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Abstract

This paper presents the framework and results of team Florida International University - University
of Miami (FIU-UM) for the semantic indexing task of TRECVID 2010. In this task, we submitted four
runs of results:

e F A FIU-UM-1_1: KF+RERANK - apply subspace learning and classification on the key frame-
based low-level features (KF) and use co-occurrence probability re-ranking method (RERANK) to
generate the final ranked results.

e F A FIU-UM-2_2: LF+KF+SF+RERANK - apply subspace learning and classification on the
key frame-based low-level features (KF) and shot-based low-level features (SF) separately. Then
co-occurrence probability re-ranking method (RERANK) is used for both key frame based model
and shot based model. Finally, a Late Fusion (LF) step combines ranking scores from each model
and generates the final ranked shots.

e F A _FIU-UM-3_3: EF+KF+SF+RERANK - apply subspace learning and classification on com-
bined features from the selected key frame-based low-level features (KF) and shot based low-level
features (SF) in the Early Fusion (EF) step. Then co-occurrence probability re-ranking method
(RERANK) is used.

e F A _FIU-UM-4_4: SF+RERANK - learning and classification based on shot based low-level fea-
tures (SF). Then co-occurrence probability re-ranking method (RERANK) is used.

From the results of different runs, it can be observed tha# _FIU-UM-1_1 and F_A_FIU-UM-3_3
have better performance th&hA _FIU-UM-2_2 and F_A_FIU-UM-4_4. It implies that adding features



from different sources could enhance the effectiveness of the learning and classification model and also
visual features seem to be more reliable than audio features for most semantics in TRECVID 2010.

The framework aims to handle several challenges in semantic indexing. For the challenge of data
imbalance, Multiple Correspondence Analysis (MCA) based pruning method is able to reduce the high
ratio between the number of negative instances and the number of positive instances. Meanwhile, for the
challenge of semantic gap, the proposed subspace learning and ranking method has adopted a new way
to select Principal Components (PCs), which spans a subspace where all instances are projected and
classification rules are generated. The scores from one-class positive and negative learning models are
further used to rank the classified instances. Then the co-occurrence probability re-ranking approach
is utilized to improve the relevance of the retrieved shots. Please note that there is one run that adopts
late fusion to combine the scores from key frame-based model and shot-based model. Evaluation results
show that more efforts still need to be done to refine each module within our framework and some future
directions to be explored are discussed in the conclusion section.

1 Introduction

The semantic indexing task in the TRECVID 2010 project can be regarded as an approach of content-
based multimedia retrieval. For each high-level semantic, a maximaftofetrieved shots are allowed
to be submitted. With regards to content-based multimedia retrieval, there are a few challenges that need
to be carefully addressed, and the way to handle these challenges is closely related to the effectiveness of
the content-based multimedia retrieval approaches, which further impacts the relevance of the retrieved
shots.

The first and fundamental challenge is feature extraction. Top teams like MediaMill and Columbia
both have spent a lot of efforts in seeking low-level discriminative features to represent images in video
collections. Prior to feature extraction, MediaMill even performs a few sampling processes, such as
temporal multi-frame selection to increase the possibility of detecting those semantics that might not
be in a single key frame within one shot [1]. Usually, the extracted features are low-level features,
including visual features, audio features, key words, etc. The dimensionality of the extracted features is
usually huge and may require clustering to build a word vocabulary or codebook library to represent the
characteristics of the video data. Due to the huge amount of multimedia data in the TRECVID project,
the efficiency of the feature extraction algorithms as well as the computational power of the machines
become critical issues. For example, MediaMill in TRECVID 2009 reported to have processed a total of
one million I-frames utilizing a GPU implementation of visual feature extraction methods.

Data imbalance is another issue in multimedia research. The ratio of the number of negative samples
to the number of positive samples in the TRECVID 2009 and 2010 projects on average is more than
100:1. Therefore, many research teams participating in the TRECVID 2009 project, such as the team of
IBM and Fudan University, the team of THU and ICRC, and the team of Peking University and Intel,
proposed approaches to address the data imbalance issue. The prevailing methods would be the under-
sampling and over-sampling techniques. For example, team Peking University [2], one of the teams that
achieved top results for high-level semantic extraction task, has adopted OnUm method that combines
over-sampled positive samples and under-sampled negative samples together to form a group of subsets.
Within these subsets, the ratio is quite balanced and the final scores are generated from these subsets.
On the other hand, team MediaMill fixes the weights of the positive and negative data according to



their distributions in the training set to compensate the imbalanced ratio between the number of positive
instances and the number of negative instances.

