Computational Linguistics and Chinese Language Processing
vol.1, no.1, August 1996, pp. 101-157
©Computational Linguistics Society of R.O.C.

An Overview of Corpus-Based Statistics-Oriented

101

(CBSO) Techniques for Natural Language Processing

Keh-Yih Su*, Tung-Hui Chiang*, Jing-Shin Chang*

Abstract

A Corpus-Based Statistics-Oriented (CBSO) methodology, which is an attempt
to avoid the drawbacks of traditional rule-based approaches and purely statistical
approaches, is introduced in this paper. Rule-based approaches, with rules induced by
human experts, had been the dominant paradigm in the natural language processing
community. Such approaches, however, suffer from serious difficulties in knowledge
acquisition in terms of cost and consistency. Therefore, it is very difficult for such
systems to be scaled-up. Statistical methods, with the capability of automatically
acquiring knowledge from corpora, are becoming more and more popular, in part, to
amend the shortcomings of rule-based approaches. However, most simple statistical
models, which adopt almost nothing from existing linguistic knowledge, often result in
a large parameter space and, thus, require an unaffordably large training corpus for
even well-justified linguistic phenomena.The corpus-based statistics-oriented (CBSO)
approach is a compromise between the two extremes of the spectrum for knowledge
acquisition. CBSO approach emphasizes use of well-justified linguistic knowledge in
developing the underlying language model and application of statistical optimization
techniques on top of high level constructs, such as annotated syntax trees, rather than
on surface strings, so that only a training corpus of reasonable size is needed for
training and long distance dependency between constituents could be handled. In this
paper, corpus-based statistics-oriented techniques are reviewed. General techniques
applicable to CBSO approaches are introduced. In particular, we shall address the
following important issues: (1) general tasks in developing an NLP system; (2) why
CBSO is the preferred choice among different strategies; (3) how to achieve good
performance systematically using a CBSO approach, and (4) frequently used CBSO
techniques. Several examples are also reviewed.

keywords: corpus, CBSO, knowledge acquisition, class-based language modeling,
natural language processing

* Department of Electrical Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
E-mail: kysu@bdc.com.tw ; shin@hermes.ee.nthu.edu.tw
* Advanced Technology Center, Computer & Communication Research Laboratories, Industrial

Technology Research Institute, Chutung, Hsinchu, Taiwan. E-mail: thchiang @eOsun3.ccl.itri.org.tw

102 K, .Su; ToH-@hiang,. Jd.S. Ghang

1. Introduction

In general, the development of a natural language processing (NLP) system must handle
the following problems.

(1) Knowledge representation: how to organize and describe linguistic knowledge in
a linguistically meaningful and computationally feasible manner. For example, one
may describe linguistic knowledge in terms of grammar rules and restriction rules
on grammatical constructs. On the other hand, the same knowledge could be
described using a set of features and the associated probabilities in statistical
approaches.

(2) Knowledge control: how to apply linguistic knowledge for effective processing.
For instance, a context-free grammar may be carried out by an LR parser. The dis-
ambiguation process may be carried out by an expert system by consulting a set of
disambiguation rules. Or a statistics-oriented system may adopt a statistical
language model by using likelihood measures for choosing the most likely analysis
among all.

(3) Knowledge integration: how to use the various knowledge sources effectively.
A system may resolve ambiguity by using both syntactic and semantic constraints.
It may also adopt a rule-based system for parsing; however, probability is used for
choosing preferences instead of the rule-based system. A system adopting different
paradigms (e.g., rule-based and statistical approaches) at the same time is called a
"hybrid system" by some researchers [Su 92a].

(4) Knowledge acquisition: how to systematically and cost-effectively acquire the
required knowledge and maintain consistency of the knowledge base, so that there
is no confliction among the rules which may degrade system performance. Some
systems may rely on human experts to induce linguistic rules based on linguistics
theory or the materials they have observed. Statistical approaches, on the other
hand, would automatically acquire the knowledge, which is the probability values
in this case, via estimation processes, from a corpus.

In general, real text contains much greater numbers of ambiguities and illformed
sentences than people realize at the first glance. For instance, the sentence "The farmer's
wife sold the cow because she needed money" usually seems to people to have no
ambiguity. It normally refers to, unambiguously, the fact that "she" is "the farmer's wife"
[King 95]. Similar sentences, such as "The farmer's wife sold the cow because she wasn't
giving enough milk," however would be interpreted in quite different ways by people
without any difficulty. However, both sentences present an ambiguity problem to an NLP

An Overiew of CBSO Techniques for NLP 103

system. The knowledge required for resolving such ambiguity and ill-formedness is
usually non-deterministic, huge in amount, messy and fine-grained in nature although
most people are not aware of these facts. Therefore, it is costly and time-consuming to
acquire such knowledge by hand. As a result, usually, knowledge acquisition is the major
engineering bottleneck for designing a large NLP system.

Due to its important role in NLP, various knowledge acquisition strategies had been
exploited in the literature. Roughly, the methodologies can be characterized into the
following major categories, namely (1) rule-based approaches [Hutchins 86], (2) purely
statistical approaches [Brown 90], (3) corpus-based statistics-oriented (CBSO)
approaches [Chen 91, Su 92a], (4) symbolic learning approaches developed in the Al
field [Michalski 83, 86], and (5) connectionist approaches (i.e., neural network
approaches [Cottrell 89, Schalkoff 92]). Each category may have its own specific method
for knowledge representation. Since the first three categories are frequently used in the
NLP community, and the last two approaches have not shown much success in real NLP
applications so far, this paper will discuss and compare the first three methodologies
with particular emphasis on the CBSO approaches.

A rule-based approach usually has the following characteristics. (1) The linguistic
knowledge is usually expressed in terms of high level constructs such as parts of speech,
phrases, syntactic trees and feature structures, which are described in most traditional
linguistics textbooks, and the knowledge is expressed in the form of syntactic or semantic
constraints over such constructs. (2) Most rule-based systems have a strict sense of
well-formedness; therefore, the rules are applied deterministically to reject ill-formed
constructs. (3) Most rules are based on existing linguistic theories that are linguistically
interesting. When the required knowledge does not appear in the literature, ad hoc
heuristic rules may be used. (4) Such rules are normally induced by linguists based on
their expertise. For instance, heuristics such as "a determiner cannot be followed by a
verb" may be used in filtering out inappropriate part of speech tags in a rule based POS
tagging system.

In contrast to a rule based system, a purely statistical approach has the following
characteristics. (1) Its knowledge is expressed in terms of the likelihood of certain events.
Most of the time, the language generation process is simply modeled as a simple sto-
chastic decoding process, such as a Markov chain [Brown 90]. Each event is associated
with the occurrence of a particular word string, such as a word N-gram, not a high level
construct. There is, essentially, no syntactic or semantic constraints on the words.
Normally, the only constraint on the words is the dependency implied by the conditional
probabilities among adjacent words. (2) There is not a strict sense of well-formedness.

104 KoY, - Su, - T-H, Chiang, J:5. Chang

Therefore, all possible analyses will be assigned probabilities for searching the most
probable analysis. Hence, a large computation time is usually required. (3) The proba-
bilities are usually estimated automatically to maximize the likelihood of generating the
observations in a training corpus. Therefore, the knowledge acquisition task is simply an
estimation process.

For instance, a purely statistical approach for translating an English sentence into a
French sentence might be interested in asking which French words are most likely to be
the translation of a particular English word, and what the most likely word order of the
translated words is [Brown 90]. The most likely translation is then determined based on
such probabilities for all possible target words and word orders.

