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Abstract—As a pioneering experimental platform of wireless
rechargeable sensor networks, the Wireless Identification and
Sensing Platform (WISP) is an open-source platform that in-
tegrates sensing and computation capabilities to the traditional
RFID tags. Different from traditional tags, a RFID-based wireless
rechargeable sensor node needs to charge its onboard energy
storage above a threshold in order to power its sensing, com-
putation and communication components. Consequently, such
charging delay imposes a unique design challenge for deploying
wireless rechargeable sensor networks. In this paper, we tackle
this problem by planning the optimal movement strategy of the
RFID reader, such that the time to charge all nodes in the network
above their energy threshold is minimized. We first propose
an optimal solution using the linear programming method. To
further reduce the computational complexity, we then introduce
a heuristic solution with a provable approximation ratio of
(1 + θ)/(1 − ε) by discretizing the charging power on a two-
dimensional space. Through extensive evaluations, we demon-
strate that our design outperforms the set-cover-based design
by an average of 24.7% while the computational complexity is
O((N/ε)2).

I. INTRODUCTION

Energy is by far one of the most critical design hurdles that

hindering the deployment of wireless sensor networks [1]–

[4]. As most existing sensor network systems are powered by

batteries, their lifetime are limited by the storage capacity of

the battery used. The recent breakthrough in wireless energy

transfer technology developed by Kurs et al. [5] provides a

promising alternative to power these sensor nodes. We expect

in the near future a new class of Wireless Rechargeable Sensor

Networks will have potentials to bring universal sensing,

communication and computation capabilities to our daily life.

For example, without batteries attached to a node, we can

design much smaller and more flexible sensor nodes that can

be attached to objects such as fruit and medical pills, which

are not traditionally instrumented. Clearly, by providing real-

time monitoring capabilities to our critical daily products, we

have the potential to significantly improve the quality of living

for the general public.

Recently, to improve the energy charging efficiency for

wireless rechargeable sensor networks, many works have fo-

cused on the internal microelectronics design [6]–[8]. While

it is essential to improve the fundamental microelectronics

design for wireless energy transfer systems, we observe the

practical applications of wireless rechargeable sensor networks

that the charging time of individual wireless rechargeable

sensor nodes is also not negligible and plays an important

role in the overall system performance. For a typical wireless

rechargeable sensor node, such as Intel Research’s Wireless

Identification and Sensing Platform (WISP) [9], the sensor

node has to be wireless charged above a certain threshold

in order for various sensing, computation and communication

components to function properly. For example, through our

empirical measurement, we observe that the charging time

for voltage to reach 1.8V to power a WISP equipped with

a 100uF capacitor can be as large as 155 seconds, when the

RFID reader is 10.0 meters away.
As RFID readers are normally much more expensive than

wireless rechargeable sensor nodes (about 100 times price

difference [10]), for a practical wireless rechargeable sensor

networks, we would normally need one or more readers that

are carried by robots [11]–[13] or move along an existing

infrastructure such as moving tracks to efficiently power all

nodes in the network [10]. Therefore, it is essential to plan

the movement pattern of RFID readers so as to minimize the

total charging delay of the network.
In this paper, we consider the scenario that a RFID reader

moves and stops at several locations to wireless charge nodes

and obtain readings of interests at its surroundings. Such

scenario can be applied to various types of industry settings,

for example, in warehouse inventory management [14] or

in large distribution center [10]. Our optimization object,

therefore, is to identify the optimal reader stop locations and

the corresponding stop durations such that the total delay to

charge all nodes in the network above their energy threshold

is minimized. The major contributions of this paper are as

follows:

• We identify charging delay as one of the key design

hurdles in wireless rechargeable sensor networks and

introduce an effective solution to minimize charging delay

in such networks. To the best of our knowledge, this is

the first work that provides a general mean to minimize

charging delay in wireless rechargeable sensor networks.

• We formulate the charging delay minimization problem

as a linear programming problem, which can be optimally

solved to identify the optimal reader stop locations and

the corresponding stop durations.

• We introduce the concepts of the smallest enclosing



Fig. 1. WISP node fabricated in our lab

space and charging power discretization to reduce the

computational complexity, which significantly reduce the

searching space for the optimal solution with a 1/(1− ε)
approximation ratio.

• The optimal solution obtained by above designs may

consist a large number of stop locations and incur a long

travel distance of RFID reader. For practical considera-

tion, we further introduce a location merging scheme to

reduce the number of stop locations while maintaining

the charging delay to a (1 + θ) upper bound.

