed by two op-
timization approaches. The first approach tries to read more
data from main memory using multiple data channels, while
the second optimization uses multiple memory locations. In
each part, we also present some initial evaluation results to
guide the reader through the different design alternatives.
More evaluation results will be discussed in Section 4.

3.1 Pipeline-based Basic Designs
Custom-made hardware (we also call it Processing Ele-

ment (PE)) is implemented inside the PL using Config-
urable Logic Block (CLB) slices [39]. CLB slices contain
LUTs (LookUp Tables), Flip-Flops (FF), Arithmetic Carry
Logic and Multiplexers [32] [39]. As described earlier, the
BitWeaving/H scan technique is based on an arithmetic
framework containing only arithmetic as well as logical oper-
ations [31]. Thus, this scan should and can be easily realized
on FPGAs. However, the biggest strength of FPGAs lies in
their inherent hardware parallelism, which is also the most
challenging issue [39].

1

ARM CortexTM-A53

DMA

1067 MHz

Address Bus (40-Bit):

1.2 GHz

HW

Design Name
Data Bus

Frequency

(PL)

BASIC_32 32-Bit 300 MHz

BASIC_64 64-Bit 250 MHz

BASIC_128 128-Bit 250 MHz

Interconnect

DDR4 Memory

Write Logic Block

Process Logic Blocks

Read Logic Blocks

Processing Element

Data Bus :

Programming Logic (PL)

PS DDR4 Controller

Figure 5: Pipeline-based basic design for BitWeaving/H
scan using one data channel.

Pipeline parallelism is a very attractive parallelism op-
portunity for FPGAs due to the close proximity of logic
and memories [39]. To realize pipeline parallelism, a set
of data processing blocks has to be connected in series,
whereby the output of one block is the input of the next
one. Then, the blocks are executed in parallel. To enable
that for BitWeaving, we designed a specific Processing Ele-
ment for the BitWeaving/H scan consisting of three different
blocks as shown in Figure 5, whereby we stream data from
the large PS main memory through our processing element
in the PL.
Read Logic Block: Inside our processing element, there

are two read blocks necessary, one is for reading the
predicate constant word and the other is for reading
the raw data words (the words containing a number of
column codes, which are checked for equality).

Process Logic Block: This block is responsible for the
predicate evaluation. Based on the type of predicate,
there can be more than one process block in parallel:
For example, four operations are required to perform
an equality check: (i) Exclusive-OR, (ii) Masking1, (iii)
Masking2, iv) Preparing the output (see Figure 4). In
this case, there are four process blocks which are pro-
cessing more than one data word in parallel.

4

1st Clock

2nd Clock

3rd Clock

nth Clock

(n+1)th Clock

Logic
Blocks

(n+m)th Clock

Read
Block for

Query
Constant

Read
Block for Raw

Data

Process
Block-1

Process
Block-m

Write Block…

Read

Read

Process

Process

… …

Write (n+m+1)th Clock

Read

Read

Read

Process

Process …

…

Process

Process … Process

…

Process

… …

Figure 6: Timing diagram of our pipeline-based basic FPGA
design for BitWeaving/H scan.

Write Logic Block: In the write block, the final result of
the predicate evaluation is written back to PS main
memory.

As illustrated in Figure 5, our BitWeaving/H scan process-
ing element is connected to the main memory of the PS part
through a single data channel using a DMA (direct mem-
ory access) controller (High Performance AXI interfaces), so
that we can directly stream data words to the BitWeaving/H
processing element. Based on that design, each block pro-
cesses one data word in each clock cycle, while in each clock
cycle more than one block is executed in parallel as shown
in Figure 6. For example, if there are m process blocks to
process n words, then it takes (m+n+1) clock cycles (see
Figure 6), whereas a non pipeline-based design would take
(mn+1) clock cycles. Therefore, each data word contains
multiple compressed column codes and in each cycle multi-
ple data words are simultaneously processed offering a high
degree of parallelism.

The data word size on our target system can be configured
as 32-bit, 64-bit or 128-bit, because the interfaces between
the PL and PS provide a data bus width of corresponding
sizes. For each possible bus data width, we created an ap-
propriate design named BASIC 32, BASIC 64, BASIC 128.
That means, if we read 32-bit data from the main memory,
we also process 32-bit in our processing element. The same
applies for 64-bit and 128-bit.

Interim Evaluation. To show the applicability and effect of
our basic hardware design, we present some initial evaluation
results. For the initial evaluation in this section, we gener-
ated a data set containing 1 million column codes, whereby
each column had a fixed size of 3-bit. This data set is stored
in the large main memory of the PS part. For comparison,
BitWeaving using the original source code was executed on
a single ARM core and we measured a throughput of 1.9
GB/s as illustrated in Table 1. This execution used a pro-
cessor word size of 64-bit, so that sixteen 3-bit column codes
are processed simultaneously. During the scan, an equality
check had been conducted.