The major advantage of a rule-based system is that existing linguistic knowledge
can be incorporated into the system directly in a compact and comprehensive way.
However, it is hard to scale up such a system for several reasons. First, the required
knowledge is huge and messy; the cost for acquiring and maintaining the huge set of rules
is extremely high. Second, it is not easy for such a system to resolve problems of
ambiguity and ill-formedness, which usually need nondeterministic knowledge and
require objective preference metrics to quantitatively qualify all possible analyses. Third,
the portability of such a system is poor when porting from one domain to another or from
one language to a different language. Finally, although new included rules may improve
the system performance for certain cases, they may not improve, and may very likely
even degrade, performance in other cases. In other words, a local improvement made by
modifying the rules for bad cases does not guarantee a global improvement for all cases;
the result, then, is a “seesaw phenomena,' in which a few mistakes are corrected at the
cost of producing even more new mistakes. Such phenomena have been observed in
many cases in the history of NLP development. The induced effects for other unseen
cases as a result of adding new rules, are, therefore, usually unpredictable. As a result,
enlarging the rule base of the system does not guarantee that a monotonic increase in
system performance will result. Besides, from a practical point of view, it is very difficult
to maintain the rules, especially when the system must be maintained by many persons
across a long time span. Therefore, scaling-up such a system often degrades the system
performance and renders it cost-ineffective because it is very difficult to further improve
the system performance in later stages.

Purely statistical models are preferred with respect to a rule-based approach in
several respects. (1) Non-deterministic behavior and uncertainty can be objectively
qualified by objective probabilistic metrics. (2) The system parameters can be con-
sistently maintained easily even when the system is scaled up because the knowledge

i e e

R\

An Overiew of CBSO Techniques for NLP 105

acquisition task, namely the estimation process, can easily be repeated over enlarged
training materials when new instances of interest are included. (3) Automatic or
semi-automatic training of the system parameters is possible using well developed
optimization techniques. Hence, the burden of knowledge acquisition can be shifted from
human experts to machines. (4) The methodologies can be easily adapted to other
languages and domains since the estimation process is highly independent of any
particular language and application domain. Furthermore, since no high level constructs
are used in a purely statistical model, no preprocessing, such as syntax analysis, is
required to produce such constructs; therefore, the optimization process of a purely sta-
tistical model can be implemented easily.

However, the parameter space of a purely statistical model is usually extremely
large, and searching for the optimal solution is time consuming in many cases because the
language model is not established on top of high level constructs. For instance, a practical
NLP system should be able to handle 10° words for real applications. Using a purely
statistical approach whose language model is a simple word trigram model would

requires 10° (= 10°x10°x10°)parameters to describe the complete probabilistic knowl-
edge. According to the general rule, the number of samples required to reliably estimate
a set of parameter values is about 5 to 10 times the parameter size. Therefore, a text
corpus having about 10° words is, theoretically, required to estimate the parameter values
reliably in this case. The estimated parameter values might not be reliable if a large
corpus is not available. (Although, practically many tri-gram combinations never occur,
and a smaller corpus should be sufficient. However, the magnitude of the number of
parameters is still huge.) For this reason, a system which attempted to extend the scope
of knowledge by including more words in its n-gram model would be unaffordable in
most applications. Ambiguity resolution, which must take long distance dependency into
consideration, sometimes also would be infeasible using such purely statistical
approaches. Therefore, a compromise must be made to take advantage of both rule-based
approaches and purely statistical approaches. To avoid the drawbacks of both rule-based
and purely statistical approaches, CBSO approaches were proposed in [Chen 91, Su 92a].
Basically, these approaches impose stochastic models on classes, not just on words as
some n-gram models do, as will be described in the following sections.

In fact, words can be clustered into different equivalent classes of certain particular
types for processing purposes, and many such equivalent classes are well identified in
linguistics. For instance, words having the same parts of speech exhibit similar syntactic
behavior. Therefore, we can use classes, instead of words, in developing statistical
language models. A statistical language model based on part of speech trigram, for

106 K% =Sip T H.7 Chaang, J.S5: Chang

example, requires only about 10° parameters to describe the complete statistical
knowledge if we are using a tag set of 100 parts of speech. The size of the training corpus

would be about 107 in this case, which is affordable in the current environment.

A statistical language model can even be developed based on syntactic categories,
i.e., nonterminal nodes of syntax trees or can even be based on semantic categories when
higher level analysis is necessary for applications. By developing statistical language
models based on high level constructs at the syntactic or semantic level, most of the
above-mentioned disadvantages of a purely statistical method can be relieved. For
instance, the size of the training corpus can be greatly reduced. The linguistic knowledge
need not be learned from low level constructs. Long distance dependency can also be
modeled since we are able to impose constraints among adjacent nonterminal nodes
(such as NP and VP), whose head words may be far apart in the surface strings. All such
advantages suggest use of the CBSO approaches proposed in the following sections.

2. What are CBSO Approaches and Why CBSO Approaches

The CBSO approaches are hybrid approaches which take advantage of both rule-based
and purely statistical approaches. A CBSO approach builds statistical language models
on top of high level constructs such as annotated syntax trees. For example, a CBSO
model for machine translation was proposed in [Su 90, 92a, 95] based on high level
constructs such as parse trees and normal forms; the translation problem is modeled as an
optimization problem which selects the best translation that maximizes the following
translation score:

@) P(Tl.lSi)

1N

,]Z_ {[P(T)PT, ()) xP(PT, ()INF1, () xP(NF1, ()INF2,(i))]

(2) x [P(NF2, ()INF2_ ()]
(3) x [P(NF2_()INF1 (i) xP(NFlS (W)IPT, (i)) x P (PT, ®1s)l}

where (Si : T;) is the i-th source-target translation pair, (PTX, PTt) are the parse trees for
the source-target sentences, NF 1 _and NF2_represent syntactically and semantically
normalized parse trees, called normal forms, of the source sentence, NF 1; and NFZt are

the normal forms of the target sentence, and the summation of the probabilities is taken
over all such intermediate representations, Ii. The three equations (1), (2) and (3) by

themselves define the generation, transfer and analysis models of a transfer-based MT

;7 SRR b L)

LR SRR TWONE TN SO TG, SRR Sl G NS L SNSN NERD PONe SCIs. JTNE L SO DR TG G UL W L o e TR T L T e g e

Fohe AN WES0E 80T, BEE. BT Ry 8

AR Roiisie Mty Rouges, NPT RS, A

An Overiew of CBSO Techniques for NLP 107

system in a CBSO manner; they can be further simplified for implementation. (Some of
the details will be given in later sections.)

Such an approach usually has the following characteristics. (1) It uses high level
constructs long adopted in conventional linguistics, instead of surface strings, to model
the stochastic behavior of the languages, so that the number of parameters in the language
model can be greatly reduced. (2) It uses a parameterized statistical approach to resolve
ambiguities and ill-formedness, so that the language processing task can be objectively
optimized and the required knowledge; i.e., the parameter values, can be acquired
automatically and consistently. (3) It is usually more robust compared with the purely
statistical approaches since statistical optimization is applied on high level constructs,
whose statistical properties are more likely to be generalized to unseen data better than
surface strings.

For instance, in a CBSO approach for parts of speech tagging, we are interested in
knowing the likelihood of a part of speech following a determiner and an adjective, and
we use such knowledge to justify the most likely part of speech for a word which appears
immediately following a word from the determiner category and the adjective category.
Unlike a purely statistical model, which needs to estimate all the 10" probabilities of
occurrences of word pairs in a system having 10° words in its vocabulary, a CBSO

taggeronly requires 106 parameters, which correspond to all possible occurrences of part
of speech pairs, to model the system if the words are classified into 100 parts of speech.