The rest of this paper is organized as follows. Section II

describes our energy rechargeable platform and its charging

model. In Section III we introduce our problem formulation

and present a heuristic solution to the problem. We evaluate

our design in Section IV. Section V discusses related works

and we conclude the paper in Section VI.

II. PRELIMINARIES

A. Wireless Identification and Sensing Platform (WISP)

Wireless Identification and Sensing Platform (WISP), de-

veloped by Intel Research [9], is one of the most representa-

tive wireless rechargeable sensor node platform. WISP node

inherits the capabilities of traditional RFID tags, but also

supports sensing and computing. When near to a RFID reader,

WISP node can harvest energy from the reader signals. The

charged energy is stored in a capacitor and can be used for

future data sensing, logging, computing, and transferring [15].

Fig. 1 shows a customized WISP node with different system

components and energy storage devices in our lab. The size of

WISP node is similar to a SGD$1 dollar coin, and it can be

easily attached to containers, packages or other daily objects.

B. Energy Charging Model

In this work, we use the WISP-reader charging model

proposed in [16] as follows:

Pr =
GsGrη

Lp

(

λ

4π(d+ β)

)2

P0, (1)

where d is the distance between the sensor node and RFID

reader, P0 is the source power, Gs is the source antenna gain,

Gr is the receive antenna gain, Lp is polarization loss, λ is

the wavelength, η is rectifier efficiency, and β is a parameter

to adjust the Friis’ free space equation for short distance

transmission. Except for distance d, all other parameters in

Eq. 1 are constant values based on the environment and

device settings. This model is based on the Friis’ free space

equation and has been experimentally shown to be a good

approximation of charged energy in [16]. To further validate

this charging model, we perform additional experiments to

investigate the charged power by varying distances between
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Fig. 2. Experiment and energy charging model for the harvested power under
different distances between reader and sensor node with source power is 1W

the reader and sensor node. As shown in Fig. 2, the measured

harvested power matches Eq. 1 well during our experiments.

To ease the description of design in the following sections,

we simplify the charging model in Eq. 1 as:

Pr =
α

(d+ β)2
, (2)

where d is the distance from a sensor node to the reader, and

α represents other constant environment parameters including

P0, Gs, Gr, Lp, λ, and η in Eq. 1.

Here we would emphasize that our design does not depend

on any specific charging model. As long as the charging

power shows a trend of negative correlation with the charging

distance, which is true in most practical settings [5], [17], our

work can be directly applied under these models.

III. MAIN DESIGN

A. Problem Formulation

We assume a network deployment with N stationary wire-

less rechargeable sensor nodes. The location of a node i in the

network can be localized using techniques in [18]–[20] and

represented as (W i
x,W

i
y). We also assume there is a RFID

reader that is able to move around with a robot [11]–[13] or

along an existing infrastructure (moving tracks and etc.) [10].

When nodes are near to a RFID reader, they charge their

internal energy storages and are able to perform functionalities

such as sensing, computation and communication when the

charged energy is above a threshold δ. Therefore, in order to

minimize the total durations for all nodes in the network to

complete their temporal tasks, we need to find out the optimal

strategy to minimize the charging delay for all nodes in the

network. Specifically, in this paper we are aiming at finding

the optimal stop locations, as well as the corresponding stop

durations of the RFID reader to minimize the charging delay

in the network. Fig. 3 shows an example of a reader stops at

three locations to charge nodes in the network.

To formulate this charging problem, let us first assume

the reader stops at several different locations and denote

the location of its j-th stop as (Rj
x, R

j
y) and the corre-

sponding stop duration as tj . Consequently, the distance

between the j-th reader stop location and node i is dij =
√

(W i
x −Rj

x)2 + (W i
y −Rj

y)2, and the corresponding charg-

ing power is Pij =
α

(dij+β)2 based on Eq. 2. The accumulated

energy of node i at the j-th reader stop location is Pijtj .



Fig. 3. Wireless rechargeable sensor network and reader stop positions

Given an area of interest with N sensor nodes, the node

charged energy threshold δ, and the RFID reader can stop at

any location in this continuous space, we can mathematically

formulate the optimization problem of minimizing charge

delay of all nodes in the network as:

min T =
∞
∑

j=1

tj (3)

s.t.