Table 1 also shows the throughput results for our different
basic designs. As we can see, the throughput increases with
increasing data widths as expected. The reason is that the
larger the data width, the higher the parallelism leading to
a higher throughput. However, only the 32-bit basic design
can be executed with a frequency of 300MHz. For the other
designs, we had to drop the frequency to 250MHz to guaran-

Design Throughput Frequency
1 ARM Core 1.9GB/s 1.2GHz

BASIC 32 1.1GB/s 300MHz
BASIC 64 1.9GB/s 250MHz
BASIC 128 3.9GB/s 250MHz

Table 1: Initial evaluation results for our basic designs com-
pared to a single-threaded execution on an ARM core.

tee a reliable and valid processing. Therefore, the speedup
of the 64-bit design compared to the 32-bit design cannot
be two. Nevertheless, the speedup of BASIC 128 compared
to BASIC 64 is two, because the frequency stays constant
and twice the amount of data is processed in a single clock.

Interim Conclusion. Compared to a single-threaded CPU
execution running on 1.2GHz, our BASIC 64 FPGA design
at 250MHz delivers the same throughput. With a data
width of 128, we can even double the throughput. Based
on that, we are able to conclude that (i) the FPGA scan
acceleration is possible, (ii) higher data widths are more
beneficial even if the frequency gets lower, and (iii) using
the full possible data width of the data channel delivers the
best performance.

3.2 Optimization using Multiple DMAs
To further improve the scan throughput, we have to pro-

cess more data in parallel. Unfortunately, the data bus
width of the PS DDR4 controller is limited to 128-bit per
data channel. But inside the PL, we can instantiate up to
1024-bit data bus width based DMAs and inside our pro-
cessing elements we can increase the processing word size as
well. To efficiently utilize these PL properties, we have to
go for data parallelism using multiple data channels on the
PS part, whereas four non-coherent channels are available
on out target hybrid system. Based on that, there are two
processing opportunities: (i) combined processing and (ii)
independent processing. Both as well as a hybrid approach
are presented and discussed subsequently.

3.2.1 Combined Processing
To parallelize the scan of data beyond 128-bit words in a

single cycle, we created designs using multiple DMAs (data
channels) as shown in Figure 7. Our pipeline-based basic
design still serves as foundation, whereby multiple 128-bit
data words are combined before processing. For example,
our 256-bit design uses two DMAs and the resulting two
128-bit data words are concatenated into a 256-bit data
word for processing. These 256-bit data words are then
processed using one single processing element working on
256-bit operations. The necessary combiner is an additional
pipeline stage which integrates seamlessly into our pipeline-
based design, whereby the combiner is connected with mul-
tiple DMAs. Since only four non-coherent data channels
are available on PS DDR4 controller, we are able to gen-
erate designs up to a data width of 512-bit. The designs
are denoted as COMBINED 256, COMBINED 384, COM-
BINED 512. Important to note, the necessary BitWeaving
operations natively operate on the different data word sizes.

Interim Evaluation. We also evaluated these designs using
our initial evaluation setup as presented above, whereby we
uniformly distributed the amount of data among the used

5

1

ARM CortexTM-A53

PS DDR4 Controller

DMA_3

1067 MHz

1.2 GHz

Interconnect

DDR4 Memory

DMA_4

Interconnect

DMA_1DMA_2

Interconnect Interconnect

Address Bus (40-Bit):

Data Bus (128-Bit):

COMBINED_512

COMBINED_256

HW

Design Name

Frequency

(PL)

COMBINED_256 250 MHz

COMBINED_384 200 MHz

COMBINED_512 200 MHz

COMBINED_384

Combiner_256Combiner_384Combiner_512

Processing

Element_256

Processing

Element_384

Processing

Element_512

Data Bus (256-Bit):

Data Bus (384-Bit):

Data Bus (512-Bit):

Figure 7: Combined processing design using multiple DMAs.

DMAs. The results are depicted in Table 2. As we can see,
we are able to achieve a throughput of 7.7GB/s for COM-
BINED 256 which is almost twice as much as for the BA-
SIC 128 design, whereby both are able to run on 250MHz.
The throughput of COMBINED 384 and COMBINED 512
is less than COMBINED 256, because these designs can
only run at 200MHz. There are two reasons for this be-
havior. First, the words, which are processed by the PEs
and the Combiners are larger than in the COMBINED 256-
design. This increases the number of used LUTs and Flip-
Flops a signal has to pass and therefore, the time needed for
a processing cycle increases. Second, each processing ele-
ment is connected with more than one DMA via a combiner.
However, the DDR4 controller operates multiple DMAs in
a round robin manner. That means, the DDR4 controller
transfers the whole burst of words to one DMA, while the
others have to wait. Thus, each processing element has to
wait for the other DMAs to process a single word, which
has two effects: (1) The frequency is decreased leading to
a drop in the scan throughput, and (2) the instructions on
a PE are stalled until their DMA was provided with the
necessary data, which introduces additional stalling cycles.

Interim Conclusion. From this initial evaluation, we can
conclude that the combined processing approach is most
beneficial for 256-bit data words by using only two data
channels on our target system. In all other cases, the fre-
quency goes down which has a negative effect on the through-
put. The main reason for this behavior is that only a sin-
gle FPGA processing element is interacting with multiple
DMAs.

3.2.2 Independent Processing
In contrast to the combined approach, we also can use

multiple DMAs, but process each DMA output indepen-

Design Throughput #DMAs Frequency
BASIC 128 3.9GB/s 1 250MHz

C 256 7.7GB/s 2 250MHz
C 384 7.5GB/s 3 200MHz
C 512 6.5GB/s 4 200MHz

Table 2: Initial evaluation results for combined process-
ing, whereby C 256 equals COMBINED 256, C 384 equals
COMBINED 384, and C 512 equals COMBINED 512.