In a more complicated system, such as a machine translation system, the CBSO
approach will be even more demanding considering the huge amount of analysis, transfer

and generation knowledge required to optimize the translation score, P(PTIS) , for all

possible source-target sentence pairs (Sl.ITl.). In a purely statistical model, the huge

number of possible alignments will make this impractical for a large system. On the other
hand, by introducing intermediate linguistics constructs, such as nodes in parse trees and
normal forms, which represent particular syntactic or semantic equivalent classes, as
shown in the above CBSO translation model [Su 95], the translation task can be greatly
simplified by using a parameter space of affordable size. Using such a formulation, sta-
tistical optimization techniques can be applied to get the best translation objectively
without resorting to rules or a large parameter space. Such a formulation thus combines
the advantages of both the rule-based systems and purely statistical methods.

In summary, in comparison with rule-based approaches, the CBSO approaches can
handle non-deterministic situations more objectively by adopting probabilistic measures

108 Ko sn, I H. - Chiang, J.S. Chdang

estimated from the corpus. Knowledge acquisition for such a system is also less
expensive and much faster than that for a rule-based system since the acquisition process
is simply a parameter estimation process. The knowledge base, namely the probability
values, can also be maintained more consistently as every parameter is estimated by
jointly considering all the data in the corpus, which is a big plus compared with a
rule-based system, especially when its knowledge is maintained by different persons
across a long time span.

In comparison with purely statistical approaches, the CBSO approaches make use
of well justified linguistics constraints and constructs in structural and semantic levels.
Therefore, an unaffordably large corpus is not required in a CBSO approach to develop
the underlying language model. Under such circumstances, the parameter values can
usually be estimated more reliably than can those for a purely statistical model. Fur-
thermore, models based on high level constructs have greater generalization capability
for unobserved text. Therefore, a CBSO approach is usually more robust than are other
approaches.

Furthermore, since the language models for CBSO approaches are based on high
level constructs, the dependency of such constructs, instead of the dependency among
surface strings, can be easily modeled for statistical optimization. Therefore, long dis-
tance dependency, which can not be handled in a purely statistical mode, can be handled
easily in CBSO approaches. Finally, the searching space for optimal solution finding is
significantly reduced in CBSO approaches. Therefore, CBSO approaches are preferred
over purely statistical approaches.

To make a CBSO approach feasible, a corpus of moderate size, cheap computation
power and well developed statistical techniques for reliable estimation of the parameter
values are essential. Fortunately, large online electronic texts and dictionaries are
becoming more and more easily accessible due to the rapid growth of the number of
companies adopting online processing and publication in recent years. Microelectronic
technology has also seen computation power, including processor speed and memory
size, increase with time exponentially at very low cost. Furthermore, statistical
techniques for parameter re-estimation, smoothing, backing-off, and robust estimation,
which will be described in later sections, have been well developed and widely used in
the statistics and speech communities in the last twenty years and further make CBSO
approaches most appropriate for developing large scale NLP applications. Finally, the
knowledge required to attack problems of ambiguity and ill-formedness, which are the
two main problems in natural language processing, is largely inductive, not deductive.
Statistical methods are especially appropriate for such problems. Therefore, we believed

An Overiew of CBSO Techniques for NLP 109

that CBSO approaches will be the most promising design methodologies for handling
NLP tasks in the future.

3. Techniques Frequently Used in CBSO Approaches

In a typical CBSO NLP system, several important issues, including feature selection,
language modeling, corpus annotation, parameter estimation, smoothing and learning,
must be taken into consideration.

For instance, in a part-of-speech tagging task, we may use the current word (w,) and
the assigned tags of two preceding words (c, ,, ¢,) as the feature vector to decide the tag

of this word. We then use the language model:

¢ Ju FAIRIIGS P (cle, o cl._z) xP(wiIci)

i

to select the tag for w,, where P (¢le, ;s Ci-z) is the probability that the current tag is c,

given that the preceding tags are ¢, , ¢, , ,and P (w/c,) is the probability that the current
word will be w, given that the current tag is c. The argmax operator returns the argument

¢, which makes the product of the above two probabilities maximal among all possible

c;- The probabilities, of the form P (cle; s c;,) and P (wilcl.) , referred to as the

parameters of the model, are all we need to make decisions in the part-of-speech tagging
task. To estimate the values of the parameters, we might first annotate the corpus with
correct parts of speech for the words in the corpus and then use MLE to estimate the
parameters. Since the training corpus may not be large enough, many parameter values
may be assigned zero probability according to the maximum likelihood criterion. Such
assignments, in general, will result in poor performance for unseen input data. Therefore,
smoothing techniques, which assign non-zero probabilities to unseen events, are
important when the parameter space is large and the training data are sparse. Further
details will be given in the following sections.

3.1 Designing Issues of an NLP System

In general, two kinds of features, namely statistical features and linguistic features (such
as parts of speech and word senses) have been commonly used in various research works.
Statistical features, such as mutual information and entropy, usually carry only statistical
senses and carry few traditional linguistic notions. A few such features will be introduced

110 Ko¥o Snea@ Hoo Chiang; .S, Chang

in the following sections. Linguistic features, such as parts of speech, on the other hand,
are usually used to designate certain properties of the linguistic constructs under con-
sideration.

Good (statistical or linguistic) features should be able to provide discriminative
information for the task. However, discriminative features are usually not easy to
determine. Therefore, techniques for selecting the most discriminative features will be
introduced in the following sections.

Given a set of features, the NLP system must make proper decisions based on a
language model. The main purpose of language modeling is to choose a desired result
from different alternatives for various kinds of linguistic problems, such as assigning the
best POS to a word or assigning the best syntactic structure to a sentence. Therefore, the
language modeling problem can usually be considered as a classifier design task, in
which a set of features are given and decision rules are established to optimize certain
performance criteria, such as minimum recognition error or minimum cost. We therefore
introduce two commonly used classifiers,the maximum likelihood classifier and
Bayesian classifier.

Note that some of the feature selection mechanisms are designed to select a set of
features that maximizes the system performance. Therefore, feature selection and
classifier design might be integrated as a single step. Examples, such as CART
(Classification and Regression Tree), which integrate the two tasks will be introduced as
well.

Third, before applying a language model to resolve problems, the values of system
parameters must be specified in advance through some parameter estimation process;
such values of the parameters represent our knowledge of the language; therefore, the
knowledge acquisition task in a CBSO approach can be regarded as an estimation
process.

In general, the values of the parameters are estimated from an annotated corpus
(called the training set) to meet some estimation criteria. This kind of training is usually
called supervised training if the information for estimating the parameter values, such as
the parts of speech of the words, is annotated by linguists in advance. However, corpus
annotation is usually labor-intensive (and, hence, expensive). Another way to obtain the
parameter values without making use of labeled corpora is called unsupervised
training. Two typical unsupervised training methods, the EM algorithm and the Viterbi
training algorithm, will be discussed in this paper.

The estimation process may introduce estimation errors due to insufficient training

An Overiew of CBSO Techniques for NLP 111

data. Although estimation errors can be reduced by increasing the size of the training
corpus, the cost is generally too high to prepare a large annotated corpus. Therefore,
several parameter smoothing procedures, capable of reducing the estimation error by
smoothing unreliably estimated parameter values, are introduced.