Among all the challenges, “semantic gap” can be considered the most attractive issue. Many ap-
proaches have been developed to bridge the gap between the extracted low-level features and the tar-
geted high-level semantics. The existing approaches usually rely on relevance feedback and/or learning
algorithms. By applying relevance feedback, the retrieved results can be improved iteratively. However,
it is sometimes not easy, if not impossible, to get users’ feedback. Therefore, learning algorithms have
gained increasing attentions, especially in the situation where the feedback method is hardly applicable.
Lots of learning algorithms have been developed in the literature. In the multimedia retrieval domain,
the prevailing algorithms are Support Vector Machines (SVM) and their variations. In the previous
TRECVID projects, most of the teams with top ranking results all utilized Support Vector Machines as
their learning algorithms. The kernel of SVM could be radial basis function or chi-square. The former
kernel function usually performs better than the other kernels; while the latter kernel function gains
increasing attentions after the chi-square kernel function is utilized in [3].

In addition, ranking and re-ranking strategies also play an important role in the semantic indexing
task. Ranking and re-ranking aim to provide the end users the most relevant retrieved results as many
as possible. Ranking could be broadly categorized into pairwise ranking [4] and model-based ranking
[5]. Since the number of generated instances (or samples) with audiovisual features representing each
shot in the TRECVID videos is too large, it is very impractical to apply pairwise ranking algorithm in
the TRECVID project. Instead, the model-based ranking method is extensively used in the semantic
indexing task. These ranking methods are usually integrated in the learning and classification step that
originally aims to handle the semantic gap problem. Re-ranking tries to further refine the ranked results
by considering some other relevant auxiliary information. For example, information such as the rank-
ing score from a different model (such as face detection) can help further accurately index the target
semantic.

In this paper, each module of our semantic indexing framework is introduced and the solution to each
of the aforementioned issues is discussed one by one. The paper is organized as follows. Section 2
describes our proposed framework and how it handles the challenges in the TRECVID 2010 semantic
indexing task. Section 3 shows our experimental results and Section 4 concludes this paper and points
out some future directions.

2 The Proposed Semantic Indexing Framework

The proposed semantic indexing framework is shown in Figure 1. Each run has been marked by a
number in the framework. Run 1 uses key frame-based features exclusively; while Run 4 uses only
shot-based features. Run 3 combines these two categories of features together and finally Run 2 is the
fusion of Run 1 and Run 4. The proposed framework contains a set of modules. Each module aims to
handle particular problems that were discussed in the previous section.

2.1 Feature extraction

Two different categories of features have been extracted from the TRECVID 2010 video collections,
namely key frame-based features and shot-based features. In the set of key frame-based features, the fol-
lowing features are extracted: color dominant in the RGB color space, color histogram in the HSV space,
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color moment in the YCbCr space, edge histogram, texture co-occurrence, texture wavelet, Tamura tex-
ture, Gabor texture, and local binary patterns. In addition, some mid-level features from face detection
are captured such as the number of faces. A totdDdfdimension attributes are extracted for the key
frame feature set.

In the set of shot-based features, audio features (16-dimension) and visual features (4-dimension)
are extracted. The audio feature set is composed of volume-related, energy-related, and spectrum-flux-
related features as well as the average zero crossing rates. As for visual features, the grass ratio is
calculated as a mid-level feature, which is useful for detecting sports-related semantics such as soccer
players. Furthermore, a set of motion intensity estimation features are extracted such as the center to
corner pixel change ratio.

Both of the two categories of features target at representing/summarizing the videos provided by
TRECVID 2010. Video representation is a difficult task in multimedia research. The key frame-based
features are commonly used to describe the video content. Global and local key frame-based features
are extensively applied and reported to be effective in the multimedia retrieval task. However, key
frame-based features cannot capture audio information and some shot-level informations may be miss-
ing. Therefore, shot-based features can serve as an auxiliary information source.

