
Distrib Comput (1995) 9:37-49

�9 Springer-Verlag 1995

Causal memory: definitions, implementation, and programming*
Mustaque Ahamad 1, Gii Neiger 2, James E. Burns 1" * *, Prince Kohli 1, Phillip W. Hutto 3" * * *

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA
2 Software Technology Lab, Intel Corporation, JF3-206, 2111 N.E. 25th Avenue, Hillsboro, OR 97124-5961, USA
3 609 Virginia Avenue NE, Atlanta, GA 30306, USA

Received: August 1993 / Accepted: December 1994

Mustaque Ahamad is an Associ-
ate Professor in the College of Com-
puting at the Georgia Institute of
Technology. He received his M.S.
and Ph.D. degrees in Computer
Science from the State University of
New York at Stony Brook in 1983
and 1985 respectively. His research
interests include distributed operat-
ing systems, consistency of shared in-
formation in large scale distributed
systems, and replicated data systems.

James E. Burns received the B.S. degree in mathematics from
the California Institute of Technology, the M.B.I.S. degree from
Georgia State University, and the M.S. and Ph.D. degrees in in-
formation and computer science from the Georgia Institute of
Technology. He served on the faculty of Computer Science at
Indiana University and the College of Computing at the Georgia
Institute of Technology before joining Bellcore in 1993. He is cur-
rently a Member of Technical Staff in the Network Control Research
Department, where he is studying the telephone control network
with special interest in behavior when faults occur. He also has
research interests in theoretical issues of distributed and parallel
computing especially relating to problems of synchronization and
fault tolerance.

* This work was supported in part by the National Science Founda-
tion under grants CCR-8619886, CCR-8909663, CCR-9106627,
and CCR-9301454. Parts of this paper appeared in S. Toueg, P.G.
Spirakis, and L. Kirousis, editors, Proceedings of the Fifth Inter-
national Workshop on Distributed Algorithms, volume 579 of Lecture
Notes on Computer Science, pages 9-30, Springer-Verlag, October
1991
** Current address: Bellcore, NVC 3X-114, 331 Newman Springs
Road, Post Office Box 7040, Red Bank, NJ 07701-7040, USA. The
photograph of Professor J.E. Burns was published in Volume 8,
No. 2, 1994 on page 59
*** This author's contributions were made while he was a graduate
student at the Georgia Institute of Technology. No photograph and
biographical information is available for P.W. Hutto

Correspondence to: G. Neiger

Gil Neiger was born on February
19, 1957 in New York, New York. In
June 1979, he received an A.B. in
Mathematics and Psycholinguistics
from Brown University in Provi-
dence, Rhode Island. In February
1985, he spent two weeks picking
cotton in Nicaragua in a brigade of
international volunteers. In January
1986, he received an M.S. in Com-
puter Science from Cornell Univer-
sity in Ithaca, New York and, in
August 1988, he received a Ph.D. in
Computer Science, also from Cornell
University. On August 20, 1988, Dr.
Neiger married Hilary Lombard in

Lansing, New York. He is currently a StaffSoftware En~neer at Intel's
Software Technology Lab in Hillsboro, Oregon. Dr. Neiger is a mem-
ber of the editorial boards of the Chicago Journal of Theoretical
Computer Science and the Journal of Parallel and Distributed Computing.

Prince Kohli received his B. Tech.
degree in Computer Science and En-
gineering from the Indian Institute of
Technology, New Delhi, and is pres-
ently working on his Ph.D. at the
College of Computing at Georgia
Tech. His current research interests
include distributed shared memories
and distributed operating systems.
He has worked on formal character-
izations of various classes of shared
memories and their implementations
on workstation clusters.

Summary. The abs t rac t ion of a shared memory is of grow-
ing impor tance in d is t r ibuted comput ing systems. Tradi-
t ional memory consis tency ensures that ali processes agree
on a c o m m o n order of all opera t ions on memory. Unfor tu-
nately, provid ing these guarantees entaits access latencies
that prevent scaling to large systems. This paper weakens
such guarantees by defining causal memory, an abst ract ion
that ensures that processes in a system agree on the rela-
tive order ing ,:s opera t ions that are causally related. Be-
cause causal memory is weak ly consistent, it admits more
executions, and hence more concurrency, than either

38

atomic or sequentially consistent memories. This paper
provides a formal definition of causal memory and gives
an implementation for message-passing systems. In addi-
tion, it describes a practical class of programs that, if
developed for a strongly consistent memory, run correctly
with causal memory.

Key words: Memory consistency - Causal memory -
Sequential consistency - Distributed shared memory

1 Introduction

The abstraction of a shared memory is of growing import-
ance in distributed computing systems. It allows users to
program these systems without concerning themselves
with the detials of the underlying message-passing system.
Traditionally, distributed shared memories ensure that all
processes in the system agree on a common order of all
operations on memory. Such guarantees are provided by
sequentially consistent memory [27] and by atomic mem-
ory [28] (also called linearizable memory [20]). Unfor-
tunately, providing these consistency guarantees entails
access latencies that prevent scaling to large systems.
A simple argument [10, 29] can be used to show that no
memory can provide strong consistency and retain low
latency in systems with high message-passing delays. This
tradeoff represents a significant efficiency problem since it
forces applications to pay the costs of consistency even if
they are highly parallel and involve little synchronization. A
number of techniques [11, 24] have been suggested to im-
prove the efficiency of shared memory implementations, but
all provide only partial remedies to the fundamental prob-
lem of latency and scale for strongly consistent memories.

Recent research [1, 6, 8, 16-18, 21, 29] suggests that
a systematic weakening of memory consistency can reduce
the costs of providing consistency while maintaining a vi-
able "target" model for programmers. Weakly consistent
memories admit more executions, and hence more concur-
rency, than either sequentially consistent or atomic memo-
ries. This paper defines causal memory, an abstraction that
ensures that processes in a system agree on the relative
ordering of operations that are causally related. (Causal
memory has been mentioned earlier [6, 21]; however, these
papers do not present careful definitions as is done here.)
This paper provides a formal definition of causal memory
and gives an implementation for message-passing systems.
We give two classes of programs that can be developed
assuming a sequentially consistent memory and that run
correctly with causal memory.