Furthermore, the parameters, in general, are estimated using a maximum likelihood
estimator (MLE) which assigns values to the parameters in such a way as to maximize the
likelihood of the training corpus. The estimated values which maximize the likelihood of
the training sentences, however, do not necessarily minimize the error rate (or other
performance criteria) of the system when such values are used to resolve the NLP task.
Therefore, such values may not provide the best discrimination power as far as the
system performance for the training set is concerned. To compensate for the modeling
errors and estimation errors, the adaptive learning process is usually required to adjust the
parameter values to minimize the training set error rate.

Even though such values are properly adjusted so that the training set error rate
performance is minimized, they may not be the best parameter values when used to
resolve problems of ambiguity and ill-formedness in NLP tasks for festing set sentences
that are never seen in training sentences. In most cases, the performance using such
values, which optimizes the training set performance, is over-optimistic; the performance
for unseen testing data, in general, will be degraded using such parameter values. To
enhance the robustness of the system, robust estimators must be used so that the esti-
mated values will still provide sufficient discrimination power when used on unseen
testing data. For the above reasons, robust adaptive learning techniques capable of
reducing the modeling error and statistical error as well as enhancing the discrimination
capability and robustness will be reviewed. All the issues, including feature selection,
language modeling, parameter estimation, parameter smoothing and robust oriented
adaptive learning, will be addressed in the following sections.

3.2 Language Modeling as a Classifier Design Process

Given a set of features, the central problem is to design some decision rules which can
maximize system performance. Most natural language tasks, especially for ambiguity
resolution, can be formulated as pattern classification problems in which the classes are
defined from the linguistic point of view. The compound noun detection model proposed
in [Su 94a] and the unknown word detection model in [Lin 93] are two such applications.
In fact, POS tagging, probabilistic parsing, word sense disambiguation, and many other
interesting problems, can also be models as classification problems in which the classes
are the set of possible parts of speech, parse trees or word senses. Therefore, we can

112 RiYiwiSieps Tol: Chiang, -F:S: Chandg

regard language modeling as a classifier design process. In general, the choice of the
classifier depends on the criterion to be optimized. Two widely used classifiers, the
Bayesian classifier and maximum likelihood selection, are introduced here.

Bayesian Classifier

If the cost (or penalty) associated with each type of misclassification is known and
the a posteriori probability, P (cjlx), (i.e., the probability that the input feature vector
x belongs to class ¢) is known, then it is possible to design a classifier which minimizes

the risk (such as the error rate) of making a classification decision. This could be done by
assigning x to the class ¢ which has the minimal risk, Ri , defined as follows for

classifying an input token into class c, :

K
R=2% Helc)Plelx)
o 7] g

In the above equation, I (cl.lcj) is the loss one may incure if a token in ¢ is misclassified
as ¢, andP (cjlx) is the chance that the real class of x is c, . Briefly, if one assigns x to
class c, then the possible cost, R;, one may incure for doing such judgement is the
weighting sum of the loss / (cl.lcj) of all the different kinds of possible misclassifications,

where the probability of “possible misclassifications' is P (cjlx). To minimize the cost of

making a wrong decision, the best classifier, in terms of a given cost function, will
therefore assign x to class ¢ if

j = argmain R,
i

’

where the argmin operator returns the argument (i) which has the minimum risk. Such
a classifier is called the Bayesian classifier for the classification problem.

The simplest version of the Bayesian classifier is the minimum error rate classifier,
which has the following special zero-one loss (or cost) function:

0, c;,=c;

kg &y 4 i 4

I(cl.lxecj) ot h ci%¢;

This means that the loss function assigns no penalty to a correct classification and assigns
a unity loss to any type of error. Such a classifier will insure minimum probability of
classification errors because the risk associated with class ¢ is now simplified as

"

o

W W e R

RN LR Sl el el iacl ey

. O e]

LA,

An Overiew of CBSO Technigues for NLP 213

™M o=

R=

1

1(cl.lcj)P (cjlx)
=1

=Y P(clx)
JET /
=1-P(cl.lx)
Minimizing the risk thus reduces to finding the class ¢ which has minimum error
probability 1 — P (¢,lx) or maximum a posteriori probability P (¢;lx). The minimum

error rate classifier is normally used when the penalty of all types of errors are equally
weighted.

In a part-of-speech (POS) tagging task, the minimum error rate classifier can be
derived by regarding the input words as the input vector, and the classes are all possible
POS sequences associated with the input words. We can, therefore, expect the minimum
probability of tagging errors if we choose the POS sequence which has the maximum a
posteriori probability, that is,

¢ = argmax p (Cj|x)

Ci

Maximum Likelihood Selection

If all the classes are uniformly distributed, i.e., P (Cj) =K for j=1, .., K, where
K is the number of classes, then the class with maximal a posteriori probability P (cjlx)

is also the one having maximal likelihood P (xlcj) since

/e SE(C.
argmax p (¢ |x) = argmax M = argmax P (xlc)
J J

P(x
¢, ¢,) ¢,

The probabilities P (cj) and P (x) do not affect the selection of the class because they

are constants for different classes in this case.

With the ML selection scheme, the decision is made to select class ¢ if the

conditional likelihood value of the input feature vector is maximum, i.e.,

J14 KoY Su; T HeoChiang, il:S. s Chantg

¢ = argmax p (xlcj)

G-
]

The maximum likelihood decision rule is used when the class probabilities are not
available.

3.3 Statistical Features

The decisions made by the classifiers are based on a set of features. The features can be
statistical measures, which can be acquired easily from a training corpus. Some features,
on the other hand, are linguistic features such as parts of speech. In the following
sections, some frequently used statistical features are introduced. Automatic methods for
generating linguistic features will be introduced in later sections.

3.3.1 Likelihood and Likelihood Ratio
Likelihood is a measure of how likely it is that an event will happen under a specific

condition. Formally, the conditional probability of P (xlcoi) is called the likelihood of an

event x being generated from the i-th class (or model) @, The likelihood values of a

feature vector are normally used in the maximum likelihood classifiers for classification;
the feature vector x is categorized into class o if
P(xlo)>P (xlw) for all @ # @
m 14 l m

Another measure, known as the likelihood ratio of the feature vector x in the two
classes w 4 anda)2 , is defined as follows [Duda 73]:

P(xlw,)
£e P(xla)z)

It is frequently used to determine the source from which the feature vector is generated
for two-class classification problems.

To avoid mathematical overflow and to save computation time, the logarithmic

version of the likelihood ratio, known as the log-likelihood ratio, defined below, is often
used instead [Duda 73]:

log y= log P (xla)l) -P (xla)2)

In such applications, the feature vector will be labelled as class-1 (“’1) if

An Overiew of CBSO Techniqgues for NLP 175

log ¥ > 0; otherwise, it will be classified as class-2 (a)z). For example, [Su 94a] uses the

log-likelihood ratio to determine whether a word bigram (or trigram) belongs to the
compound class or the non-compound class in a compound noun extraction task where
the normalized frequency, mutual information and parts of speech are used in the feature
vector.

3.3.2 Mutual Information

The mutual information of x and y, I (x; y) [Blahut 87], is the log-likelihood ratio of
the joint probability of events x and y over the probability that these two events will
happen independently. In other words,

,(x,.y)%logz{w}

P(x) - P(y)

It provides a measure of the degree of dependence between two events. Intuitively,
I (x; y)>>0 when x and y are highly associated, / (x; y) O when x and y are
independent, and [(x; y) << 0 if x and y are complementorily distributed. Therefore, it
can be used to measure the degree of "word association" between two words. For
instance, the mutual information between "strong" and "tea" is greater than the mutual
information between "powerful" and "tea" [Church 88]. Therefore, "strong tea" is more
likely to be a lexicon entry than is "powerful tea."