1

ARM CortexTM-A53

PS DDR4 Controller

DMA_3

1067 MHz

1.2 GHz

Interconnect

DDR4 Memory

DMA_4

Interconnect

DMA_1DMA_2

Interconnect Interconnect

Address Bus (40-Bit):

Data Bus (128-Bit):

Processing

Element_3

Processing

Element_1

Processing

Element_2

Processing

Element_4

INDEP_512

INDEP_256

HW

Design Name

Frequency

(PL)

INDEP_256 250 MHz

INDEP_384 250 MHz

INDEP_512 250 MHz INDEP_384

Figure 8: Independent processing using multiple DMAs.

dently by replicating our specific processing element. This
approach is depicted in Figure 8. The advantages are: (i) we
do not need an additional combiner and (ii) the processing
is limited to 128-bit operations in the processing elements.
The disadvantage is that we have to replicate the processing
elements multiple times leading to a higher resource utiliza-
tion. Again, we are able to use up to four non-coherent data
channels leading to three designs using virtual data widths
of 256, 384, and 512, but the processing is done in paral-
lel in 128-bit physical chunks. The necessary BitWeaving
operations only operate on a 128-bit data word size.

Interim Evaluation. Table 3 shows the evaluation results
for these designs using our initial evaluation setup with 1
million 3-bit column codes and with equality check during
the scan. As expected, we achieve a throughput of 7.8GB/s
for INDEP 256 which is almost twice the throughput of BA-
SIC 128. In this case, COMBINED 256 and INDEP 256
show a similar behavior running both with 250MHz. How-
ever, the throughput of INDEP 384 using 3 DMAs increases
compared to the combined processing approach. The through-
put for INDEP 512 decreases slightly. The reasons for this
are diverse. On the one hand, only three data channels
are directly connected to PS DDR4 controller on our tar-
get system, the fourth is connected indirectly. On the other
hand, the PS DDR4 controller theoretically runs with a fre-
quency of 1067MHz, but physically the IO bus frequency is
949MHz including refresh cycles (measured with the Xilinx
Frequency Analyzer Tool). Based on that, when all non-
coherent channels are used, the controller cannot operate
all channels within 949MHz which decreases the through-
put. However, all independent processing designs are able
to run at 250MHz.

Interim Conclusion. From a performance perspective, the
independent processing approach is superior to the com-
bined processing approach in general. The utilization of
3 data channels delivers the highest throughput so far.

Design Throughput #DMAs Frequency
BASIC 128 3.9GB/s 1 250MHz
INDEP 256 7.8GB/s 2 250MHz
INDEP 384 8.7GB/s 3 250MHz
INDEP 512 8.1GB/s 4 250MHz

Table 3: Initial evaluation results for independent processing
using multiple DMAs.

6

1

ARM CortexTM-A53

PS DDR4 Controller

DMA_3

1067 MHz

1.2 GHz

Interconnect

DDR4 Memory

DMA_4

Interconnect

DMA_1DMA_2

Interconnect Interconnect

Address Bus (40-Bit):

Data Bus (256-Bit):

HYBRID_768

HYBRID_256

HW

Design Name

Frequency

(PL)

HYBRID_256 250 MHz

HYBRID_512 250 MHz

HYBRID_768 250 MHz

HYBRID_1024 250 MHz HYBRID_512

Processing

Element_1

Combiner_256

Processing

Element_2

Combiner_256

Processing

Element_3

Combiner_256

Processing

Element_4

Combiner_256

Data Bus (128-Bit):

HYBRID_1024

Figure 9: Hybrid processing design using multiple DMAs.

3.2.3 Hybrid Processing
Nevertheless, each previous approach has its own advan-

tages. From the combined processing, we can conclude that
a 256-bit data word processing size is beneficial. For higher
data word sizes, an independent processing should be pre-
ferred. In our third approach, we investigated a hybrid ap-
proach by combining both previous approaches in an appro-
priate way. That means, parallel processing multiple 256-bit
data words in an independent way.

In our hybrid design, each processing element is connected
with only one DMA via a combiner (namely Combiner 256),
i.e, in COMBINED 256. In every second clock cycle, the
combiner concatenates two 128-bit words into a 256-bit word
and sends it to the processing element. Thus, the data bus
width between processing elements and combiners is 256-bit
and the rest of the design is using 128-bit data buses (see
Figure 9). Then, we replicated this design 2/3/4 times as
in the independent processing to realize 512/768/1024-bit
(namely HYBRID 512, HYBRID 768 and HYBRID 1024)
based designs, respectively in order to process more data
words in parallel.

Interim Evaluation. Table 4 shows the evaluation results
for these hybrid designs using column code widths of 3-bit
and for equality check during the scan. With this design
approach, we can slightly improve the maximum through-
put compared to our pure independent processing approach,
whereby each design can also run at 250MHz like the basic
design for 128-bit. Interestingly, we can achieve an even
better throughput for a single data channel. In this case,
the throughput increases from 3.9GB/s to 4.6GB/s. Never-
theless, the design with 3 data channels delivers the highest
throughput. The utilization of four channels is again not
effective due to the above mentioned reasons.