2.2 Data preprocessing

There are several subcomponents in the data preprocessing module.

Normalization

Most of the extracted features have different scales. To prevent the small-scale attributes from being
dominated by large-scale attributes, a common way is to apply data normalization. There are many
normalization functions that could be utilized to scale the data within a common range. For example,
the min-max normalization function can ensure the normalized data in the rafigd jofEquation (1)

to Equation (3) show a list of normalization functions [6]. L€t,;,, be the minimum value of XX,,...

be the maximum value of Xy be the estimated mean of X, ande the estimated standard deviation of

X.

X — X
X/ — mn . (1)

Xma:v - )(’rmn7
X _
x = = h ©)
g
0.01- (X — p)
g

X' = 0.5[tanh +1]. (3)

All of these three normalization methods had been applied to the extracted features. After we further
did cross-validation on these three different normalized data, we observed that Z-score normalization in
Equation (2) rendered the best learning results.

Attribute selection

Attribute selection or sometimes called feature selection is applied only to the key frame-based features
since the dimensionality of the key frame-based features is quite large. The input data has more than 500



key frame-based features and there could be a lot of redundant or irrelevant features within the extracted
key frame-based features to different high-level semantics. Therefore, attribute selection provides a way
to find a set of relevant attributes. The direct benefit from the attribute selection method is that the
model can be induced faster since the dimensionality of the attributes has been reduced. In our work,
20 most relevant attributes are selected from the wholedimension key frame-based features and it

can be observed that the accuracy and training time both benefit from this technique. However, one
thing that needs to be mentioned is that there is a trade-off between the number of attributes retained
and the performance of the learning model. Indeed, attribute selection could enhance the learning model
by removing irrelevant or redundant attributes. However, if too many attributes have been removed, the
performance of the learning model will become poor or over-fitting to the training data. It is one of our
future directions to explore the optimal trade-off point within the attribute selection step.

Discretization

Discretization maps the continuous data into the discretized form and could facilitate the learning process
[7]. It could reduce the values of features and simplify the representation of the data. Meanwhile, it can
also be used as the preprocessing step of the learning methods which do not accept continuous/numeric
inputs. In general, discretization methods fall into two categories: one is unsupervised methods such as
equal-width and equal-frequency discretization, and the other one is supervised methods such as entropy-
based Information Entropy Maximization (IEM) and statistics-based Chi-square. The method used in
our framework is a modified version based on the Minimum Description Length (MDL) [8]. Usually,

it is an NP-hard problem to find the optimal discretization and sometimes the generated intervals can
range from one to more tham0. Therefore, it is not suitable to directly apply original MDL methods.

The IEM method we used in TRECVID 2010 has been modified to discretize a feature into a range of
intervals betweer? and10. That is, two intervals will be forced to generated if only one interval is
generated by the original MDL method, and at the same time, fnigtervals will be generated if the
original MDL method creates more thaf intervals. Based on our experiments, the modified version

of MDL can reach the same effect as the original MDL while providing better classification results for
the learning algorithms like Decision Tree, Ripper, Naive Bayes, AdaBoost, K-Nearest Neighbour, etc.

Instance filtering and correlation-based pruning

In the TRECVID semantic indexing task, a notable characteristic of the data is that the number of neg-
ative instances is much more than the number of positive ones. Therefore, filtering/pruning is necessary
to address this data imbalance issue. The way we handle the data imbalance issue consists of two steps.
First, an instance filtering method is applied to reduce the number of the negative instances. Then a
correlation-based pruning methods further prunes the negative instances. However, sometimes a few
positive instances are also pruned in this step. The reason is that some of the positive instances and
negative instances are very much alike, leading to confuse the learning model. Therefore, it is better to
not include those positive instances in training the learning model.