3.3.3 Entropy and Perplexity

The entropy of a random variable X represents the average uncertainty of X [Blahut 87].
For example, the expected number of word candidates, in bits, (i.e., the expected number
of binary decisions) at a decision point (or state) k can be estimated by the entropy, H,

associated with the distribution P (wt.lk) [Lee 88]:

H(wl.lk)=-—§vl {P(wlk)-log, P(wik)}

whereP (wlk) is the probability of candidate word w, at state k, and W denotes a .
sequence of V words w, , w,, ..., w_, which can be accepted at state k. Alternatively, the
number of binary decisions can be expressed in a real number with the perplexity (Q) at

the decision point [Lee 88] as:

0 (W) =2""5

116 Ko YeSy: el CHiang J.S;: Ghang

In natural language applications, the entropy or perplexity metrics can be used to
indicate how random the neighbors W of a particular word k are. For instance, [Tung 94]
used the entropy measure to determine whether an n-word chunk belongs to one lexicon
unit; if the left and right neighbors of the chunk are randomly distributed, which indicates
that there are possible natural break points between the chunk and its neighbors, then the
chunk is likely to be a lexicon unit; otherwise, the chunk tends to appear simultaneiously
with its neighbors, and hence is less likely to be a lexicon unit by itself.

3.3.4 Dice

The dice metric is commonly used in information retrieval tasks [Salton 93] to identify
closely related binary relations. It has been used for identifying bilingual collocation
translation [Smadja 96]. The dice metric for a pair of words x, y is defined as follows
[Smadja 96]:

Pee="1 =)
SPe=D+PO=1] °

D,(x, y) =

where x=1 and y=1 correspond to the events where x appears in the first place and y
appears in the second place, respectively. It is another indication of word co-occurrence
which is similar to the mutual information metric. It has been suggested in some
researches (e.g., [Smajda 96]) that this feature is a better indication of word
co-ocurrence than is (specific) mutual information in some cases since it discards less
infor- mative events corresponding to the x=0 and y=0 (0-0 match) cases in estimating
word cooccurrence. For instance, if x represents a term in the source language and y is
a possi- ble translation of x in the target language, than it is possible to evaluate the dice
metric between such a translation pair and to tell whether y is the preferred translation of
X

3.4 Parameter Estimation and Smoothing

34.1 Parameter Estimation

The operation of the classifiers depends on the values assigned to the parameters of the
system. Therefore, the parameter values encode all statistical knowledge of a CBSO
model. The parameter estimation process thus corresponds to the knowledge acquisition
process of such a model. In the parameter estimation process, the parameters are regarded
as variables whose values are to be determined based on the observation of a training set.
Various estimation criteria can be adopted so that the estimated values objectively
optimize the stochastic behaviors of the training data. The most commonly used criterion

An Overiew of CBSO Techniques for NLP 117

for parameter estimation is the maximum likelihood estimation (MLE) criterion [Papoulis
84]; the "best" estimated parameter values are the set of values which maximizes the
likelihood of obtaining the (given) training set.

By definition, given the training data X = {x, x,, ... xn} , the objective of the MLE

estimator is to find the parameter set A that maximizes the likelihood function P(X | A).
If the xi's are assumed to be independent, then the likelihood function can be rewritten as

follows:

P(XIA) = _I?I1 P (x,1A)

To find the parameter values which maximize the likelihood function, we can take
partial derivatives on the likelihood function with respect to all the parameters and set
them to zeros. The solutions of the equations then correspond to the maximum likelihood
estimate of the parameters. In other words, the maximum likelihood estimator can be
acquired by resolving the solutions of

VAf(P(XIA))=0 ;

where VA () is the gradient of the function f (-) with respect to the parameter set A, and

~f(+) can be any monotonically increasing or decreasing function of P(X | A). One

convenient function for f (-) is the natural logarithm function, which makes the above

constraint on A take the following equivalent form:

n
p ¥ Vv, log {P(inA)}=O
=1

For example, the ML estimate for the mean pu of a Gaussian probability density

n

function (pdf) with a known variance is the sample mean, i.e., i = 2 2 X, and the
R o=

MLE of the probability of an event is the relative frequency of the event occurring in the

r :)
sample space, i.e., P ML(e) =-y forthe event e occuring r times out of a total of N trials.

However, the MLE is quite unreliable when the training data is insufficient. For
example, in a case with sparse training data, the events that do not appear in the training
set will be assigned a zero probability by the ML estimator. This is inappropriate for most
applications. Therefore, effective smoothing of the parameters of the null events should

118 K.Y Su, T H. €hiang, J.S. Chang

be adopted to reduce the degree of estimation error.

A variety of parameter smoothing methods have been proposed in the literature.
Two of the most frequently adopted methods, Good-Turing's formula [Good 53] and the
back-off procedure [Katz 87], will be discussed in the following sections.

3.4.2 Good-Turing's Formula [Good 53]
Let N be the number of training tokens and n_be the number of events that occur exactly

r times. Then, the following equation holds: N=3 r - n_ . The maximum likelihood
&

estimate PML for the probability of an event e occurring r times is known to be PML(e) =

% . The estimate based on Turing's formula [Good 53] is given by PGT(e) ____rN_, where

r+l1

r*=(r+l1)

The total probability estimate, using Turing's formula, for all the events that actually
occur in the sample space is equal to

n
2o tind-
e E(e)>0 s N

where C(e) stands for the frequency count of the event e in the training data. This, in turn,
leads to the following equation:

n
Lo P {)=1-=-
e:C(e)=0 GT(N

According to Turing's formula, the probability massn—l\; is then equally distributed over

the events that never occur in the sample. In simple language models, such as the n-gram
models, the number of parameters can be calculated easily. Therefore, the number of
events that never occur, i.e., n o> can be set to the number of possible parameters minus

the number of events that have already appeared in the training corpus. However,
depending on the real nature of the language, not all possible parameters should really be
given nonzero probabilities. Therefore, another way to estimate n o 1s to extrapolate it

fromn rfor allr >1.

o S, 4

2% SEonE. AR B o VR B

W, S * viide MRS T

PO RE L PRl @Ry BUIE. SRORE. &anl i 40070 SolaSi. WNRN. MR, AN AR e M

An Overiew of CBSO Techniques for NLP 1519

Back-off Procedure [Katz 87]

In 1987, Katz proposed a back-off procedure to estimate m-gram parameters, i.€.,
the conditional probabilities of words given the (m-1) preceding words [Katz 87]. This
procedure is summarized as follows:

PGT(wm|Wlm_])’ if C(w")>0,
PBF(wmlwlm—l)= a(w;"-‘).PBF(wm-{ w;"“), if C(w")=0& C(w;")>o,
PBF(Wm‘W;n_])’ if C(W]m)=0,
wm

where PGT(-) and PB F(-) are the probabilities estimated with the Good-Tuning formula

and Back-off procedure, respectively, C(-) is the frequency count for a word string and

1= > PBF(wm{w]m_l)
a_(wm_l)z wm:C(wlm)>()
; = B Prlwg fwil)
wm:C(wlm)>()
is a normalization factor that makes
2 PBF(wmlwlm)+ 2, PBF(Wm‘wlm):l'
Wes C(w,’")>() wm:C(w,m)=0