3.2.4 Conclusion
To improve the scan throughput, the utilization of mul-

tiple DMAs is beneficial, whereby various approaches are

Design Throughput #DMAs Frequency
BASIC 128 3.9GB/s 1 250MHz

HYBRID 256 4.6GB/s 1 250MHz
HYBRID 512 7.7GB/s 2 250MHz
HYBRID 768 9.2GB/s 3 250MHz
HYBRID 1024 8.4GB/s 4 250MHz

Table 4: Initial evaluation results for hybrid processing.

1

ARM CortexTM-A53

PS DDR4 Controller

DMA_3

1067 MHz

1.2 GHz

Interconnect
DDR4 Memory

DMA_4

Interconnect

DMA_1DMA_2

Interconnect

Address Bus (40-Bit): Frequency (PL): 250 MHz

Processing

Element_1

Processing

Element_2

Processing

Element_3

Processing

Element_4

Data Bus (128-Bit):

HYBRID2_512

1200 MHzPL DDR4 Controller

DMA_5

Interconnect

Processing

Element_5

DDR4 Memory

HYBRID2_768
HYBRID2_1024

HYBRID2_1280

Combiner_256Combiner_256Combiner_256Combiner_256

Data Bus (256-Bit):

Combiner_256

FIFO_3FIFO_4 FIFO_1FIFO_2FIFO_5

Interconnect

Figure 10: Hybrid2 processing design using multiple DDR4.

possible. Each approach has its own advantages and disad-
vantages as presented. Nevertheless, the maximum through-
put which can be achieved on our FPGA system is 9.2GB/s,
whereby we only use 3 out of 4 possible data channels. The
design with the highest scan throughput is HYBRID 768.
The utilization of all 4 data channels always leads to a de-
creasing throughput compared to 3 data channels.

3.3 Optimization using Multiple Memories
Our target hybrid CPU-FPGA system has two DDR4

memories as mentioned in Section 2. To further improve
the scan throughput, we also investigated the utilization of
both memories (PS and PL part memory) as optimization
technique, whereby we are able to easily integrate the PL
part memory in all of our previous designs. The integration
is done using an additional DMA controller including an ad-
ditional DDR4 controller for the PL memory as illustrated
in Figure 10, which allows the realization of larger data word
sizes for our approaches. Figure 10 shows the extension of
our hybrid memory processing optimization up to a data
word size of 1280. We call this optimization HYBRID2, be-
cause it combines our hybrid processing with hybrid (mul-
tiple) DDR4 memories.

Additionally, we extended the designs with FIFOs as tem-
porary storage between the combiners and the processing
elements. We used FIFOs because the DDR4 controller
controls multiple DMAs in a round robin manner and the
clock speed between DDR4 controller and PL part is dif-
ferent. It may happen that the DDR4 controller is sending
data to a DMA while the buffer of that particular DMA
is full. In that case, the DDR4 controller either has to
wait for that DMA or switch to another DMA. As a conse-
quence, the execution time will increase, which has a neg-
ative effect on the throughput. If there is an appropriate
depth based FIFO, then the DMA buffer will never get
full. Therefore, we prepare 2/3/4/5 DMAs based designs
(namely, HYBRID2 512, HYBRID2 768, HYBRID2 1024,
HYBRID2 1280, respectively) where, in every design, one
DMA is connected to the PL DDR4 memory and each DMA
has individual non-coherent data channels to the DDR4 con-
troller (see Figure 10).

Interim Evaluation. Again, we initially evaluated these de-
signs, whereby Table 5 shows the results for our initial eval-
uation setup. In all cases, the data is uniformly distributed
among the different DDR4 memories based on the used
number of DMAs. As we can see, design HYBRID2 1024
gives the maximum throughput of 12GB/s, where three data
channels (DMAs) of PS DDR4 and one data channel of PL
DDR4 are used. That means, the optimization using multi-
ple DDR4 memories is very beneficial. The throughput for

7

Design Throughput Frequency
HYBRID2 512 7.73GB/s 250MHz
HYBRID2 768 11.1GB/s 250MHz
HYBRID2 1024 12GB/s 250MHz
HYBRID2 1280 9.27GB/s 250MHz

Table 5: Evaluation results for HYBRID2 optimization.

HYBRID2 1280 decreases due to the utilization of four PS
channels as presented above.

4. EVALUATION
In this section, we present a more comprehensive eval-

uation of our FPGA scan acceleration. In particular, we
compare our FPGA acceleration with vectorized as well as
un-vectorized CPU execution.

4.1 Comparison with ARM CPU
In Section 3, we already presented initial results of our

evaluation. Figure 11 summarizes these initial results in a
visual way. As introduced above, this evaluation is based
on a generated data set containing 1 million column codes,
whereby each column had a fixed size of 3-bit. This data set
is stored in the large main memory of the PS part. To
show the FPGA acceleration behavior on our target hy-
brid CPU-FPGA system, we also executed the BitWeav-
ing scan on the ARM-CPUs using the original source code.
This CPU execution was done using 64-bit processor words
(non-vectorized). For the single-threaded CPU execution,
we achieved a throughput of 1.9GB/s, while the execution
on all four ARM cores, got a throughput of 4.8GB/s. The
multi-threaded execution was done using OpenMP, whereby
each ARM core processed the same number of column codes
(uniform distribution). During the scan, an equality check
had been conducted.