∞
∑

j=1

Pijtj ≥ δ, (i ∈ N) (4)

Pij =
α

(dij + β)2
, (i ∈ N, j ∈ (1, 2 · · · ∞)) (5)

dij =
√

(W i
x −Rj

x)2 + (W i
y −Rj

y)2. (6)

To find the optimal reader stop locations and the corre-

sponding stop durations for Eq. 3, the most straightforward

method is to include all possible stop locations of the RFID

reader in the Linear Programming (LP) solver. However, this

simple method incurs very high computational overhead and

is not suitable for most practical applications. Therefore in the

following subsections, we introduce a set of new techniques

to effectively reduce the search space of reader stop locations

while still maintaining provable system performance.

B. The Smallest Enclosing Space

Inspired by Welzl’s work on the smallest enclosing

disk [21], we observe that the search space of reader stop

locations can be first reduced to a Smallest Enclosing Space

(SES), which is the smallest circular disk that covers all

N wireless rechargeable sensor nodes in the network. The

computational complexity to find such a unique disk for a

particular network deployment is O(N) [22]. Consequently,

we have the following lemma on the search space of reader

stop locations:

Lemma 1: To minimize the total charging delay for a net-

work, the reader must stop within the Smallest Enclosing

Space C that covers all nodes in the network.

Proof: We prove this lemma by contradiction. Assuming

there is an optimal stop location for the reader that is outside

the SES area (denoted as k in Fig. 4), then we could prove that

there always exists a location within SES, which can lead to

a smaller charging delay. Let the center of SES be OC , and h

Fig. 4. The reader must stop within SES disk

be the intersecting point where line segment [k,OC ] cuts the

SES circle, for any node i within SES, we have dih < dik and

consequently Pih > Pik . Therefore, by relocating the reader

from location k to h, we can always increase the charging

power for any node i and reduce the charging delay at node

i. Consequently, we prove k is not possible to be an optimal

stop location for the reader and this concludes the proof.

C. Discretizing Charging Power within SES

Based on Lemma 1, we reduce the search space of reader

stop locations from a two-dimensional space to a smaller

enclosing circular area C. However, the potential reader stop

locations within the SES C is still infinite and we still cannot

effectively apply the LP method in Section III-A to find out

the optimal reader stop locations and the corresponding stop

durations. In this subsection, we introduce a novel method that

effectively discretizes the charging power within SES, and con-

sequently reduce the computational complexity significantly

by only considering a limited number of potential reader stop

locations to the LP formulation in Section III-A.

As the search space for potential stop locations is reduced

to SES, the distance between a node i in the network and

the potential stop locations of the reader is also reduced to a

limited range. Let OC and RC be the center and the radius

of the SES disk C, and Di,OC
be the distance from node i to

OC , we can express the minimal and maximal distances from

node i to all possible reader stop locations as:

Dmin
i = 0, (7)

Dmax
i = Di,OC

+RC . (8)

With this range of charging distances and the charging

model in Eq. 5, we can obtain the corresponding charging

power range as:

Pmin
i = α/(Di,OC

+RC + β)2, (9)

Pmax
i = α/β2. (10)

To discretize charging power within SES at a node i, we

divide SES C with respect to node i by drawing Gi number of

concentric circles centered at node i with increasing radius of

Di[1], Di[2], . . ., Di[Gi], such that the difference of charging

powers between neighboring circles is less than a threshold

value ε (0 < ε < 1). Consequently, for a region between a

pair of neighboring circles, the difference of charging powers

to node i is less than the threshold ε, and can be represented

by a discretized charging power sequence Pi[1], Pi[2], . . .,
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Fig. 5. A sequence of concentric circles with discretized charging powers
with origin of node 4

Pi[Gi], where Pi[g] is:

Pi[g] = Pmax
i (1 + ε)−g (1 ≤ g ≤ Gi), (11)

Fig. 5 visualizes the charging power discretization process.

For example of node 4, combined with Eq. 11, the charging

power on the circle of D[1] is P4[1] = Pmax
4 (1+ε)−1, as D[2]

with P4[2] = Pmax
4 (1 + ε)−2. Hence, for the region between

D[1] and D[2], the charging power is bounded by Pmax
4 (1 +

ε)−1 and Pmax
4 (1+ε)−2, with a difference of charging power

to node 4 is less than the threshold ε.

The total number of concentric circles Gi for node i
therefore is decided by the smallest circle, which is centered

at node i and covers the whole SES C. In other words, Gi is

the smallest integer number satisfies the following condition:

Pi[Gi] = Pmax
i (1 + ε)−Gi ≤ Pmin

i . Consequently, combined

with Eq. 9 and Eq. 10, we can determine Gi with the following

equation:

Gi =









ln(
Pmax

i

Pmin

i

)

ln(1 + ε)









=

⌈

2 ln(1 + 1
β
(Di,OC

+RC))

ln(1 + ε)

⌉

(12)

As Fig. 5 shows, D4[3] is the smallest circle centered at

node 4 and covers the whole SES disk, and we have G4 = 3.