Compared with Good-Turing's formula, the probability for an m-gram that does not

occur in the training set is backed-off to refer to its corresponding (m-1)-gram proba-
bility. Taking the part-of-speech tagging as an example, we suppose that three events (p,n
,n), (p, art, n), (n, v, n) in the trigram model are not found in the samples, where "art",

W, i n..n ne,n

n", "p", "v" stand for lexical tags of "article", "noun", "preposition"”, and verb",
respectively. We further suppose that %: 0.03 by Good-Turing's formula. Since n 0:3,

the probabilities of these three events, P(ninp), P(nlart, p), P(nlv, n), are assigned equally
to be 0.01 by Good-Turing's smoothing method, while these probabilities, using the
Back-Off method, are distributed according to P(nln), P(nlart) and P(nlv) , respectively.
For instance, supposing P(nln) = 0.1, P(nlart) = 0.2, and P(nlv)= 0.3, the estimated
probabilities smoothed using the Back-Off method are

P(n|n,p) =0.03x P(n|n) —0.005,
P(n|n)+P(n|art)+P(n|v)

P(n|art,p) =0.03x fluiat]) =Dk
P(n|n)+P(n|art)+P(n|v)

P(n|v,n) =0.03x P(n|v) =0.015.

P(n|n)+P(n|art)+P(n!v)

120 KX o8u,~asH. Chiang, J.8. Chang

3.5 Automatic Feature Selection

The purpose of feature selection is to choose a subset of discriminative features for the
language processing task. By selecting the features properly, the dimension of the feature
space can be reduced withoutsignificantly degrading system performance. In some cases,
the system performance can even be improved since noisy features are discarded and the
estimation error of the parameters is reduced due to a smaller number of parameters as a
result of the smaller feature dimension. In general, selecting features. by hand is costly,
and often the features selected in an intuitive way cannot optimize the system perfor-
mance. Hence, a procedure for automatically selecting features is highly desirable.

3.5.1 Sequential Forward Selection (SFS) [Devijver 82]

SES is a simple bottom-up searching procedure which finds the best feature sequence
sequentially [Devijver 82]. The same technique can also be used to find the best rule
order for a set of rules. The selection method adds one new feature to the feature set in
each iteration. Initially, there is no feature in the feature set. At each iteration, a new
feature is selected from the remaining features not in the feature set so that the newly
formed feature set yields the maximum value according to a criterion function. The SFS
algorithm can be outlined as follows:

1. Suppose that (D={7»l,k2,... ’7‘13} is the feature set containing D features, and that k features

have been selected to form the feature set A, . Initially, k=0 and A 0={ ¢} is empty.
2. Find the feature km from the available set, (I)-Ak, so that

xmzarg;r_lax I“(X; Ay ki}), (k,,,e Ak) ;

i

where T'(-) is a pre-defined characteristic function.

3. Add the feature A_ to form the new featureset A, =A UA .
m k+1 k m

4. Go to step 2 until the desired criterion is satisfied.

For instance, in the grammar checker application [Liu 93], 127 pattern rules are
used to detect ungrammatical errors. At the first iteration, each of the 127 rules is applied
independently to detect errors. The rule which maximizes a pre-defined score
(corresponding to the number of detected errors minus the number of false alarms) is
selected to be in the rule set A, and the other 126 rules are left in the original rule set @.
Atthe second iteration, each rule in set® (which now consists of 126 rules) is combined
with all the rules in A (which contains only one rule in this case); the score of each
combination is examined. Again, the rule with the highest score in combination with rule

set A is added torule set A. This procedure is repeated until a pre-defined number of rules

S e e

TR O IR o &

An Overiew of CBSO Technigues for NLP 121

in @ are selected or when the score begins to decrease as new rules are incorporated.

It has been found that the score is not always increased by adding rules to A, which
means that there is redundancy and conflict among rules or that there are rules which
introduce many false alarms. This trend is shown in the following figure. For instance,
region I of figure 1 shows that the overall score is increased initially when comple-
mentary rules are included. However, as more and more rules are included, redundancy
or conflict among rules might prevent the score from increasing, as shown in flattened
region II of the figure, and the score even decreases when more rules are applied, as
shown in region III of the figure. Removal of redundant and conflicting rules is,
generally, not an easy job for non-experts, or even for the linguistic experts. Never-
theless, rules of this kind can be detected easily by using the SES algorithm.

Score = (number of errors detected) - (number of false alarms)
Rule number: based on the score of a rule (i.e., rule-ordering)
(Total rule number: 127) Brtol

sl -~ detected

ot (81,338) (115,338)

score
(127,287)

150 -

Number of Errors Detected

,
¥
j

100 - -

|

|

|

|

|

|

|

| false alarm
| %
|

|

I

|

50 |

Rule Number

18 % ’ .

40 S0 80 100 120 140

Figure 1 Number of Rules vs Overall Score in SFS [Liu 93]

With the SES algorithm, the statistical dependency between different features or
rules is considered because this algorithm selects successive features or rules with ref-
erence to the current rule or feature set. However, SFS is a suboptimal search method
because it does not jointly take all the feature combinations into consideration. Readers
who are interested in other more advanced and complicated procedures for feature
selection are referred to [Devijver 82].

3.5.2 Classification and Regression Trees (CART) [Breiman 84]
CART is basically a binary decision tree constructed by repeatedly splitting the tree

122 KoY. 5Su,“T-H chiang, il-5. Chang

nodes. The data of a node are split according to the most significant feature which
minimizes a criterion function, usually referred to as an impurity measure. The tree grows
until all the terminal nodes are either pure or contain the tokens which cannot be
differentiated into different classes using the current available feature set; the former case
means that the tokens associated with the terminal nodes are all correctly classified with
the set of features along the branches of the classification tree; and the later case means
that the data cannot be classified into correct classes using the currently available feature
set. In the later case, the class associated with the node is determined by the
majority-vote policy.

Taking the part-of-speech tagging model in [Lin 96] as an example, the features
listed in the following are considered as potentially useful features for choosing the
part-of-speech of a word:

e the left-2, left-1, right-1, and right-2 parts-of-speech of the current word;

o the left-1 and right-1 words of the current word;

e the distance (number of words) from the beginning of the sentence to the current
word;

e the distance from the current word to the end of the sentence;

® the distance to the nearest right-hand side noun from the current word;

e the distance from the nearest left-hand side verb to the current word;

® the distance to the nearest right-hand side verb from the current word.

The impurity measure used to split the tree nodes is usually defined as i(r)=M()+E(?),
where M(?) is the number of misclassified tokens in node z, and E(z) 1s the entropy of node
L

Once the initial classification tree is constructed, the tree is usually pruned to an
optimal classification tree, which minimizes the number of errors of the validation data in
a cross-validation set. This pruning step can often prevent the classification tree from
being over-tuned by the training data.

The pruned classification tree for the word "out" is shown in figure 2 [Lin 95]. In
this example, only four questions are asked along the branches to determine whether the
part of speech of "out" is IN ("general preposition") or RP ("prepositional adverb which
is also particle").

(Q1) Is the next word "of "?
(Q2) Is the part of speech of the previous word "VBN"?

An Overiew of CBSO Techniques for NLP 123

(03) Is the distance to the nearest verb on the right-hand side less than or equal to 8?
(04) Is the distance from the nearest verb on the left-hand side less than or equal to 8?