As we can clearly see in Figure 11, there is only one
FPGA design, BASIC 32, which has a lower throughput
than the single-threaded CPU execution. All other designs
achieve an equal or even higher throughput. Compared to
a multi-threaded CPU execution using 4 cores, most of our
FPGA designs achieve a higher throughput, too. The best-
performing FPGA design running only on the PS main mem-
ory (HYBRID 768) has a throughput of 9.2GB/s, which is

Figure 11: Throughput results for 3-bit columns codes and
equality predicate check.

almost twice the throughput of the best performing multi-
threaded CPU approach using 4 cores. The FPGA through-
put can be increased by using the main memory of the PL
part. In this case, we are able to achieve a throughput of
12GB/s with the design HYBRID2 1024. Figure 1 sum-
marizes these results including the illustration of achieved
speedups.

4.2 Different Scan Settings
We also evaluated our FPGA designs with different col-

umn codes sizes of 7 and 15 bits, with various numbers of col-
umn values and with a less than predicate check. For all ex-
periments, we almost achieved the same throughput results.
For example, Figure 12 shows the throughput results for a
less than predicate check on 1 million 3-bit column codes.
If we compare Figure 11 and 12, only marginal differences
are visible. In all experiments, we achieved almost the same
throughput with our BASIC 64 design as with the single-
threaded CPU variant. Additionally, our designs using more
than a single data channel deliver a higher throughput than
the multi-threaded execution using four ARM cores. Nev-
ertheless, the designs with only 3 data channels are more
efficient than the other variants.

That means, offloading the scan primitive to FPGA is very
beneficial. On the one hand, we achieve a higher throughput
than the execution on the ARM cores. On the other hand,
the ARM cores are free to execute other tasks. Moreover, it
is already well-known that FPGAs are more energy-efficient
than common CPUs.

4.3 Data Distribution
One of the important constraints—which we observed dur-

ing our experiments—is the type of data distribution (even
or non-even) among the DMAs. In particular, when an odd
number of DMAs are used in the design. Multiple DMAs get
access by the processor to buffer data in a round robin man-
ner. For example, the non-even data distribution (1

2
: 1
8
: 3
8
)

among three DMAs takes more cycles than the even distri-
bution of data (1

3
: 1
3
: 1
3
) (see Figure 13 and Figure 14). In a

round robin manner, order preserving access and the same
burst ratio of each DMA introduce ideal time during non-
even data distribution, which affects the clock cycles and
the throughput negatively. As a result, distributing data

Figure 12: Throughput results for 3-bit columns codes and
less than predicate check.

8

DMA Data Distribution Ratio Order Burst Ratio

D1 ൗ1 2
1

ൗ1 6
D2 ൗ1 8

2

D3 ൗ3 8
3

Buffering

Ideal Time

1 2 3 4 5 6 7 8 9

D1 D2 D3 D1 D2 D3 D1 D2 D3

#Clocks

Figure 13: Non-evenly data distribution among three
DMAs.

DMA Data Distribution Ratio Order Burst Ratio

D1 ൗ1 3
1

ൗ1 6
D2 ൗ1 3

2

D3 ൗ1 3
3

Buffering

1 2 3 4 5 6

D1 D2 D3 D1 D2 D3

#Clocks

Figure 14: Evenly data distribution among three DMAs.

evenly among DMAs results in higher scan throughput in all
cases. Thus, all our presented evaluation results are based
on evenly distributed data.

4.4 Resource Utilization
Table 6 gives an overview on the relative resource utiliza-

tion (number of LUTs and FF) of our designs for the scan
with equality predicate check. As we can see, the hardware
resource utilization of all designs is comparatively marginal,
whereby the resource utilization increases with increasing
data sizes. Interestingly, the independent processing designs
are only slightly larger than the combined processing de-
signs. Furthermore, the resource utilization of our hybrid
approaches is higher, in particular for the hybrid memory
optimization. That was to be expected.

4.5 Comparison with SIMD
Generally, our approach has many similarities to vector-

ization using SIMD extensions. To show the differences, we
vectorized BitWeaving/H to be able to run on various vector
register sizes like 128−, 256−, and 512−bit, which are cur-
rently available on Intel CPU Xeon systems. A straightfor-
ward way to implement BitWeaving/H using vector exten-
sions is to load several 64−bit values containing the column
codes and delimiter bits into a vector register. In this case,
the original processor word approach is retained as proposed
in BitWeaving [31]. The predicate evaluation works exactly
as described in Section 2, but instead of arithmetic opera-
tors, the corresponding vector intrinsics are used to process
2, 4, or 8 64−bit values at once depending on the used SIMD
extension.