Similarly for all nodes in the network, we can apply

the same charging power discretization process on the SES

and obtain a finite number of regions that are bounded by

concentric circles, which circles are originated from all nodes

in the network. The total number of regions, denoted as S,

can be determined as follows. Each region’s boundaries are

determined by the circle of SES disk C and the concentric

circles centered at all nodes. The largest number of the

concentric circles within SES for each node i is Gi-1 and

there is only one SES disk circle, so the total number of arcs

within SES is Z = 1 +
∑

i∈N (Gi − 1). By [23], the largest

number of S, which is determined by Z arcs has an upper

bound:

S ≤ Z2 − Z + 2.
As an example, Fig. 6 shows the concentric circles that are

originated from four nodes in the network and divide the whole

SES into 28 different regions.

For each region, denoted as Cs (an example is illustrated

in Fig. 6), the charging power difference from any location

within this region to a neighboring region for all nodes in the
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Fig. 6. An example of discretized charging regions within SES disk C

network is bounded by the threshold value ε. For any region

Cs, it must be within the arc with a radius of Di[g] that is

originated from a node i, and we denote the sequence number

of this arc (w.r.t. to node i) as gi(Cs). Then, for any location

q ∈ Cs, we have its charging power to node i as:

Pi[gi(Cs)] ≤ Pi[q] ≤ Pi[gi(Cs)− 1]. (13)

Fig. 6 shows such example, any location q in the region

Cs, its charging power to node 4 is P4[q], and we have

P4[g4(Cs)] ≤ P4[q] ≤ P4[g4(Cs) − 1] (in this example

g4(Cs) = 2). Since
Pi[gi(Cs)−1]
Pi[gi(Cs)]

=1+ε by Eq.11, Pi[q] has

very tight lower and upper bounds of charging power with

respect to node i.
Furthermore, for all N nodes in the network, within a

region Cs, the charging powers from any location in Cs

to all nodes are also bounded and can be represented as

a N -tuple Charging Power Approximation vector Es =
[P1(Cs), P2(Cs), . . . , PN(Cs)], where the i-th element is:

Pi(Cs)=P [gi(Cs)]. (14)

Fig. 6 visualizes an example, the charging power ap-

proximation vector for the region Cs (enclosed by arcs

s1, s2 and s3) is [P1(Cs), P2(Cs), P3(Cs), P4(Cs)] =
[P [2], P [2], P [3], P [2]], where the i-th element in the vector is

the lower charging power bound from any point in this region

to node i. For any point q ∈ Cs and its corresponding charging

power approximation vector Es, we have:

Pi(Cs) ≥
Pi(q)

(1 + ε)
. (15)

Consequently, all such regions within SES can serve as a

finite number of potential reader stop locations and use the

LP method to solve Eq. 3 in Section III-A. The optimal total

stop duration obtained by LP method after discretization has

a 1/(1 − ε) approximated ratio to the theoretically optimal

charging delay. The detailed proof is provided in Appendix,

and we further verify this approximated ratio through extensive

evaluations in Section IV.

D. Reader Stop Location Merging Design

After charging power discretization in Section III-C, we

reduce the search space for the LP formulation in Section III-A

from infinite space to finite number of potential reader stop



locations. However, the optimal charging delay obtained may

consist of a large number of reader stop locations. For

example, Fig 7(a) shows a random deployment with 200

nodes and the corresponding optimal reader stop locations

(denoted by stars in the figure). From Fig 7(a), we can see

the reader have to stop at a very large number of locations

(159 in this specific example) in order to achieve the optimal

charging delay. However, for real-world applications, it is not

very practical to move the reader among a large number of

stop locations. Therefore, in this subsection, we introduce a

reader stop location merging design that effectively reduces

the number of stop locations for the reader while maintaining

the charging delay increase within a specified threshold.
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(b) Reader stop locations after merg-
ing (marked as triangular dots)

Fig. 7. Illustration of reader stop locations before and after merging (sensor
node marked as circular dots)

To merge the reader stop locations in the previous sub-

section, we use a well-known k-means clustering algorithm,

called Lloyd’s algorithm [24], to group reader stop locations

into multiple clusters based on their geographical locations.