RP-11 RP 1
IN 8 IN 2

Figure 2 Example: the pruned classification tree for the word
"out" [Lin 95]

3.6 Clustering

An effective way to improve the sparse data problem is to reduce the number of
parameters by clustering events into classes. The members in the same class possess
similar characteristics. For example, the words in, on, and at can be clustered into the
class designated as ' prepositions'; the words Sunday, Monday, Wednesday, ..., Saturday
can be assigned to the class designated as ' the days of a week.' Many classes are well
defined in traditional linguistics. For instance, parts of speech correspond to syntactic
classes, which have been proved to be useful in many NLP applications. In many
applications, however, the required class information may not be available. In the fol-
lowing sections, two automatic clustering techniques, namely dynamic clustering and
hierarchical clustering [Devijver 82], are introduced.

3.6.1 Dynamic Clustering _
The dynamic clustering approach is an iterative algorithm employed to optimize a clus-
tering criterion function. In the dynamic clustering algorithm, the number of clusters K is

124 K 90 SR H v Gha dng, .8 Chang.

usually specified beforehand. At each iteration of the dynamic clustering algorithm, data
are assigned to one of the clusters according to a distance (similarity) function. A new
partition is thus formed. Afterwards, the representative of each cluster, which is usually
defined as the mean of the data in the cluster, are updated based on the new partition. The
new cluster model is then used successively in the next interation to reclassify the data.
The iterative procedure continues until a desired criterion is satisfied. A typical example
of dynamic clustering is the K-means clustering method [Devijver 82, Schalkoff 92],
which is described as follows:

Initialization: Arbitrarily partition the data set ¥ = { Vs Yyr oo yn} into K clusters, C 10 G

CK , where Cj is represented by its mean vector ,uj over nJ. data,jj=I, 2,.... K and

P

Hj=_zyj,', Yii€ Cj >
njiz1 '

where Yji is the i-th token of class j, and H; is the mean of class j.

(One way to do this is to randomly pick out K tokens as the initial centroids of the K clusters
and then use the K centroids to classify the data.)

Stepl: Assign each data Yo i=1, 2, ..., n, to cluster CJ if

j=agmin D(y;, p,)
where D(y »H,) is the distance between data y; and the mean of cluster k.

(Note: the minimum distance criterion can be replaced by other criteria.)

Step2: Recalculate the mean vectors ,uj, as in the Initialization step, j=1, 2, ..., K.

Step3: Terminate the clustering procedure if the mean vectors remain unchanged or the
convergence criterion is satisfied. Otherwise, go to step 1.

A few variants of the K-mean algorithm are possible. For instance, we can start with
one cluster and generate a new cluster in each iteration by splitting one existing cluster
until K clusters are obtained. In each iteration, one cluster is selected based on a selection
criterion. The mean vector pu of the selected cluster is replaced by two vectors, u, and
M, , that are slightly shifted from the original mean by a small vector & in two opposite

directions, i.e.,
H=ptd
Hy=H—-0

Then, all the tokens in the selected cluster are re-classified with respect to the two new
means.

An Overiew of CBSO Techniques for NLP 125

3.6.2 Hierarchical Clustering

In contrast to the dynamic clustering procedure, the hierarchical clustering is nonit-
erative. The hierarchical clustering algorithm is performed in a bottom-up fashion, where
two of the most similar clusters are merged to form a new cluster at each stage. Since
each merging action will reduce the number of clusters by one, this algorithm terminates
after n-1 steps, where n is the number of data. In addition, the number of clusters in the
hierarchical clustering algorithm need not be known a priori. The algorithm of the
hierarchical clustering algorithm is shown as follows:

Initialization: Each data point in ¥ ={y,, y,, ..., y, } represents an individual cluster, i.c.,

C}:{yj}, =l o,

Stepl: Find C_and C_such that (p,r)= argmin D(C;, C,), where D(C, C) is the dis-
P & v(j,k).j#k P

tance measure between clusters p and r.

Step2: Merge Cp into C_, and then delete Cp.

Step3: Go to step] until the number of clusters is equal to 1.

3.7 Supervised Learning and Unsupervised Learning

When estimating the system parameters, the maximum likelihood criterion is often used
so that the joint likelihood of the training data, as calculated using the MLE-estimated
values, is maximal among all the estimates. Estimated values which maximize the like-
lihood of the training data, however, do not necessarily maximize the system perfor-
mance (e.g., minimal error rate) when they are applied for classification by the classifiers.
The major goal of an NLP system, however, is to maximize system performance.
Therefore, it is desirable to adjust the initial estimates to achieve the best system per-
formance. This can be done by adjusting the parameters according to the scores given to
a misclassified instance when an input is misclassified. Such parameters are then adjusted
so as to reduce the number of errors.

Parameter learning can be conducted in two different modes: supervised and
unsupervised. The major difference between supervised learning and unsupervised
learning depends on whether there is a pre-labeled corpus available for learning the
system parameters. With a pre-labeled corpus, the parameters can be trained (adapted) in
supervision of correct labels. Otherwise, unsupervised learning must be adopted, which
usually performs a labeling step and a re-estimation step iteratively. At each iteration,
re-estimation is realized according to the labels produced in the labeling stage, which, in
turn, is based on the current estimates of the parameters. These two kinds of learning
algorithms are described as follows.

126 K. ¥ Su. . T:H: ehiang, «.S. Ghang

3.7.1 Supervised Adaptive Learning

Although MLE possesses many nice properties [Kendall 79], the criterion for maxi-
mizing the likelihood value is not equivalent to that for minimizing the error rate in the
training set. This is because correct classification (disambiguation) only depends on the
ranks, rather than on the likelihood values, of the competing candidates. Therefore,
adaptive learning algorithms aimed at enhancing the model's discrimination power or
minimizing the training set error rate have been widely used [Su 94b, Chiang 92a]. A
general adaptive learning procedure is used to iteratively adjust model parameters so as
to minimize the risk, i.e., the average loss, according to the following steps:

Initialization: Initialize the parameters using maximum likelihood estimation and some
parameter smoothing methods.

Stepl: Calculate the mis-classification distance d for each training token and then determine
the corresponding loss function I(d), which is a function of the distance d . An example of
the miss-classification distance and loss function is shown below [Amari 67]:

d='SC-*SC
l(d)={mn_](di] i<l

0, otherwise,
where '§ Cand S ¢ denote the scores of the top and correct candidates, respectively.

Step2: Adjust the parameteré such that the expected risk function R = E[[(d)]decreases.

Adjustment of parameters VA" at the ¢-th iteration can be expressed as follows:

A(t+|) o A(t)+AA('),

AN = o DHUSR
Sy
R ~ W‘[E] l(d}) 4
where £(7) is a learning constant which is a decreasing function of #; U is a positive definite
matrix for controlling the speed of convergence, which is usually set to a unity matrix in
most applications; and R is approximated as the statistical mean of the loss for all the N

misclassified instances.

Step3: Terminate if a predefined criterion is satisfied.

By adjusting the parameters of the misclassified instances, the performance over the
training set can be maximized. However, such parameters do not guarantee satisfactory
performance for unseen testing data due to possible statistical variation between the
training set and the testing set. In order to maintain good performance in the testing set,
robustness issues need be considered [Su 94b]. In [Su 94b], the learning procedure is
modified such that the parameters are adapted not only for misclassification cases, but

An Overiew of CBSO Techniques for NLP 27

also for correct classification cases when the score difference between the top-two
candidates is less than a preset margin. This will ensure that the correct candidate has a
score that is larger than the score of the most competitive candidate (i.e., the one having
the second highest score) by a sufficiently large safety margin in the training set. With
such a safety margin, the correct candidates, even in the unseen testing set, are likely to
have the highest scores among all the competitors. The robustness of the system can thus
be improved.