The evaluation of this SIMD implementation was done
on an Intel Xeon Gold 6130 with DDR4-2666 memory of-
fering SIMD extensions with vector registers of sizes 128-
(SSE 4.2), 256- (AVX2), and 512-bit (AVX-512). The base
CPU frequency of this system is 2.10GHz with a maximum
turbo frequency of 3.70GHz. For column codes containing 3
bits, this original un-vectorized BitWeaving scan approach
with equality check achieved a throughput of 2.9GB/s on

Design #DMAs LUTS (%) FF (%)
PS + PL

BASIC 32 1 + 0 2.24 1.28
BASIC 64 1 + 0 2.36 1.42
BASIC 128 1 + 0 2.62 1.68

COMBINED 256 2 + 0 3.47 2.3
COMBINED 384 3 + 0 4.34 2.88
COMBINED 512 4 + 0 5.24 3.48

INDEP 256 2 + 0 3.51 2.28
INDEP 384 3 + 0 4.37 2.88
INDEP 512 4 + 0 5.37 3.51

HYBRID 256 1 + 0 2.26 1.48
HYBRID 512 2 + 0 4.16 2.9
HYBRID 768 3 + 0 6.64 4.88
HYBRID 1024 4 + 0 8.65 6.41
HYBRID2 512 1 + 1 9.42 6.2
HYBRID2 768 2 + 1 11.62 7.9
HYBRID2 1024 3 + 1 13.82 9.61
HYBRID2 1280 4 + 1 15.82 11.25

Table 6: Resource evaluation.

Extension Word Size Throughput Speedup
CPU 64-bit 2.9GB/s -

SSE 4.2 128-bit 3.3GB/s 1.14
AVX 2 256-bit 3.5GB/s 1.21

AVX-512 512-bit 2.9GB/s 1

Table 7: Vectorization evaluation results on Intel Xeon.

this systems. The results for the different vectorizations for
this setting are shown in Table 7, whereby all throughput
values are averaged over 10 runs. As we can see, there is a
performance gain when using the vectorized approach, but
it is not as significant as expected. For instance, we would
expect a 100% speed-up when changing from 64 to 128 bits
since we can process twice the data at once. Unfortunately,
the throughput increases only by 14%. Moreover, it even de-
creases when changing from 256 to 512 bits for both vector
layouts. However, these numbers can only provide a rough
estimation since the throughput varies by up to 0.5 GB/s
between the individual runs.

We also investigated different column codes sizes and dif-
ferent predicate evaluation leading to similar results. Based
on that comprehensive evaluation, there is a mere tendency
of the 256−bit implementations to provide the best perfor-
mance in average and for the 512−bit versions to provide
the least performance. This finding was unexpected because
even if the speedup is not 100% when the vector size doubles,
at least the 512-bit implementation should be the fastest.
To find the reason for this behavior, we measured the per-
formance of I/O-operations, which are the most expensive
operations in our scenario. On the used system, the aligned
and unaligned load and store operations were faster than
the stream load and store operations for a small number of
threads (<16). This is why we do not use stream-operations
for the single-threaded test case. Additionally, the load-
operators are followed by a comparison to avoid it being
optimized out by the compiler. We measured the single-
threaded throughput of this comparison and the store oper-
ators for all vector widths. For the comparison, the through-
put increases slightly when the vector width increases from

9

11.5 GB/s for 128-bit to 11.9-12.2 GB/s for 256-bit and 12.7-
12.8 GB/s for 512-bit. This would imply that the 512-bit
implementation is indeed the best performing one, but our
test scenario also includes a significant amount of store op-
erations, which become slower the wider the vector register
is. While storing 128-bit reaches a throughput of 9.5-9.9 GB,
256-bit can be stored at 8.9-9.2 GB/s, and 512-bit even go
a as low as 7.4-7.5 GB/s. The slightly better load perfor-
mance for 512-bit cannot make up for this decrease of the
store performance.

To summarize, compared to the throughput of our BA-
SIC 128 design, the throughput of all vectorized variants is
less. Both are comparable because both work in a single-
threaded fashion. From that we conclude, that the FPGA
acceleration is more beneficial than the acceleration with
SIMD extensions.

5. RELATED WORK
In this section, we give an overview of related work, whereby

three parts are highly relevant: (i) acceleration of database
primitives and (ii) specialized hardware. In addition to the
description, we also link our presented FPGA scan acceler-
ation with related work.

5.1 Acceleration of DB Primitives
The hardware acceleration of database primitives is a very

active research field. In this domain, we have to distinguish
between acceleration of storage and processing operations.

5.1.1 Storage Operations
A lot of work has been done on the optimization of storage

operations. For instance, FPGAs have been utilized to en-
hance flash controllers to push down specific logic to durable
storage devices [13, 23, 41]. The operations typically sup-
ported include selection, projection, group by aggregation,
and some kind of sorting and joins. The main goal of these
works is to avoid unnecessary data movements between the
durable devices and CPU. In principle, these works are sim-
ilar to our approach, but many details are different. For ex-
ample, our approach accelerates the in-memory column scan
by directly working on the internal main memory-optimized
data structures. In contrast to this, the works of [13, 23, 41]
are aligned to the data structures for durable flash devices,
which are different to in-memory data structures.

To accelerate in-memory column scans, the vectorization
using SIMD extensions has been considered as hardware ac-
celeration in [12, 40]. With our presented FPGA approach,
we go one step further and we clearly showed that FPGAs
have advantages over vectorization in Section 4.

5.1.2 Processing Operations
In addition to storage operations, the acceleration of rela-

tional processing operations has also been considered. There
are several proposals for using FPGAs for operations like ag-
gregation, group by, pipelined arithmetic computations [7,
38, 44, 46] or relational joins [17, 45]. Moreover, Sidler et
al. explored the benefits of specializing operators for the
Intel Xeon+FPGA machine, where the FPGA has coherent
access to the main memory through the QPI bus [36]. They
focused on two commonly used SQL operators for strings:
LIKE, and REGEXP LIKE, and provide a novel and ef-
ficient implementation of these operators in reconfigurable
hardware.