The Lloyd’s algorithm is a method of cluster analysis, which

aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean.
For our reader stop location merging problem, the original

n observations in the Lloyd’s algorithm is simply the total

number of reader stop locations obtained using charging power

approximation vectors in Section III-C. However, for the

number of clusters to be formed (k in the Lloyd’s algorithm), it

is not obvious how to decide a suitable value. Therefore, in our

reader stop location merging design, instead of asking system

users to specify the k value, we request system users to decide

how much performance degradation they would tolerate so as

to reduce the number of reader stop locations. Specifically, we

let the system users to specify a threshold value θ, such that

the charging delay before stop location merging (Tbefore) and

after merging (Tafter) satisfy the following equation:
∣

∣

∣

∣

Tafter − Tbefore

Tbefore

∣

∣

∣

∣

≤ θ (16)

Essentially, θ decides the percentage of charging delay

increase that the merging design can tolerate with respect to

the delay before merging. Consequently, the charging delay

after merging has an upper bound (1 + θ)Tbefore.
After introducing the delay threshold value θ, the next

question we need to answer is how to correlate θ with the

number of clusters after merging (parameter k in the Lloyd’s
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Fig. 8. Charging delay vs. the number of stop location clusters k

algorithm). To reveal the relationship between θ and charging

delay after merging (Tafter), we use Fig. 8 to demonstrate how

the charging delay changes with different value of merging

parameter k in the Lloyd’s algorithm. From Fig. 8, we can see

with the increasing number of stop location clusters from the

Lloyd’s algorithm, the charging delay decreases sharply when

the number of clusters after merging is small and decreases

slowly and approaches to the original charging delay when

the number of clusters after merging is getting larger. Since

the charging delay monotonically decreases with respect to the

number of merged clusters, we can perform binary search to

find the minimal k value in the Lloyd’s algorithm to satisfy

the delay threshold θ.

After obtaining the optimal k value, we then need to

select one representative stop location within each of the k
clusters. To select such a representative stop location within

a cluster, we pick a location whose charging power vector

is closest to the average charging power vector within this

cluster. Specifically, assuming a cluster contains M original

reader stop locations, and their corresponding power vector

is E1, E2, ..., EM , respectively, we choose the representative

location whose charging vector Ei satisfies:

Ei = argmin
Ei∈E





∥

∥

∥

∥

∥

∥

Ei − (

M
∑

j=1

Ej)/M

∥

∥

∥

∥

∥

∥

2



 (17)

Fig. 7(b) shows an example of reader stop locations after

merging. If given a delay threshold θ=0.1, we perform binary

search to find the minimal k value in the Lloyd’s algorithm

to satisfy this delay threshold is k = 16. Then, we select

one representative stop location within each of the k clusters

by Eq. 17 and mark these 16 representative locations as

triangle dots in Fig. 7(b). Consequently, the charging delay

after merging has an upper bound (1+θ)Tbefore = 1.1Tbefore.

E. Putting All Things Together

To summarize our design, we divide it into following four

main steps:

1) Finding the Smallest Enclosing Space (SES) that covers

all nodes in the network,

2) Discretizing SES by charging powers for all nodes in

the network,



3) Solving Eq. 3 with discretized SES regions using LP

methods, obtaining approximated optimal locations,

4) Merging these original approximated optimal locations

into a smaller number of locations with a delay upper

bound.

The approximation ratio for our design is (1 + θ)/(1 − ε)
to the theoretically optimal charging delay.

The computation complexity of our design is determined by

adding the following three parts. The first one (Section III-B)

for finding the SES disk is O(N) [22]. The second one

(Section III-C) for performing LP method to find approximated

optimal locations is determined by the total number of partition

regions, whose number has an upper bound as analyzed at

the end of Section III-C. Hence, combined with Eq. 12 we

obtain: O(Z2) = O((
∑

i∈N Gi)
2) = O((N/ε)2). The third

part (Section III-D) is determined by the number of iterations

of performing LP method to find the minimal k value using

binary search (O(logN) by [25]). As the complexity of the

Lloyd’s algorithm in each step of binary search is O(N) [24],

the complexity of the third part is O(N logN). So the total

computation complexity of our design is O((N/ε)2).

IV. EVALUATION

In this section, extensive simulations are conducted to

evaluate our design under different network settings and reveal

insights of system performance.

A. Simulation Setup

We assume wireless rechargeable sensor nodes are randomly

deployed over a 100m× 100m two-dimensional square area.