Causal memory is based on Lamport's concept of
potential causality [26]. Potential causality provides
a natural ordering on events in a distributed system in
which processes communicate via message passing. We
introduce a similar notion of causality based on reads and
writes in a shared-memory environment. Causal memory
requires that reads return values consistent with causally
related reads and writes, and we say that "reads respect the
order of causally related writes." Since causality orders
events only partially, reading processes may disagree on
the relative ordering of concurrent writes. This provides
independence between concurrent writers, which reduces

consistency maintenance (synchronization) costs. The idea
is that the synchronization required by a program is often
specified explicitly and it is not necessary for the memory
to provide additional synchronization guarantees.

Causal memory is related to the ISIS causal broadcast
and, thereby, to the notion of causally ordered messages
[13]. Our implementation of causal memory is based on
the use of vector timestamps [14, 30], as is the ISIS
implementation of causal broadcast. Both implement-
ations are "non-blocking': a process may complete an
operation (e.g., a write or a send) without waiting for
communication with other processes. Nevertheless, causal
memory is more than a collection of "locations" updated
by causal broadcasts. Memory has overwrite semantics
and messages have queuing semantics. A message recipient
can be assured that it will eventually receive all messages
that have been sent to it, but repeated reads cannot
guarantee that all values written will be read. "Hidden
writes", values overwritten before they are read, are always
possible. Since a process may read memory locations in
any order it chooses, it may read a value vl from location
x much later than a value vz from location y, even when
the write operation that stores vl in x causally precedes the
write of v2 to y. In a message-passing system, such behav-
ior would violate the required causal ordering.

We give precise characterizations of two classes of
programs that run correctly with causal memory. Any
execution of a program in either of these classes with
causal memory is actually sequentially consistent. If the
program is proven correct with sequentially consistent
memory, then it is still correct with causal memory. One of
these classes includes data-race free programs [1, 21 that
make use of explicit synchronization to prevent problems
that may stem from concurrent access to shared memory.

It is far from clear that there is a "best" kind of shared
memory model for use with distributed systems. Strongly
consistent memories are easier to program than weak
memories, but they require costly blocking implementa-
tions. Very weak memories may be implemented cheaply,
but they might not be practical to program. We believe
that causal memory provides a happy medium: it allows
non-blocking implementations and is a useful model for
a class of practical programs.

2 Shared memory systems

This section formally describes the system that underlies
our definitions and results. We use a model derived from
those used by Herlihy and Wing [20] and by Misra [33].

We define a system to be a finite set of processes that
interact via a shared memory that consists of a finite set of
locations. Let .~ = {pl,pz, ... ,pn} be the set of processes.
A process's interaction with the memory is through a series
of read and write operations on the memory. Each such
operation acts on some named location and has an asso-
ciated value. For example, a write operation by process pi,
denoted wi(x)v, stores the value v in location x; a similarly
denoted read operation, ri(x)v, reports to p~ that v is stored
in location x.

A local execution history (or local history) of process pi,
denoted Li, is a sequence of read and write operations. If

39

operation ol precedes 02 in Li, we write ox ~ oz and say
that ol precedes 02 in program order. An execution history
(or history) H = (L1,L2 L ,) is a collection of local
histories, one for each process. An operation is said to be in
H if it is in one of the local histories that H comprises.

Different kinds of memories are defined by considering
serializations of certain sets of operations. If A (or, respec-
tively, H) is a set of operations (or history), then S is
a serialization of A (or H) if S is a linear sequence contain-
ing exactly the operations of A (or H) such that each read
operation from a location returns the value written by the
most recent preceding write to that location. (Unless
otherwise stated, we assume that each location has initial
value _1_ and that, in any serialization, this value is returned
by any read of a location with no preceding write.) Serializ-
ation S respects order --, if, for any operations oI and o2 in
S, ol ~ o2 implies that ol precedes o2 in S.

3 Earlier memory models

pl: ~ ~ ' f i -]

Fig. 1. A history that is not sequentially consistent

Notice that both sequential consistency and PRAM
require serializations that respect program order. PRAM
is weaker than sequential consistency because each process
may "perceive" a different serialization. While the order of
two writes by a given process must be the same in all these
serializations (even those for other processes), writes by
different processes may appear in different orders in
different serializations. Furthermore, each process's serial-
ization does not contain the read operations of other
processes, as it is not (directly) aware of these operations.
Figure 1 gives an example of a PRAM history that is not
sequentially consistent. This history is PRAM because the
following serializations exist:

Given the formalism developed above, one can define
a variety of memory consistency models. This section
defines Lamport 's sequential consistency [27] and the
PRAM of Lipton and Sandberg [29]. The next section
uses the same formalism to define causal memory.

The idea behind sequential consistency is that, al-
though the shared memory accessed by processes may be
distributed (i.e., may consist of many different modules),
the processes' observations of the memory should be con-
sistent with one that permits only sequential accesses (i.e.,
a single memory). History H is sequentially consistent if it
satisfies the following:

SC: there is a serialization S of H that respects all the
program orders ~ .

Thus, the values returned by the read operations in H are
consistent with the sequential ordering in S. If processes
communicate only via the shared memory, they cannot tell,
by way of their interactions with the memory, that they are
not accessing a single memory. A memory is sequentially
consistent if it admits only sequentially consistent histories. ~

Recognizing that sequential consistency is costly to
implement, Lipton and Sandberg developed a weaker form
of memory that they called the pipelined R A M or PRAM.
This memory requires only that the writes of each process
be seen in program order at all other processes. Thus, each
process must sequence its own operations and the writes of
other processes. For this reason, we make the following
definition. If H is a history and pl is a process, let
AS+ w comprise all operations in Li and all write operations
in H. A history H is PRAM if it satisfies the following:

PRAM: for each process pi, there is a serialization Si of
A~+w that respects all the program orders 7 �9

A memory is P R A M if it admits only PRAM histories.