Aside from FPGAs, the acceleration using GPUs has been
considered to a large extent. For instance, Karnagel et
al. [26] studied the offloading of the grouping and aggre-
gation operator to a GPU or He et al. [19] proposed an
approach to accelerate joins on coupled CPU-GPU hard-
ware. However, the main bottleneck in using GPUs is the
necessary data transfer between CPU and GPU. Thus, data
placement in such heterogeneous system is an important as-
pect and various approach have been proposed [18, 24, 25].
Since FPGAs have direct access to the main memory, this
plays no role in hybrid CPU-FPGA systems.

5.2 Specialized Hardware
Another direction of related work is the design of spe-

cialized processors [42] or extensions to the instruction set
architectures (ISA) of processors [4, 3, 15, 16] that speed
up database workloads. For instance, Q100 [42] proposes
an ASIC (Application-Specific Integrated Circuit) solution
that implements a deep pipeline, while the work in [4, 3, 15,
16] explores how CPUs could be extended with instructions
well suited to the needs of databases. Even though these
approaches offer better energy efficiency than accelerators
built with FPGAs, the drawback is that fixed-function cus-
tom hardware is only feasible to deploy if it can support a
large set of workloads for a long time. Nevertheless, it would
be highly interesting to design a special scan instruction for
CPUs based on our investigated FPGA designs.

Additionally, Dreseler et al. [10] investigated to offload
NUMA memory accesses to the interconnect hardware from
a database perspective. As they have introduced, special
HARP ASICs in SGI scale-up NUMA systems are key com-
ponents connecting the IRU’s processors to the systemwide
NUMAlink interconnect. Then, the Global Reference Unit
(GRU) of the HARPs provides a proprietary API to offload
memory operations within a NUMA architecture. In par-
ticular, the GRU facilitates functionality to asynchronously
copy memory between processors and to accelerate atomic
memory operations. In their paper, they clearly showed how
databases on large NUMA systems can profit from offloading
their distant memory loads and utilizing the GRU instruc-
tions to increase the effective throughputs. The offloading of
the scan operation would be highly interesting as presented
in this paper.

6. CONCLUSION AND FUTURE WORK
With the increasing demand for in-memory data process-

ing, there is a critical need for fast scan operations in in-
memory database systems. [12, 31, 40]. The BitWeaving ap-
proach addresses this need by packing multiple compressed
columns codes into processor words and applying full-word
instructions for predicate evaluations using a well-defined
arithmetic framework [31]. In this paper, we have presented
and evaluated various FPGA design opportunities and op-
timizations for this BitWeaving scan in a systematical way.
As we have shown, each design has its own properties and we
are able to accelerate the scan compared to a single-threaded
and multi-threaded CPU execution. For example, the best
performing HYBRID2 1024 design does not use all available
non-coherent data channels of the PS DDR4 controller, but
both available main memory modules of our target hard-
ware system. That means, the optimal design depends on
the concrete hybrid system. In our ongoing work, we will

10

investigate this aspect in detail and we want to define appro-
priate hardware design rules for FPGA-accelerated columns
scan designs on different hybrid CPU-FPGA systems.

7. REFERENCES
[1] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and

S. Madden. The design and implementation of modern
column-oriented database systems. Foundations and
Trends in Databases, 5(3):197–280, 2013.

[2] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
compression and execution in column-oriented
database systems. In SIGMOD, pages 671–682, 2006.

[3] O. Arnold, S. Haas, G. P. Fettweis, B. Schlegel,
T. Kissinger, T. Karnagel, and W. Lehner. HASHI: an
application specific instruction set extension for
hashing. In ADMS, pages 25–33, 2014.

[4] O. Arnold, S. Haas, G. P. Fettweis, B. Schlegel,
T. Kissinger, and W. Lehner. An application-specific
instruction set for accelerating set-oriented database
primitives. In SIGMOD, pages 767–778, 2014.

[5] C. Binnig, S. Hildenbrand, and F. Färber.
Dictionary-based order-preserving string compression
for main memory column stores. In SIGMOD, pages
283–296, 2009.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in monetdb. Commun.
ACM, 51(12):77–85, 2008.

[7] J. Casper and K. Olukotun. Hardware acceleration of
database operations. In FPGA, pages 151–160, 2014.

[8] G. P. Copeland and S. Khoshafian. A decomposition
storage model. In SIGMOD, pages 268–279, 1985.

[9] P. Damme, D. Habich, J. Hildebrandt, and
W. Lehner. Lightweight data compression algorithms:
An experimental survey (experiments and analyses).
In EDBT, pages 72–83, 2017.

[10] M. Dreseler, T. Kissinger, T. Djürken, E. Lübke,
M. Uflacker, D. Habich, H. Plattner, and W. Lehner.
Hardware-accelerated memory operations on
large-scale NUMA systems. In ADMS, pages 34–41,
2017.

[11] H. Esmaeilzadeh, E. R. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. IEEE Micro,
32(3):122–134, 2012.

[12] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice:
Pushing the envelop of main memory data processing
with a new storage layout. In SIGMOD, pages 31–46,
2015.

[13] P. Francisco et al. The netezza data appliance
architecture: A platform for high performance data
warehousing and analytics, 2011.

[14] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and
M. Edahiro. Data transfer matters for GPU
computing. In ICPADS, pages 275–282, 2013.