The default number of sensor nodes is 100. For the charging

model (Eq. 2), we set α=36 and β= 30, which parameters

are obtained by fitting of our experiment curve as mentioned

in Section II-B. The charging power discretization threshold

value is ε=0.05 and the stop location merging threshold is

θ=0.05. For each node, the energy threshold to function

properly is 2 J , which energy threshold is essential for WISP

node to preform several sensing and computing tasks [9].

Each point in simulation figures is obtained by averaging

100 runs with different random seeds, node deployments and

system parameters.

B. Baseline Setup

Since currently there is no existing works that are designed

to minimize charging delay in wireless rechargeable sensor

networks, to compare the system performance of our design,

we introduce a baseline design that utilizes the concept of

Set-Cover [26]. Essentially in this baseline design, the RFID

reader tries to maximize the number of under-charged nodes

in its surrounding region at individual stops.

In addition to the baseline design above, we also obtain the

minimal charging delay by the fine-grained exhaustive search

using the LP formulation in Eq. 3. This baseline is used to

demonstrate the performance gap between our design and the

theoretical charging delay lower bound.

C. Performance Comparison

In this subsection, we show the system performance under

various designs with different system parameters including

the charging power discretization threshold ε, stop location

merging threshold θ, the number of nodes and on-board

capacitor size of node.

1) Impact of Charging Power Discretization Threshold ε:

As discussed in Section III-C, the charging power discretiza-

tion threshold ε affects the gap between the optimal charging

delay and our approximated minimal delay with significantly

reduced computational overhead. Therefore, we investigate the

charging delay under different charging power discretization

threshold values ε. As shown in Fig. 9, the charging delay

remains constant for the optimal solution and baseline design

as they are not affected by the charging power discretization

threshold. In contrast, the charging delay of our approximated

optimal design and stop location merging design increase with

the increasing threshold value ε. This is because with a larger

ε value, the charging power vectors at individual discretized

regions within SES become less bounded and consequently

lead to longer charging delays with such larger charging power

errors.

On the other hand, the charging power discretization thresh-

old ε also affects the computational overhead of our design

as analyzed in Section III-E. To visualize such computational

overhead, Fig. 10 shows the number of discretized charging

regions under different charging power discretization threshold

values. As shown in Fig. 10, the number of discretized

charging regions decreases with the increasing charging power

discretization threshold values, which in turn decreases the

computational complexity as the number of potential reader

stop locations decreases. For example, when ε increases from

0.02 to 0.17, the number of discretized charging regions

decreases by 60.34%. Therefore, based on the tolerable error

range for the system, we can select the appropriate ε value to

reduce the computational overhead while satisfying the system

requirements.

To compare with the baseline solutions, we can see the

charging delays of our stop location merging design outper-

forms the set-cover-based baseline design at all charging power

discretization threshold values. On average, our stop location

merging design has 26.42% charging delay deduction when

compared with the set-cover-based baseline design.

Furthermore, our design in Section III-D aims to ensure

that the obtained charging delay has an approximation ratio of
(1+θ)
(1−ε) with respect to the charging delay of optimal solution.

In Fig. 9, we also show the charging delays of our design

validate this approximation ratio. For example, when ε = 0.1,

the optimal delay is 303.4s and the delay upper bound value is
(1+0.05)
(1−0.1) ×303.4s = 354.0s (θ = 0.05). At the same threshold

value, the actual charging delay of our stop location merging

design is 334.8s, therefore satisfies the delay bound.

2) Impact of Stop Location Merging Threshold θ: In this

subsection, we study the impact of reader stop location merg-

ing threshold θ on the charging delays. In Section III-D, we
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Fig. 9. Delay vs. Charging Power Discretiza-
tion Threshold ε

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
2000

3000

4000

5000

6000

7000

8000

9000

10000

Charging Power Discretization Threshold  ε

N
u
m

b
e
r 

o
f 
D

is
c
re

ti
z
e
d
 C

h
a
rg

in
g
 R

e
g
io

n
s

 

 

Fig. 10. Number of Discretized Regions vs.
Charging Power Discretization Threshold ε
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Fig. 11. Delay vs. Stop Location Merging
Threshold θ
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Fig. 12. Number of Reader Stop Locations vs.
Location Merging Threshold θ
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Fig. 13. Delay vs. Node Number

30 40 50 60 70 80 90 100 110
0

250

500

750

1000

1250

1500

Default Charging Delay T
o
  /s

C
h
a
rg

in
g
 D

e
la

y
 /
s

 

 

Optimal Solution

Approximated Optimal Design

Location Merging Design

Set−Cover Baseline

Fig. 14. Delay vs. Default Charging Delay

introduce the stop location merging scheme to reduce the

number of reader stop locations for practical systems and θ is

used to control the charging delay bound. Fig. 11 shows the

charging delays of different designs under varying θ values.