A memory is atomic (or linearizable) if each history admits a serializ-
ation that not only preserves the order within the local histories but
also that of any pair of operations whose executions do not overlap
in real time [20, 28]. The definition of such memories is beyond the
scope of this paper

S 1 ~- Wl(X)0; w2(x)l; r l (x) l (1)

S 2 = w 2 (x) 1; wl(x)0; r2(x)0 (2)

We now show that the history is not sequentially consis-
tent. Suppose that it were and let S be the required serializ-
ation. Inspection of L1 shows that w l(x)0; w2(x)1; rl(x)1
must appear in that order in S. Inspection of L2 shows that
w2(x)l; wl(x)0; r2(x)O must appear in that order in S. This
gives a contradiction, as wl(x)O and w2(x)l must be or-
dered uniquely.

Slow memory given by Hutto and Ahamad [21] can
also be defined using this formalism, as can processor
consistency [-4, 16, 18]. We are currently exploring the
use of this formalism in the definition of other memories
[25].

4 Causal memory

We define causal memory to be intermediate between
sequential consistency and PRAM. Its definition is similar
to that of PRAM but is stronger because the serializations
required must respect not only program order but
a causality order as well. We first define causality orders.

Let H -- (L1 ,L2 , . . . , L ,) . A causality order of opera-
tions in H is determined by program order and a writes-
into order that associates a write operation with each read
operation (except one of a location's initial value). The
writes-into order is analogous to the order in message-
passing systems that relates the sending of a message to its
corresponding receipt. The order in message-passing sys-
tems is easier to define because, for each message receipt,
there is a unique sending event. This is not the case in
shared-memory systems: several write operations may
write the same value to the same location, and it is not
always clear which to associate with a particular read
operation. (Misra simplified this situation by assuming
that all writes to a location are uniquely valued.)

Because there may be multiple writes of a value
to a location, there may be more than one writes-into

40

order. A writes-into order ~ on H is any relation with
the following properties:

- i fo l ~ o2, then there are x and v such that ol = w(x)v
and 02 = r(x)v;

- for any operation oz, there is at most one o~ such that
0 1 ~ 0 2 ;

- if 02 = r(x)v for some x and there is no 01 such that
01 ~ 02, then v = A_; that is, a read with no write must
read the initial value.

A causality order ~ induced by ~ for H is a partial order
that is the transitive closure of the union of the history's
program order and the order ~-~. In other words, o~ ~> 02
if and only if one of the following cases holds:

- 01 7 02 for some Pi (01 precedes 02 in Li);
- 01 ~-~ 02 (o2 reads the values written by 01); or
- there is some other operation o' such that 01 ~ , o' ~ o2.

(If the relation ~ is cyclic, then it is not a causality order.)
Ifo~ and 02 are two operations in H such that, for causality
order ~ , 01 ~ 0 2 and 0 2 ~ 0 1 , we say that 01 and 02 are
concurrent with respect to ~,.

We can now define causal memory. A history H is
causal if it has a causality order ~ such that

CM: for each process pi, there is a serialization S~ of
A~+,, that respects ~>.

A memory is causal if it admits only causal histories.
Again, this is weaker than sequential consistency because
each process may "perceive" a different serialization. Fig-
ure 1, given above, is causal but not sequentially consistent
(it is causal because the serializations S~ and Sz, given
on lines (2) and (2) above, are serializations of A~+~. and

u Az+w, respectively, that respect ~) .
If ol ~ o, for some pi, then o 1 ~ o 2 for all causality

t " ,

orders ~ ; thus, It should be clear that any causal history is
also PRAM. However, not all PRAM histories are causal.
Figure 2 gives an example of a history that is PRAM but
not causal. It is PRAM because the following serializ-
ations, each consistent with program order, exist:

$1 = wl(x)0; wl(x)l; w2(y)2;

$2 = wl(x)0; Wl(X)l; r : (x) l ; w2(y)2;

S3 = w/(y)2; r3(y)2; wl (x)0; r3(x)0; wl(x)l.

The history is not causal for the following reason. There is
only one possible writes-into order: wl(x)Ow-->r3(x)O,
wl(x)l ~ r2(x)l, and w2(y)2 ~ r3(y)2. Thus, H has only
one causality order, and the following relations hold:
wl(x)O ~, wl(x)l ~ r , (x) l ~ w2(y)2. Thus, w1(x)O ~,

x - 2 . .

wl (x)1 ~, w2(y)2, and the three writes must appear in that
order in all serializations. It is clear that there is no way to
construct $3 (so that it respects the program order in L3)
with the writes in that order so that each read (by P3)

P3: [7 ~

Fig. 2. A history that is not causal

returns the most recently written value to the location
being read. Clearly, r3(y)2 would have to follow w2(y)2, so
the only choice for Sa is wl(x)0; wl(x)l; w2(y)2; r3(y)2;
r3(x)0. This is not a serialization (the last read should
return 1), so the history is not causal.

5 A n i m p l e m e n t a t i o n o f c a u s a l m e m o r y

This section presents and proves correct an implementa-
tion of causal memory using message passing. The imple-
mentation uses an adaptation of vector timestamps [14,
30]. It requires reliable processes and communication
channels.

Each process maintains four local data structures. The
first is a private copy M of the abstract shared causal
memory dr. The second is a vector clock t, which is used to
timestamp outgoing messages. This is a vector of natural
numbers, one for each process in the system. Informally,
t [i] is the number of pi's writes of which the process is
aware. Two vectors can be compared by comparing their
components. Vector tl is less than or equal to t2 (tl ~ t2) if
each of tl 's components is less than or equal to t2's corres-
ponding component; tl is less than tz (tl ~ t2) if it is less
than or equal to t2 and is not equal to t2. Note that "%" is
transitive. Each process also maintains two queues. The
first is a first-in-first-out queue called OutQueue. It con-
tains information about local writes to memory that are
yet to be communicated to other processes. The second is
a priority queue called InQueue. Each queue item includes
a vector clock value, which is its timestamp. The queue
lnQueue is ordered by timestamp, with items with smaller
timestamps appearing closer to the head. The queue is
maintained so that items being added to the queue are
only placed ahead of existing items whose timestamps are
greater than that of the new item. That is, the new item is
placed after any existing item with an equal or incompar-
able timestamp (actually, one can show that no two items
can have equal timestamps, but we do not need this fact).