3.7.2 Unsupervised Learning

Since supervised learning needs a pre-labeled corpus, it may not be affordable for certain
applications in which the cost of pre-labeling is quite expensive. In this case, an
unsupervised learning procedure, which adopts the re-estimation procedure to self-label
the corpus, is preferred. Two commonly used re-estimation procedures, namely the EM
algorithm and Viterbi-training algorithm, are discussed in the following sections.

Expectation and Maximization (EM) Algorithm [Dempster 77]

An EM algorithm is an unsupervised learning process which iteratively conducts an
expectation step, followed by a maximization step until a predefined criterion is satisfied.
Formally, suppose that X and Y are two random vectors whose density functions are
f(xI A) and g(yl A) , respectively, where A is the parameter set under consideration. The
random vector X cannot be observed directly unless through the random vector Y. The
mapping from X to Y is a many-to-one mapping. The major goal of an EM algorithm is
to find the values of A which maximize g(yl A) given y by making use of the associated

density f(x| A), under which a refined model can be made or the modeling work is easier.
Furthermore, let #(x) denote sufficient statistics [Papoulis 90] of x, which contains suf-

ficient information for estimating A , and let A® denote the parameter values after p
iterations. The next iteration can be expressed in the following two steps:

Expectation step: Estimate the sufficient statistics #(x) by finding
£P) = E(t(x)‘ y, A(”)).

Maximization step: Determine APtY by using maximum likelihood estimation for maxi-
mizing h(t(x)| A) - h(-) . is the density function of the model from which #(x) is generated,

which can be easily obtained from f (x| A) .
The EM procedure continues iteratively until the parameters A converges. An
example of automatic part-of-speech tagging using the EM procedure is given as follows.

The tagging task can be formulated as determining the parts-of-speech T (= bty)

128 Koy 60, T.H. Chiang, J.S. CHang

given the input word sequence W of n words w, w,..w such thatthe probability

P(TIW), or equivalently P(T,W), is maximized. Using the commonly adopted bigram
tagging model, the tagging formula can be represented as follows [Church 88]:

P(T,W)=~ ‘Ifll P(w,.| ti)P(ti| t,._l) :
i
The parameters which need to be specified are the probabilities P(W.IT)and P(tl.lz‘l._1),
which are assumed to be uniformly distributed initially.
The EM algorithm computes the following two statistics in the expection step:
(1) the expected number of transitions from tag 1, totag ¢, (which may not be an integer), and
(2) the expected number of occurrences for w; given that the word is assigned a tag L.

In the EM algorithm, this expectation is taken over all the possible tagging sequences. In
the maximization step of the EM algorithm, the new values of parameters P(tl.ltj) are

reestimated using the following equation:

- (expected number of transitions from tag ¢ LR
t ‘ t) = 3
o S expected number of tag f;

Viterbi Training Algorithm [Rabiner 86]

The Viterbi training procedure for the model parameters can be summarized in the
following steps:

Initial step: Determine the initial values of the parameters according to some a priori
information. Usually, the initial parameters are assumed to be uniformly distributed if there
is no a priori knowledge.

Decoding step: Search for the optimal path using the current parameters. Generally, the
optimal path is found by using a decoding procedure travelling through the underlying
states, such as the parts-of-speech sequences with respect to the input words for an
automatic part-of-speech tagging task.

Reestimation step: Re-estimate new values of the parameters based on the decoded states by
MLE.

Repeat: Repeat the decoding and reestimation steps until stable parameter values are obtained
or until the decoded states do not change any more.
For instance, in the above tagging problem, the Viterbi algorithm will utilize the dynamic
programming method to find the best tag sequence 7 based on the current parameter
values, i.e.,

An Overiew of CBSO Techniques for NLP 129

n
T = argmax] P(w,.| ti)P(ti‘ ti_l) :

T:{ e } =1
After all the sentences in the training corpus have been decoded via the Viterbi algorithm,
the corpus can be viewed as if it is annotated with the "correct" parts-of-speech. Then, the

typical MLE procedure can be followed.

In contrast to the EM method, in the Viterbi training algorithm, the probabilities
P(tiltj) are reestimated from the training corpus, which is annotated in the previous
decoding step by using the following equation:

total number of transitions from tag ¢ j ot

Pt | ;)= i
ixdid total number of transitions from tag t

Similar methods are employed to reestimate the values of P(wilti).

4. Some Applications

The CBSO techniques have been applied to a variety of natural language tasks. Some of
these tasks are discussed in the following sections.

e Class-based Modeling — The class-based models use automatic clustering
procedures to classify data into categories based on given characteristic functions and
similarity metrics. The class-based models need a smaller number of parameters;
therefore, these parameters can be estimated more reliably using the same training
data, compared to models which do not identify underlying classes in advance.
Therefore, systems with class-based approaches are more robust. In addition, the
classes formed using automatic clustering procedures usually represent some kinds of
regularity in language behavior. In such cases, the classes can be helpful for
enhancing lexicon features.

e Detection — The applications of CBSO techniques in detection include compound
word detection, unknown word detection and grammar checking.

e Disambiguation — The ambiguities encountered in natural language processing
arise at the lexical level, syntactic level and semantic level. The resolution of the
ambiguities at these levels using statistical approaches has been investigated for
several years. The CBSO techniques are especially useful for disambiguation tasks.

e Error Recovery — Natural language texts contain not only ambiguous sentences, but
also ill-formed constructs. Robust parsers, which are capable of tolerating ill-formed

130 KoY -Sm, T-H «@hiang, J:S Chang

sentences and even of recovering errors, are therefore very important for a system that
must handle real world texts.

o Alignment of parallel bilingual corpora — The related tasks include sentence
alignment, word correspondence finding, finding collocation correspondence, and
structure mapping. The aligned materials are useful for bilingual lexicography, word
sense disambiguation, and machine translation.

® Machine Translation — Statistical machine translation with CBSO techniques has
become more and more popular, including target lexicon selection and transfer-based
translation. Constructing a CBSO MT, however, is very challenging in terms of its

- complexity. A two way training method will be reviewed later.

4.1 Class-based Modeling

Word n-gram models have been used extensively as language models both in speech
recognition and in natural language processing applications. However, the number of
parameters is usually too large to be estimated reliably if the number of words is large.

To reduce the number of parameters, the word n-gram probability P(w k’ w:jl“) is

approximated to an n-gram class model [Brown 92] as follows:

k-1 k-1
P |Wk n+1) p Wk’cklwk n+1’ck—n+1)
k-1 k-1 k-1 k-1
=P wk‘ckwk n+1’ck-n+1 P(Ck‘wk—nﬂ’ck—nﬂ)

where ¢ denotes the class to which w, belongs ((k—n+1)<i <k). Suppose that there are

V words in the lexicon, which are categorized into C classes, and C is much smaller than
V, then the number of parameters will be reduced drastically from V" with the word
n-gram model to C "+ CV using the class-based n-gram model. For example, considering
a vocabulary of 100,000 words that are categorized into 100 classes, ie., V=
100,000, C=100 and n=3, the number of parameters for the word trigram model is V>
= 10" while the number of parameters for the class-based trigram model is only (C "+
CV) = 1.1x 107; the number of parameters will be different by 8 orders of magnitude.

Therefore, class-based models greatly reduce the parameter space in comparison with the
word n-gram model.

The success of a class-based language model depends heavily on the classes being
used. In most class-based approaches, classes are either pre-defined in terms of syntactic
categories and semantic categories or determined automatically using some clustering