From Fig. 11 we can see charging delays for the stop location

merging design increase almost linearly with the increasing

θ value, while all other designs are not affected and remain

constant. However, even when θ = 0.18, the charging delay

of our stop location merging design still outperforms the set-

cover-based design by 19.03%. On average, our stop location

merging design has 24.7% charging delay deduction when

compared with the set-cover-based design.

To demonstrate the effectiveness of our stop location merg-

ing design, we also show the change of the number of reader

stop locations under different θ values in Fig. 12. With an

increasing value of θ, the number of stop locations decreases

sharply. Combined with the analysis of Fig. 11 and Fig. 12,

our stop location merging design can significantly reduce the

number of stop locations with a slight delay increase.
3) Impact of Node Number: We study the scalability of

our design and investigate the charging delays with varying

number of nodes in the network. Fig. 13 shows the impact of

node density on the system performance. As the node density

increases, the charging delays of all solutions also increase

because there are more nodes needing to be charged. However,

under all node density settings, it can be found that our designs

significantly outperform the set-cover-based baseline design

and closely approach the optimal charging delay. For example,

when the number of nodes is 200 in the network, the charging

delays for the optimal solution, approximated optimal design,

stop location merging design and set-cover-based design are

312.7s, 319.3s, 339.4s and 467.4s, respectively. Based on the

delay of the optimal solution, we calculate the delay upper

bound with approximation ratio as
(1+θ)
(1−ε) × 312.7s = 345.6s,

and we can see the delay of our stop location merging design

still satisfies this bound.
4) Impact of Varying Charging Models: We are interested

in investigating the impact of different charging model pa-

rameters on the system performance. Particularly, we study

the impact of varying on-board capacitor sizes on the network

charging delays, which can provide guidance for the system

designers when choosing appropriate capacitor size for their

nodes. To simplify the description, we use the default charging

delay T0, which is defined as the charging time for the node

when the charging power is maximal (right next to the RFID

reader), to represent different on-board capacitor sizes. Fig. 14

shows the charging delay under different default charging

delays T0, which corresponding to different on-board capacitor

sizes. From Fig. 14, we can see our designs outperform the set-

cover-based baseline design under all default charging delays.

As T0 becomes larger, the performance difference between our

designs and set-cover design also becomes larger. For example,

when the default charging delay is T0 = 30s, the difference

between stop location merging design and set-cover baseline

is 76.9s, while when the default charging delay is T0 = 110s,

the corresponding difference is 404.1s. This increasing gap
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Fig. 15. Energy levels after charging with four solutions

of charging delays is because with a larger default charging

delay T0, each individual node needs more time to charge

on average. As our stop location merging design provides a

higher charging efficiency so that the total charging delay can

be reduced more significantly.

D. System Insights

In order to reveal the insight about why our proposed design

can significantly reduce charging delay, we conduct a simula-

tion to observe the energy level on each node after charging

with four solutions. Intuitively, the charging efficiency is high

if each individual node is charged just with exact energy

threshold 2 J . The energy level for each node after charging

is shown in Fig. 15. We can see in top two sub-figures of

Fig. 15, most nodes exactly have levels of energy threshold,

so the charging efficiency is high and a short charging delay is

obtained. Comparing the bottom two sub-figures, the energy

level of Set-Cover Baseline has a more various distribution,

even many nodes are charged above 4 J . Hence, a lot of energy

is wasted by this charging solution and incurs a low charging

efficiency. On the contrary, our stop location merging design

charges energy to the nodes in a more balanced manner, so

the charging efficiency is improved and our design can reduce

charging delay significantly.

V. RELATED WORK

Recently, much research has focused on improving charging

efficiency in wireless rechargeable sensor networks. In general,

these works can be classified into two categories: hardware

design and network charging coordination.

Many pioneer works have focused on hardware design to

improve charging efficiency [6]–[8]. Kurs et al. [27] experi-

mentally show that the overall output efficiency of charging

multiple devices is larger than the output efficiency of charging

each device individually by designing an enhanced technology.

Sample et al. [9] design a scheme of analog circuitry for

WISP node to obtain an efficient conversion of the incoming

RF energy. Different from hardware design, our paper is

focused on intra-network optimization, and the increase of

charging efficiency originated from hardware domain could

simultaneously improve the performance of our design.