The implementation for process Pl is shown in Fig. 3. It
consists of an initialization routine and five basic actions.
Each of these actions is local and executed atomically.
A read action is executed whenever a read of a location x is
invoked by pi. The value stored in M Ix] is returned to Pl.
A write action is executed whenever a write of some value
v to some location x is invoked by p~. Process p~ increments
t[i], writes v to M[x], and adds the tuple (i ,x , v , t) to
OutQueue; this tuple is called a write-tuple. Note that the
read and write actions require no blocking. This is in
contrast to implementations of linearizable or sequentially
consistent memory; in these cases, it can be shown that
some blocking is required [i0, 29, 31].

The information in OutQueue must be communicated
to the other processes. This is done by send actions, which
may be performed whenever it is convenient to the process
but which must be performed infinitely often (that is,
a process can never elect to perform no more send actions).
A send action removes some nonempty prefix from Out-
Queue and sends it to all other processes. When such
a message is received, p~ executes a receive action; it adds
all the write-tuples in the message received to InQueue
(recall that this is a priority queue based on the tuples'

41

/* Initialization: */
foreach x ~ . ~ do

MIx] := .1_
for j := l to n do

t['j] := 0
OutQueue := ()
lnQueue := ()

/* Read action: to read from x*/
return(M I x])

/* Write action: to write v to x */
t[/] := t[i-I + i
M Ix] := v
enqueue (i, x, v, t) to OutQueue

/* Add ri(x)* tO L~ and Si */

/* Add wi(x)v to Li and Si */

/* Send action: executed infinitely often */
if OutQueue * () then

let A be some nonempty prefix of OutQueue
remove A from OutQueue
send A to all others

/* Receive action: upon receipt of A from pj */
foreaeh (j , x, v, s) ~ A

enqueue (j, x, v, s) to InQueue

/* Apply action: executed inf initely often */
if lnQueue 4= () then

let (j, x, v, s) be head of InQueue
if sl-k] < t[k] for all k =~j and s[j] = t[j] + 1 then

remove (j, x, v, s) from lnQueue
t[j]:=s[j]
Mix] := v /* Add wAx)v to S~ */

Fig. 3. Implementation of causal memory for process p~

timestamps). The information in InQueue is used to update
a process's view of memory. This is done by an apply
action, which need only be performed infinitely often. The
write-tuple at the head of lnQueue can be applied if its
timestamp reflects no other write of which p~ is not aware.
This can be determined by comparing p~'s vector clock to
the timestamp of the write; a write by pj can be applied
only if all components of its t imestamp (other than the jth)
are less than or equal to those ofpfs vector clock and if the
j th component is exactly one more than the j th component
of p~'s vector clock. When a write can be applied, it is
removed from InQueue, the corresponding component of
p~'s vector clock is updated, and the new value is written to
M. This means that, after the write-tuple (j , x, v, s) is
applied to p~'s memory, s % t, where t is the value of p~'s
vector clock.

To facilitate the proof of correctness of the implemen-
tation, we introduce the following notation: if o is an
operation of a process p~, the timestamp of o, denoted ts(o),
is the value of p~'s vector clock immediately after o com-
pletes. Note that, for a write operation o, ts(o) is the same
as the t imestamp included with the corresponding write-
tuple. H = (L1, L2 , L ,) is a history of the implementa-
tion if each L~ is the ordered sequence of read and write
operations performed by process p~ (see comments in Fig.
3). Theorem 3 below shows that H is causal. The causality
order ~ used is derived from the following writes-into
order ~--~. If o2 = ri(x)v is a read by p~ of some non-initial
value, then oi w-~ 02, where ol is the latest write to x ap-
plied by pi before performing Oz (it is clear from Fig. 3 that
ol is a write of v).

The following two lemmas are used in the proof of
correctness. The first asserts that the causality order ~ is
reflected in vector timestamps:

Lemma 1. Let H be a history of the implementation and let
01 and 02 be two operations such that 0 1 ~ 0 2 . Then
ts(01) ~ ts(02). Furthermore, if02 is a write operation by Pi,
then ts(ol)Ef] < ts(02)[i'l; thus, ts(01) < ts(02).

Proof. The proof is by induction on the structure of the
order ~,. Consider three cases:

- 01 ,-7. 02 for some p;. Since no process ever decrements
any component of its vector clock, ts(01) must be less
than or equal to ts(02). Furthermore, if 02 is a write
operation, then Pi increments its local component dur-
ing 02, so ts(oO[i] < ts(02)[i].

- ol ~ 02. This means that o~ is a write operation, say
w~(x)v, and o2 is a corresponding read, say r~(x)v. Note
that the write-tuple associated with 01 includes the time-
stamp ts(ox). By Fig. 3, it is clear that pj cannot read
v from x before it applies the write to its memory.
Process Pi does not apply the write until its own time-
stamp is greater than or equal to ts(ol) (except for
ts(ol) [i], which is assigned to the ith component of pfs
clock when the write is applied). Since no component of
pfs t imestamp is even decremented, it is still greater
than or equal to ts (01) when it reads v, so ts (01) ~ ts (02).

- There is some operat ion o' such that o 1 ~ o ' - - ~ o 2 . By
induction, this implies that tS(Ox)~ ts(o ')~ ts(o2). By
the transitivity of ~ , the desired result holds. If 02 is
a write by p~, then ts(o')[i] < ts(02)[i] by induction.
Since ts(o~)~ts(o') implies ts(01)[i] <.ts(o')[i], we
have ts(01)[i] < ts(o2)[i]. []

The next lemma is used to show the liveness of the
implementation:

Lemma 2. Let H be a history of the implementation and
suppose that w is a write operation of process p~. Then each
process p~ eventually applies w to its memory.