[15] S. Haas and G. P. Fettweis. Energy-efficient hash join
implementations in hardware-accelerated mpsocs. In
ADMS, pages 26–33, 2017.

[16] S. Haas, T. Karnagel, O. Arnold, E. Laux, B. Schlegel,
G. P. Fettweis, and W. Lehner.
Hw/sw-database-codesign for compressed bitmap
index processing. In ASAP, pages 50–57, 2016.

[17] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes,
P. Dube, S. W. Asaad, and B. Iyer. Accelerating join
operation for relational databases with fpgas. In FCC,
pages 17–20, 2013.

[18] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1–21:39, 2009.

[19] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled CPU-GPU architecture.
PVLDB, 6(10):889–900, 2013.

[20] J. He, S. Zhang, and B. He. In-cache query
co-processing on coupled CPU-GPU architectures.
PVLDB, 8(4):329–340, 2014.

[21] J. Hildebrandt, D. Habich, P. Damme, and
W. Lehner. Compression-aware in-memory query
processing: Vision, system design and beyond. In
ADMS Workshop at VLDB, pages 40–56, 2016.

[22] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[23] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho,
D. D. G. Lee, and J. Jeong. Yoursql: A
high-performance database system leveraging
in-storage computing. PVLDB, 9(12):924–935, Aug.
2016.

[24] T. Karnagel and D. Habich. Heterogeneous placement
optimization for database query processing. it -
Information Technology, 59(3):117, 2017.

[25] T. Karnagel, D. Habich, and W. Lehner. Adaptive
work placement for query processing on heterogeneous
computing resources. PVLDB, 10(7):733–744, 2017.

[26] T. Karnagel, R. Müller, and G. M. Lohman.
Optimizing gpu-accelerated group-by and aggregation.
In ADMS, pages 13–24, 2015.

[27] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner.
QPPT: query processing on prefix trees. In CIDR,
2013.

[28] L. Lamport. Multiple byte processing with full-word
instructions. Commun. ACM, 18(8):471–475, 1975.

[29] W. Lehner, A. Ungethüm, and D. Habich. Diversity of
processing units - an attempt to classify the plethora
of modern processing units. Datenbank-Spektrum,
18(1):57–62, 2018.

[30] F. Li, S. Das, M. Syamala, and V. R. Narasayya.
Accelerating relational databases by leveraging remote
memory and RDMA. In SIGMOD, pages 355–370,
2016.

[31] Y. Li and J. M. Patel. Bitweaving: Fast scans for
main memory data processing. In SIGMOD, pages
289–300, 2013.

[32] R. Mueller, J. Teubner, and G. Alonso. Data
processing on fpgas. Proc. VLDB Endow.,
2(1):910–921, Aug. 2009.

[33] I. Oukid, D. Booss, A. Lespinasse, W. Lehner,
T. Willhalm, and G. Gomes. Memory management
techniques for large-scale persistent-main-memory
systems. PVLDB, 10(11):1166–1177, 2017.

[34] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD vectorization for in-memory
databases. In SIMD, pages 1493–1508, 2015.

11

[35] R. R. Schaller. Moore’s law: past, present and future.
IEEE spectrum, 34(6):52–59, 1997.

[36] D. Sidler, Z. István, M. Owaida, and G. Alonso.
Accelerating pattern matching queries in hybrid
CPU-FPGA architectures. In SIGMOD, pages
403–415, 2017.

[37] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-store: A column-oriented DBMS. In
VLDB, pages 553–564, 2005.

[38] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. W. Asaad.
Database analytics acceleration using fpgas. In PACT,
pages 411–420, 2012.

[39] J. Teubner and L. Woods. Data Processing on
FPGAs. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2013.

[40] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. Simd-scan: Ultra fast
in-memory table scan using on-chip vector processing
units. VLDB, 2(1):385–394, Aug. 2009.

[41] L. Woods, Z. István, and G. Alonso. Ibex: An
intelligent storage engine with support for advanced
sql offloading. PVLDB, 7(11):963–974, July 2014.

[42] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and
K. A. Ross. Q100: the architecture and design of a
database processing unit. In ASPLOS, pages 255–268,
2014.

[43] Xilinx, Inc. Zynq UltraScale+ MPSoC Data Sheet:
Overview, 2017.

[44] M. Yoshimi, R. Kudo, Y. Oge, Y. Terada, H. Irie, and
T. Yoshinaga. Accelerating OLAP workload on
interconnected fpgas with flash storage. In CANDAR,
pages 440–446, 2014.

[45] M. Yoshimi, Y. Oge, and T. Yoshinaga. Pipelined
parallel join and its fpga-based acceleration. TRETS,
10(4):28:1–28:28, 2017.

[46] D. Ziener, F. Bauer, A. Becher, C. Dennl,
K. Meyer-Wegener, U. Schürfeld, J. Teich, J.-S. Vogt,
and H. Weber. Fpga-based dynamically reconfigurable
sql query processing. ACM Trans. Reconfigurable
Technol. Syst., 9(4):25:1–25:24, Aug. 2016.

[47] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
page 59, 2006.

[48] M. Zukowski, M. van de Wiel, and P. A. Boncz.
Vectorwise: A vectorized analytical DBMS. In ICDE,
pages 1349–1350, 2012.

12