From the view of networks, some recent works have

investigated the network charging coordination to improve

charging performance. He et al. [16] consider the static reader

deployment in a wireless rechargeable sensor networks so

that the nodes can harvest enough energy for continuous

operation. In [17], Xie et al. consider the joint design of

traveling path of mobile wireless charging vehicle (WCV),

flow routing among the network, and charging time of WCV

at each stopping point, and propose a near-optimal solution

with guaranteed accuracy. The authors in [28] build a proof-

of-concept prototype of wireless charging system for sensor

networks and conduct experiments to evaluate its feasibility

and performance in small-scale networks. Bin et al. [29]

investigate how to minimize charging cost by reducing energy

consumption rate and improving recharging efficiency. All

these works do not consider the charging delay on individual

nodes, which is not negligible in practical applications and

plays an important role in the overall system performance. So

we consider the design to optimize the charging delay for the

whole network, whose key objective is fundamentally different

from previous works.

VI. CONCLUSION

We studied a general scenario of randomly deployed sensor

nodes, where a reader moving as a point way in the network

and staying for some duration at each location respectively

to charge energy to the nodes. We used a novel solution

to find the optimal set of stopping locations to achieve an

approximated minimum of total charging time cost, and with

a low search complexity. We first narrowed the search space

into a smallest enclosed disk, and further divided this disk

into finite number of regions with an accuracy of ε. Then we

presented each region with a charging power vector and used

LP method on these regions to find the optimal set of regions to

position the reader with corresponding staying time. For prac-

tical consideration, we further proposed a location merging

design to merge original stop locations into a smaller number

with a delay upper bound. The total delay cost obtained by our

design was (1+θ)/(1−ε) to the theoretically optimal one. We

showed detailed illustration for the designs in simulation and

achieved an approximated result with low search complexity.

We also made some suggestions for reader stopping locations

to minimize total delay cost. This solution could be used

in other energy harvesting scenarios, with different types of

sensor platforms or energy sources.
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APPENDIX

A. Approximation Ratio Proof

In this section, we prove that the optimal total stop duration

obtained by LP method after discretization has a 1/(1 − ε)
approximated ratio to the theoretically optimal charging delay

under the condition that the reader only stops once. For a

more general case when the reader has multiple stops, we

verify the approximated ratio through extensive evaluations in

Section IV.

Denote qopt as the theoretically optimal reader stop posi-

tion (unknown), and Topt, Eopt the corresponding minimum

charging delay and charging power vector, all of which are

unknown. And we denote E∗ as the optimal one among

all Charging Power Approximated (CPA) vectors Es, s =
1, 2, . . . , S to obtain minimum charging delay, which delay

is denoted as T ∗, so T ∗ = min{Ts : s = 1, 2, . . . , S}.

Theorem 1: For any reader stopping position q with its

corresponding charging power vector E and optimal minimum

charging delay T , denote Cs as the region covering q for a

given ε > 0. Then we calculate Es for this Cs, and claim its

corresponding achievable optimal minimum charging delay Ts

(via LP method) is: Ts ≤ T/(1− ε).
Proof: Instead of using the optimal charging power vector

Es for Cs, we use charging power vector E to represent

Charging Power Approximated vector of this region, which

is obviously suboptimal. We denote T̂s as the minimum delay

obtained for Cs under E, so Ts ≤ T̂s. Then we only need to

prove T̂s ≤ T/(1−ε). To prove this, combined with Eq. 4, we

calculate the total energy charged on node i at time T/(1−ε),
which is:

Pi · T/(1− ε) > Pi · T ≥ δ.

The last inequality holds by the energy constraint in charging

power vector for point q. Then the minimum delay T̂s for

subarea Cs under E is at most T/(1− ε), and we have Ts ≤
T̂s ≤ T/(1− ε).

Theorem 2: With aforementioned T ∗ and Topt, we have

T ∗ ≤ Topt/(1− ε).
Proof: Consider a special case of Theorem 1 that a

given reader stopping position is the theoretically optimal one

qopt, with corresponding Eopt and Topt. Using the similar

proof process, denote Cs is the region covering qopt with

corresponding Es, and we get Ts ≤ Topt/(1 − ε). Hence for

the optimal E∗ among all the Charging Power Approximated

vectors, we have T ∗ ≤ Ts ≤ Topt/(1 − ε). The proof is

completed, and this theorem guarantees that the minimum

optimal charging delay among all the S Charging Power

Approximated vectors is at most Topt/(1− ε).