Proof If i = j , the write is applied immediately; for the
remainder of the proof, assume that i 4:j. Let s = ts(w). An
inspection of Fig. 3 shows that, once pl has executed w, it is
always the case that one of the following holds for w: its
write-tuple is in pfs OutQueue, its write-tuple is in transit
from pi to p j, its write-tuple is in pfs InQueue, or p~ has
applied the write. Since p~ performs send operations infi-
nitely often and OutQueue is first-in-first-out, any write-
tuple in OutQueue is eventually sent to pj. Since channels
are reliable, any write-tuple that is sent is eventually re-
ceived and added to pj's InQueue. We now show that pj
eventually applies any write-tuple added to lnQueue.

Consider the time at which pj adds the write-tuple for
w, (i, x, v, s), to its lnQueue. There are only finitely many
write-tuples ahead of it at this time. Write-tuples with
timestamps smaller than ts(w) that can arrive in the future
will also be placed ahead of (i, x, v, s) in pj's InQueue. It is
easy to see that there can be only finitely many such
write-tuples. For this reason, we can assume by induction
that, at some point in time, pj has applied all write-tuples
that are ever placed before (i, x, v, s) in pfs InQueue or
whose timestamps are less than s. At this point, (i, x, v, s)

42

is at the head of pfs InQueue and remains there until it is
applied; we say that it is ready to be applied by pj. We now
show that it is indeed applied when pj next performs an
apply action.

Let t be pfs vector clock at such a point. We must show -
that t[k] >= s[k] for all k #: i and that t[i] + 1 = s[i].
Let Pk be any process other than Pi (k could equal j). Let w'
be the s [k] th write by Pk. This means that pi applies w'
before it performs w, which implies that ts(w')~(ts(w).
Thus, p~ must order w' ahead of w in InQueue, which
implies that, once (i, x, v, s) is ready to be applied by pj, -
pj has already applied w'. Once pj applies w', t[k] > s[k],
as desired. Let ~ be the (s[i-] - 1)st write by Pi. By Lemma
1, t s (~) ~ ts(w). Thus, pj must order ~ ahead of w in
InQueue and thus has already applied ~. Therefore,
t [i] = s[i"] - 1. This means that Pi applies w the next -
time it performs an apply operation. Since pj does this
infinitely often, we conclude that pj eventually applies this
write. []

We can now prove the correctness of the implemen-
tation:

Theorem 3. Let H be a history of the implementation. Then
H is causal.

Proof The proof must show that, for each process p~, there
is a serialization S~ of Af+w that respects ~,. (Recall that
A~+ w is the set of all of p~'s operations and all writes in H.)

The serialization S; for p/is obtained simply by concat-
enating all writes as they are applied to p~'s memory and all
reads as they occur (see comments in Fig. 3). By Lemma 2,
S; includes all write operations in H, and thus all of A~+ ~.
S~ is a serialization because all reads and writes apply
directly to p~'s copy of memory and each read thus returns
the value most recently written. It remains to be seen that
Si represents ~,.

We first observe that ~ , is indeed a partial order in H.
To prove this, it suffices to observe that it is acyclic by
showing that 01 ~, 02 implies 02 @,01. Suppose for a con-
tradiction that 0 1 ~ 0 2 and 02~,01. By Lemma 1, this
means that ts(01) ~ ts(o:) and ts(oz) <~ ts(01), implying
that ts(01) = ts(02). Lemma 1 implies that neither 01 nor
Oe is a write operation, as this would contradict this
equality. Even if 01 and 02 occur at the same process, it
cannot be the case that each of or and 02 precede the other
with respect to program order. Without loss of generality,
assume that 01 does not precede 02 in any L~. Since 01 ~, 02
and both operations are reads, there must be some write
operation w such that 0 1 ~ w ~ , 0 2 . By Lemma 1,
ts(01) ~, ts(w) ~ ts(02), implying ts(01) ~a ts(o2), a contra-
diction. We conclude that the causality order is not cyclic.

Let 01 and 02 be two operations in A~+~ such that
0 ~ 0 2 ; we must show that o~ precedes 02 in S~. By
Lemma 1, tS(Ol) < ts(o2). One of the following five cases
must hold:

- Both 01 and 02 are operations by pi. Since ~ is acyclic,
this means that 01 precedes 02 in L~. Since p~'s opera-
tions appear in both L~ and Ss in the order in which they
are performed, o~ precedes 02 in Si.

- o~ is a write by another process pj and 02 is an opera-
tion by p~. An inspection of Fig. 3 shows that p~ does

not set its vector clock t such that t[j'] = ts(ol)[j]
until it applies 01 to its local memory. Since ts(02) [j"] >-
ts(ol)[j] , Oz can occur only after this application. This
means that 01 precedes o2 in Si.
01 is a write by Pi and o2 is a write by another process pj.
Since ts(01) ~ ts(02), ts(01)[i] < ts(02)[i"]. This means
that Pi does not execute 02 until it has applied 01; since Pi
cannot apply 02 before pj and must apply 01 before p j, it
must be that pi applies 01 before it applies Oz. Thus, 01
precedes 02 in S~.
01 is a read by p~ and 02 is a write by another process. It
is not hard to see that 01--~02 implies that there is
a write w by Pl such that 01 ~ w ~ o 2 . By the first case,
above, 01 precedes w in S~. By the third case above,
w precedes 02 in Si. Thus, 01 precedes Oz in S~.
01 and 02 are both writes by processes other than pi.
Suppose 01 and 02 are executed by processes pj and Pk- If
j----k, Lemma 1 implies ts(ol)[j"] < tS(Oz)[j], so Pi
cannot apply 02 until it has applied 01. Now assume
tha t j # k and let t be p~'s vector clock at the point when
02 is applied. By Fig. 3, ts(02)[j] < t[j] . Since ts(01)
ts(o2), ts(ol)[j] < ts(02)[j]. This means that Pi has
already applied 01 at this point. Thus, 01 precedes oz
in Si.