In essence, our proposed correlation-based pruning is a method based on Multiple Correspondence
Analysis (MCA). MCA is an extension of the standard Correspondence Analysis (CA) to consider more
than two variables [9]. Meanwhile, it also appears to be the counterpart of Principal Component Anal-
ysis(PCA) for nominal (categorical) data. The functionality of MCA has motivated us to explore its



utilization to capture the correspondence between the feature-value pairs and the semantic classes, and
further to utilize this correlation to prune the training data set. The similarity of each feature-value pair
to a class can be represented by the angle between them in the projected new subspace: a smaller angle
between a feature-value pair and a semantic class indicates a higher correlation [10].
From the calculation of the inner product of a feature-value p&jy Y and a semantic class (C,,
andC), stand for positive and negative class respectively); two angles eallgd,;, andangle;;, (from
0 to 180 degrees) of4;; with respect ta’,, andC), could be captured, wheies betweerl and the total
number of feature$, j varies for each feature fromto the number of intervals for each featu€g, is
the target semantic class, afi is the non-target semantic class (shown in Equations (4) and (5)).

A - C
anglej;, = arccos(imlj" : |CI’7 |) (4)
ji p
Ay - Cy,
anglej;, = arccos(m) (5)
71 n

The sum ofangle;;, andangle;;, is 180 degrees. lnglej;,, the angle between feature-value pair

and class label’,, is smaller than 90 degrees, thap has a higher correlation relationship with. On

the other hand, ifingle;;, is smaller than 90 degrees, thén has a higher correlation relationship with
C,. If anglej;, or angle;;, is equal to 90 degrees, it means thgt has equal correlation relationships
with €}, andC,,. Here, one score defined asre;, for each data instance is calculated by the MCA-
based correlation, whereis from 1 to the total number of data instances. It is calculated by the sum
of its feature-value pair weightseight;;, or weight;;, (Shown in Equation (6)), where the weights
are converted from the angle values. In additionyifile;;, is less than a certain threshaldgle;, s,

then the positive sign is assigned; whileiifgle;;, is less than the same threshaldgle,,,.,, then the
negative sign is assigned. Otherwisegle;;, or weight;, is set to be.

l

scorey = Z weight jiz, (6)
i=1
where
o weight i, = weight ), if anglej;, < angleiyres, thenweightﬁPIW;
o weight i, = weightj;y, If angleji, < anglegyres, thenweightjm:—m%%gleﬂ".

MCA prunes both the training and testing instances [11]. For the training data, when the value of an
instance’s score is larger than or equal to a threshold, the instance is considered to be positive. Otherwise,
it is considered to be negative. If this estimation is in accordance with its class label, then this instance
is considered to be a typical/pure training instance; otherwise, it is considered to be a fuzzy/suspected
one. Only typical/pure training instances are retained to train the classifiers. For testing instances, on the
contrary, those that can be easily classified as positive or negative instances will be filtered out and only
fuzzy/suspected instances are kept to get further classified. Thus applying correlation-based pruning can
not only increase the classification accuracy but also save the classification time.

It is observed that the pruning of a few positive instances will enhance the F1-score of the learning
model. This improvement might be caused by the removal of those confusing positive instances at
the boundary where they are mixed with the negative instances. However, one problem occurs during



instance filtering, that too many negative instances could be filtered out, leading the learning model
become too over-fitting to the training data. Therefore, one of the the future directions is to explore the
near-optimal trade-off point within this instance filtering step.

2.3 Subspace learning and ranking

To handle the semantic gap issue in video retrieval, a common way is to employ the learning methods.
Most of the participant groups adopt Support Vector Machine (SVM) to build the learning model and
further use the model to retrieve a ranking score for each instance. SVM generates hyper-planes that
are capable of separating the data instances belonging to different classes in a multidimensional space.
The kernel methods allow SVM to handle non-linear cases. The most popular kernel that SVM used in
TRECVID is Radial Basis Function, but some top groups have also tried the chi-square kernel. While not
applying SVM, our learning method is developed with the aim of building the models for positive and
negative instances based on their overall characteristics, including their mean and standard deviation,
principal components, etc. In this way, our focus can be shifted to capture the positive and negative
instances’ behavior globally. The proposed methods project instances into the principal component (PC)
subspace. Therefore, it is called subspace modeling in short. In the learning step, two one-class learning
models, one for positive instances and the other for negative instances will be built respectively. Later, a
ranking step will utilize the scores from both positive and negative models to rank the instances.