In all cases, ol precedes 02 in Si, so the proof is com-
plete. []

The implementation given in Fig. 3 shows that read
and write operations for causal memory can be imple-
mented without processes experiencing any blocking,
Consider the following analyses of the performance of
implementations of various forms of distributed shared
memory. Assume that local computation time is negligible
with respect to message delays and assume that d is the
worst-case message delay. Given a memory implementa-
tion, let R be the worst-case execution time for a read and
W be the worst-case execution time for a write. Attiya and
Welch [10] showed that, in systems in which process
clocks were not perfectly synchronized and in which there
was some uncertainty with respect to message delays (e.g.,
some messages may take d to be delivered and others may
take less), it is impossible to achieve W = 0 or R = 0 in
implementations of linearizable memory (see footnote 1).
Lipton and Sandberg [29] showed that, for any implemen-
tation of sequentially consistent memory, R + W > d. In
contrast, our implementation of causal memory gives
R = W = O .

The implementation presented here is correct as long
as processes and communication channels are reliable.
This is a normal assumption when implementing distrib-
uted shared memory [3, 8, 10, 29, 31, 32]. However, we
have also developed an implementation of causal memory
that is correct even in systems in which processes may fail
by stopping and in which communication channels can
lose messages (as long as each channel delivers infinitely
many messages if infinitely many are sent) [5]. This imple-
mentation is complex and inefficient and is not presented
here.

In other work [5, 23], we give a more practical imple-
mentation that sacrifices the non-blocking property of the
implementation presented here. The implementation also

43

makes use of vector timestamps but associates them with
pages instead of individual locations. The memory of each
node is treated like a cache for some subset of the shared
pages, and a page-fault occurs when an accessed page is
not in the cache. This results in communication with an
owner node, which is unique for each page. Since the owner
supplies the page on a fault, this implementation also
requires that writes to a page be sent to the owner. How-
ever, it is not necessary that nodes other than the owner be
notified on a write operation even when they store a copy
of the page. Causal memory consistency is implemented by
locally invalidating pages that could potentially be
causally "overwritten". Vector timestamps are used for this
purpose. This implementation does require nodes to com-
municate before certain read or write operations can be
completed and hence some memory operations may be
blocking. However, we have shown [23] that this imple-
mentation provides better performance than sequentially
consistent memory for several scientific applications.

6 P r o g r a m m i n g w i t h c a u s a l m e m o r y

The previous section showed that causal memory may be
implemented without blocking; a process's write opera-
tions can complete before other processes learn about
them. To strengthen the case that causal memory is a good
model of a distributed shared memory, we must also argue
that it can be programmed without undue difficulty. In this
section, we characterize two classes of programs; any pro-
gram in these classes, if written to run correctly on sequen-
tially consistent memory, also runs correctly in a system
with causal memory. Thus, programs in these classes can
be written assuming a sequentially consistent memory
even for a system that provides causal memory. We show
that all executions of these programs on causal memory
are also possible with a sequentially consistent memory.

The existence of these classes indicates that causal
memory is a viable model for programming distributed
applications: if a few rules are followed, a programmer
may assume that the memory is sequentially consistent,
while causal memory may be used instead. Because causal
memory can be implemented more efficiently, this could
result in improved performance.

Section 6.1 presents some definitions and notation
necessary for discussing the behavior of programs with
a distributed shared memory. Section 6.2 considers first
the simple but restricted class of concurrent-write free pro-
grams. Section 6.3 considers the more practical class of
data-race free programs. Section 6.4 discusses other work
done in proving that programs in certain classes run cor-
rectly on memories weaker than sequential consistency.

6.1 Definitions and notation

At any time during an execution, a process is in some local
state; this is determined by its initial state and the opera-
tions performed thus far in its local history. A process Pi
runs a local program l-ll, which is a function from local
states to actions; each action is either of the form w(x)v,
indicating that value v should be written to location x, or
of the form r(x), indicating that the value of x should be

x, y, and z are shared variables, initially 0;
a, b, c, and d are local variables

process p~: process P2: process P3:
x := 1 repeat b := y;
y := 1 a := y repeat

until a = 1 c := z
z : = l u n t i l c = l

d:=x

Fig. 4. A concurrent-write free program

read and returned. 2 The execution of an action is an
operation and changes the process's local state; note that
the operation associated with a read action includes the
value that was read. A tuple of local programs, one for
each process, is called a program and is usually denoted/7.
H is a history of/7 if all operations in H are the execution
of the actions tha t /7 would specify given the local states
through which processes pass.

Recall that a history H is a tuple of local histories,
Li for each process Pi. Let ~ be a causality order of H. We
say that history H' = (L'a, L~ L',) is a prefix of H with
respect to ~ if each L'i is a prefix of Li and, if 0 is an
operation in H', then all operations in H that precede
0 with respect to ~ are also in H'. H' is a proper prefix of
H with respect to ~ if it is a prefix of H with respect to
~ and H ' , H.

6.2 Concurrent-write free programs

A major advantage of using causal memory is that normal
memory accesses can be implemented without blocking;
processes need not synchronize with each other in per-
forming these accesses. As a result, programs running on
causal memory must do their own synchronization. One
way to achieve this is to ensure that no two writes can be
concurrent.

Let H be a history with causality order ~ . H is concur-
rent-write free with respect to ~ if there are no two write
operations wl and w2 in H that are concurrent with respect
to ~ . Program/7 is concurrent-write free if, for all histories
H of/7 and all causality orders ~ of H, if H has a serializ-
ation that respects -* (note that this implies that H is
sequentially consistent), then H is concurrent-write free
with respect to --,. Note that the concurrent-write freedom
of a program is only a statement about its sequentially
consistent histories. An example of a concurrent-write free
program is given in Fig. 4. 3 It is concurrent-write free
because, in any execution of the program, the three writes
to global variables must be related as follows by any
causality order ~ : Wl(X) 1 ~ , wl (y) 1 ~ w2(z) 1. (The read of
y by P3 is not relevant to the concurrent-write freedom of
the program. It serves to make the program not data-race
free; see below.)

2These actions should not be confused with the implementation
actions described in Fig. 3
3 In this figure and in Fig. 5, an assignment to a shared variable
indicates a write action. An assignment with a shared variable on the
right side indicates a read action

4 4

Let H be a causal history, let ~ be a causality order
that proves H is causal, and suppose tha t /4 is concurrent-
write free with respect to ~=~. For each process p~, let Si be
the serialization of Aff+~ that respects -~ (see Sect. 4).
F rom ~ , define a stron9 causality order, denoted ~ , as
follows: 01 =~ o2 if and only if one of the following cases
holds:

- - Oi ~) O2;

- ol is a read by process Pl, 02 is a write, and o~ precedes
o2 in St; or

- there is some other opera t ion o' such that ol ~ o'
:=~ 0 2 .

The idea behind ~ is that it extends ~ , by ordering a read
after any writes that causally precede it and before all
other writes. It is not hard to see that, i f /4 is concurrent-
write free with respect to ~ , then the associated ~ is
acyclic; in particular, if o~ =- o2, then o2ff, ox. Further-
more, for any operat ion in such a history, there are only
finitely many operat ions tha t precede it with respect to ~ .

The following theorem shows that concurrent-write
free programs produce only sequentially consistent execu-
tions when run on causal memory :

Theorem 4. If~7 is concurrent-write free, then all histories
of 17 with causal memory are sequentially consistent.

Proof The proof is by induct ion on the structure of causal
histories of/7. Specifically, let H be a finite causal history
o f /7 and let --~ be a causali ty order that proves t ha t / - / i s
causal. (The proof for infinite/4 follows.) We will prove the
following for /4 given that it holds for all proper prefixes of
H with respect to ~ : H is concurrent-write free with
respect to ~ , and has a serialization that respects ~,.

To show tha t / - / i s concurrent-wri te free with respect to
~,, assume for a contradic t ion that wl and w2 are two
concurrent writes in/4. Clearly, wl and w, are executed by
different processes, so assume that w~ is performed by pj
and w2 by Pk, where j 4= k. Def ine /4 ' = (L'I , L~, . . . , L',> by
letting L'i be the subsequence of Li containing all opera-
tions that precede either wl or w_, with respect to ~ . If
either wl or w2 appears in H', one precedes the other with
respect to ~,, giving a contradict ion. Assume instead that
neither operat ion appears in H'; this means L) includes p~'s
operations up to but not including w~ and that the same
holds for Li, Pk, and w2. Clearly, I-I' is a proper prefix of
/4 with respect to ~,; by the inductive hypothesis, H ' is
concurrent-write free with respect to ~ and has a serializ-
ation that respects ~ . Now define/-) = (s > by

L j t . .
= g l , w 1 ,

/2k = L~;w2 ;

/2~ = L'i if i ~ { j, k}.

/-) is also a (not necessarily proper) prefix o f t t with respect
to ~ and is thus an execution o f / / . Let S' be a serialization
of /4' that respects ~ . This implies that S';wl;w2 is
a serialization of / t that also respects ~ . Since H is
a history o f /7 a n d / 7 is concurrent-wri te f ree , / / i s concur-
rent-write free with respect to ~ . This means that wa and
w2 cannot be concurrent with respect to -~, giving the
desired contradiction.

We now show that H has a serialization that respects
~ . As noted above, the order = is acyclic. Since H is
finite, we can choose an opera t ion o in H such that for no
o' in H does o =~ o' hold. Let H be identical to H but
excluding o. / / is a proper prefix of H with respect to
~ , and, by the inductive hypothesis, has a serialization

that respects -~. Clearly, S;o respects ~ ; if it did not,
either S would not respect ~ or there would be an opera-
t ion o' in /7 such that o -~ o', which contradicts the defini-
tion of o. We will now prove that S;o is a serialization of H,
proving that H is sequentially consistent.

Assume for a contradict ion that S;o is not a serializ-
at ion of H. This means that o is some read operation r~(x)v.
Recall that H is causal; let St be the serialization of
A~+ w that respects ~ . There are two possibilities:

- There is some write to x in H. All such writes precede
o in S,-: any write that does not will follow o with respect
to =~, contradict ing the definition of o. Let w be the
latest write to x in Si. Since S~ is a serialization, w writes
the value v. Since S;o is not a serialization, there must be
some write w' to x of another value after w in S. Since
H is concurrent-wri te free with respect to ~,, there are
two possibilities:_

- w' ~ , w. Since S respects ~,, this means that w' pre-
cedes w in S, contradict ing the definition of w'.

- w ~ , w'. This means that w must precede w' in S~,
contradict ing the definition of w.

- There is no write to x in H. This implies that there can
be no write to x in Si either. Since S~ is a linearization,
w writes the value v. Since S~ either. Since S;o is not
a serialization, it must be that v ~ / . This means that S~
cannot be a serialization either, which is a contradiction.

Since all cases lead to contradictions, we conclude that S;o
is a serialization of H that respects ~ . This implies that
H is sequentially consistent.