The subspace modeling technique requires three steps: normalization, PC projection and classifica-
tion rule generation. The normalization step is slightly different from the one mentioned previously. The
basic statistical information like mean and standard deviation is first derived from the positive and nega-
tive data, respectively. Then Z-score normalization will be applied on the training data that is composed
of positive and negative instances. However, for the positive model; tredo values are the sample
mean value and standard deviation of positive instances while the corresponding parameters in the nega-
tive model are the sample mean and standard deviation value of the negative instances. The PC selection
methods are improved compared with our previous work [12][13] by selecting several representative
PCs according to their separability.

Assume that there is a positive learning model which ysasdo estimated from the positive in-
stances to normalize all the training data. It is easy to see that the positive instances after the PC projec-
tion hold an interesting property. That is, these positive instances hold a zero mean and their variance is
just the same as the eigenvalue corresponding to that PC (see Equation (8)). Assume that the inner class
difference could be represented by its variance, we introduce Equation (9) to measure the separation
ability of each PC according to Fisher’s linear discriminative rule to maximize the inter-class difference
while minimizing the inner-class difference.

PosX =UXV™, (7
where U5 PC}, PCs, ...} and the diagonal value af is { A, Ao, ...}.

var[PosY;] = var[PosX x PC;] = \;, (8)

where PosX is a positive instance of the training d&&; is the j-th PC, and\; is the eigenvalue of
PC;. Both PC; and\; are from singular value decomposition of PosX as shown in Equation (7).

H?%*(PosYj, NegY;)

SEP; =
J )‘j )

(9)



where H stands for Hellinger distand@ysY is the projection of a positive instance of the training data

on PC;, NegY; is the projection of a negative instance of the training dat&Of, \; is the eigenvalue of

PC;. The Hellinger distance is used to calculate the inter-class difference here and inner-class difference
is selected to be the variances that equal to the eigenvalues.

Then all PCs are sorted according to th&i# P; values and thé largest ones are selected as the
representative PCs. With these representative PCs, a chi-square distance-basBdsssaralculated
using Equation (10).

Y2
Dis =Y _ -, (20)
=\
J
whereY; stands for the projection aRC); of the whole training data using Equation (11).

Y; =X - PC;, (11)

where X=X, Xy, ...} is a combination of the positive instance denoted by PosX and the negative in-
stance denoted by NegX.

Please note thabis,, is calculated from the positive model as an example here. Correspondingly,
there is aDis,., value for the negative learning model. Based on the two chi-square distance-based
scores, the classification rules could be generated. The classification rules are as follows.

o If Disy,s < 3 Dis,e,, assign positive label to the instance;
o If Disy,s > 3 Dis,eq, assign negative label to the instance.

Here,[ is a weight value that is used to prevent too many false positives in the classification result. The
optimal valuei can be derived during the model training phase.

The idea behind the rules is that if an instance is closer to the positive learning model than the negative
learning model, then it is reasonable to assign the positive label to that instance rather than the negative
label. The ranking strategy is based the ranking score defined in Equation (12).

SC = Dispeg — Dispes. (12)

For an instance, the higher it holdsS&" value, the closer it is towards the positive learning model.
Therefore, it should get a higher rank.

2.4 Co-occurrence probability re-ranking and late fusion

Re-ranking methods could help increase the ranking result by taking into more information from the
other sources. In TRECVID 2010, two approaches are adopted to further enhance the relevance of the
retrieval results. The first method considers the co-occurrence between semantic pairs and the other one
combines the ranking scores from different runs.

The first method is called co-occurrence probability re-ranking. It originates from the fact that the
semantics could have some relationships with each other. For example, semantic “Vehicle” is closely
related to “Road”; while “Swimming” must be accompanied with a “Person”. Thus, a co-occurrence
probability matrixC' P=C P,; is first constructed from the training labels whét&; is defined in Equa-
tion (13).

N(Cs, CY)

O'P.St - P(CS|Ot> = N(C )

(13)



Here, N(C;) means the number of training instances belonging to seméagtiand N (Cy, C;) means
the number of training instances belonging to bGthandC;. The re-ranking rule is shown in Equation
(14).

N
FSsk: = Z Py - Ltk7 (14)

t=1
whereF'S,; is the final score of thé-th instance of semantig andL =1 if the k-th instance of semantic
t is positive. Otherwisel.;,=0.

The second approach is a late fusion of different runs. Late fusion is based on the scores from shot-

based and key frame-based models. First, the score of each model is obtained by subspace-based mod-
eling. Then the two scores are fused using a weighting scheme as given in Equation (15).

SCOT€ fysion = SCOT€spor * WeLGhtspor + SCOT€Ley frame * WELGNkey frame; (15)

where the weights, i.eweight o andweightye, frame, are determined by the'l performance of shot-
based and key frame-based models in the training domain. Specifically, the weights are calculated by
Equation (16) and Equation (17).

Flshot

: 16
Flshot + Flkeyframe ( )

werghtgpor =

F]-keyframe . (17)
Flshot + Flkeyframe

weightkeyframe =

3 Experiments and Results

The proposed semantic indexing framework utilizes the data provided by TRECVID 2010. No other
sources are included in the training pool. The testing data does not need instance filtering but it goes
through the correlation-based pruning step where some testing instances are pruned due to their closeness
to the negative training instances. The retrieval result of#llhigh-level semantics are submitted and
the evaluation results are shown in Figure 2 to Figure 5 and in Table 1. From these four figures and
one table, it can be seen that Run 3 gives the best retrieval result followed by Run 1 and Run 2. Run
4 gives the worst result. Compared with other runs, Run 3 combines shot-based low-level features and
key frame-based low-level features right after the feature extraction step. This run uses more low-level
features than the other 3 runs. It combifegey-frame based low-level features with all shot-based low-
level features. Run 3 considers the fusion of shot-based information and key-frame based information
at the feature level. In contrast, run 2 does the fusion at the model level. It combines the scores from
both shot-based learning model and key frame-based learning model. In addition, the observation that
run 1 performs much better than run 2 also gives us an impression that key frame-based low-level visual
features are more reliable than the shot-based low-level audio features in representing the semantics
within videos. The reason behind it might be that the relagfdsemantics are more closely related to
visual than audio information of the provided videos.

More clearly, Table 1 shows the average precision values of the §ir$00, 1000 and2000 shots.
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Table 1. The average precision values at  n shots for four runs

n 10 100 1000 2000
FAAFIU-UM-1.1 3.3% 4.3% 35% 2.7%
FAAFIU-UM-22 3.0% 29% 19% 1.5%
FAAFIU-UM-3.3 5.0% 6.3% 3.7% 2.8%
FAAFIU-UM-44 20% 2.1% 2.0% 2.1%

4 Conclusion

In the TRECVID 2010 semantic indexing task, a semantic indexing framework is introduced to
provide a list of ranked submissions for aB0 high-level semantics. Within our framework, the de-
tails of feature extraction, attribute normalization, attribute selection, methods of instance filtering and
correlation-based pruning, algorithms of subspace learning and ranking, as well as co-occurrence prob-
ability re-ranking approach and late fusion methods are introduced. Our efforts have been spent on the
issues like data imbalance, semantic gaps, and ranking strategy. MCA-based correlation pruning reduces
the high negative-to-positive ratio of the training instances and helps identify pure instances in the test-
ing set as well. It shows the importance for the later semantic learning and ranking process. Subspace
modeling and ranking method provide a way to bridge the semantic gap between low-level features and
high-level semantics. Meanwhile, the ranking score provided by subspace modeling is further used for
re-ranking and a later fusion method is used to generate a new run.

There are some issues that require further exploration. The first issue is the sufficiency of the current
low-level features in representing the video content to capture the characteristics of the video content.
The second issue is how many attributes to be retained for each semantic. A trade-off should be made
between the improvement of the learning performance and the risk of over-fitting. The third issue is
how the negative instances are handled. More negative instances are removed in the instance filtering
process. These abandoned negative instances may also contain very important information, without
which the learning model will lose some part of its extensibility to the testing instances. The last but
not the least issue is the exploration of the learning and classification algorithms. The current subspace



modeling algorithm is a linear approach, which has a limitation in handling TRECVID multimedia data.
Therefore, the way to handle non-linear case is also a future direction to be explored for our semantic
indexing framework.
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