This theorem also holds if H is an infinite causal
history of /7 . Let ~ , be a causality order that proves that
H is causal. We first prove that H is concurrent-write free
with respect to --~. If not, let Wx and w2 be two writes in
H that are concurrent with respect to ~,. Let H ' be the
shortest prefix of H that includes wl and Wz. Note that H'
is causal and that ~=, is a causality order that proves it. It is
easy to see that H ' is finite; by the above, H' is concurrent-
write free with respect to ~ . This implies that wi and WE
are related by --,, giving the desired contradiction. Let
=~ be the strong causali ty order for H derived from ~ . We

know that =~ is acyclic and that any operation in H has
a finite number of predecessors with respect to =, . Define
an infinite sequence (Ho, Hi) of finite prefixes of
H with respect to ~ , each having all previous ones as
proper prefixes with respect to ~ , as follows. Ho is the
empty history. H;+ 1 includes Hi plus one operation o such
that all operat ions in H that precede o with respect to
=- appear in H~ (the operat ions o can be chosen "fairly"

so that every opera t ion in H appears in some H~). Given
this construction, there can be no operation in Hi that
follows o with respect to =, . An inspection of the proof
above shows that the serializations S~ of the prefixes
Hi respect ~ , and are such that, for all i, Si is prefix of
Si+l. This means that limi~oo Si is well-defined and is thus

45

a serialization of H. This shows that H is sequentially
consistent. []

6.3 Data-race free programs

While concurrent-write free programs run correctly with
causal memory, they form a very restricted class and allow
very little concurrency. In this section, we define the more
practical class of data-race free programs and show that
they also run correctly with causal memory. Alternative
definitions have been given elsewhere [-1, 2, 16].

Let H be a history with causality order ~ . Two opera-
tions ol and 02 in H compete with respect to ~ if both
access the same location, at least one is a write, and they
are concurrent with respect to ~,. H is data-race free with
respect to ~, if it contains no pair of operations that
compete with respect to ~ . A history that is data-race free
with respect to ~ , has the property that all writes to
a given location are linearly ordered with respect to ~,.
P rog ram/7 is data-race free if, for all histories H of /7 and
all causality orders ~ of H, if H has a serialization that
respects ~ , (note that this implies that H is sequentially
consistent), then H is data-race free with respect to ~-,.
Note that the data-race freedom of a program is a state-
ment only about its sequentially consistent histories.

Previous definitions of data-race free programs were
quite different from ours. These definitions were for sys-
tems with normal data operations (reads and writes) and
special synchronization operations. Any competing opera-
tions is a sequentially consistent execution of a data-race
free program must be separated (with respect to a kind of
causality) by synchronization operations. It is not hard to
see that our definition is a generalization of this to systems
in which there need not be synchronization operations
with specified semantics. Sections 6.3.1 and 6.3.2 below
give two ways in which data-race free programs (using our
definition) may be derived. The class of data-race free
programs should not be confused with the memory models
DRF0 [1] and DRF1 [2].

The following theorem shows that data-race free pro-
grams produce only sequentially consistent executions
when run on causal memory:

Theorem 5. I f 17 is data-race free, then all histories of
H with causal memory are sequentially consistent.

Proof The proof is by induction on the structure of causal
histories of/7. Specifically, let H be a finite causal history
of H and let ~ be a causality order that proves that H is
causal. (The proof for infinite histories follows.) We will
prove the following for H given that it holds for all proper
prefixes of H with respect to ~ : H is data-race free with
respect to -~, and has a serialization that respects ~ .

To show that H is data-race free with respect to ~ ,
assume for a contradiction that 01 and o2 are two opera-
tions in H that compete with respect to ~,. We can assume
by induction that there is no operation o in H such that
either (1) 0 ~ 01 holds and o and o2 compete with respect
to ~ or (2) o ~ , 02 holds and o and 01 compete with respect
to ~ . If ol and oz are both reads, both are performed by
the same process, or they are to different locations, then
they do not compete. Assume, therefore, that ol and o2 are

concurrent with respect to ~-,, o 1 is a write to x performed
by p~ and o2 is an operation on x performed by Pk, where
j ~ k. Define H ' = (L'~,L'2 L',) by letting LI be the
subsequence of L~ containing all operations that precede
either oi or 02 with respect to ~-0. If either Ol and Oa
appears in H', they are related by ~ , and we are done.
Assume instead that neither operation appears in H'; this
means L) includes pSs operations up to but not including
ol and that the same holds for L~,, Pk, and o2. Clearly, H' is
a proper prefix of H with respect to ~,; by the inductive
hypothesis, H' is data-race free with respect to ~ , and has
a serialization that respects ~,. Now define / t =
(/7,1,/-~2, ... ,/7,,) by

s = L) ; o l ;

f--~k t . . = tk,02,

Li=L' i i f i 6 { j , k } .

/4 is also a (not necessarily proper) prefix of H with respect
to -~ and is thus an execution of/7. Let S' be a serialization
of H' that respects ~0. We will now prove that /~ has
a serialization that respects -~,. By the data-race freedom of
/7, this will imply that ol and o2 do not compete with
respect to --,, giving the desired contradiction.

If ol and 02 are both write operations, then S';ol;oz is
a serialization of/-) that respects ~,. Assume instead that
o2 is a read (ol was already assumed to be a write). If o2
returns the value that ol writes, then S';ol;o2 is a serializ-
ation of H that respects ~,. Suppose instead that oz returns
a different value. There are two possible cases:

- S' contains a write to x and oz returns the value written
by the last such write. In this case, S';o2;ol is a serializ-
ation o f /~ that respects ~,.

- S' contains a write to x and o2 does not return the value
written by the last such write w. Because H' is data-race
free with respect to ~,, all of its writes to x are totally
ordered by ~,. Since S' respects ~,, all other writes to
x precede w with respect to ~,. Recall that H is causal
and that o2 is performed by Pk; let Sk be the serialization
of Akn+~ that respects ~,. By the above, all other writes to
x must precede w in Sk. Since 02 does not return the
value written by w, it must also precede w in Sk. Since Sk
respects ~ , w ~ 0 2 . Since H' contains only operations
that causally precede 01 or o2 and w appears in H', it
must be that w~,01. Consider now two sub-cases:
- oa -~ w. This implies that w and 02 are concurrent

with respect to ~ , and thus compete with respect to
~ . This means that w contradicts the assumption that
there is no operation causally preceding 01 that com-
petes with o2 with respect to ~,.

- o2 ~ w. This implies 02 ~,01, contradicting the fact
that 01 and o2 are concurrent with respect to ~ .

Thus, this case leads to a contradiction.

- S' contains no writes to x. Since no writes to x causally
precede 02, that operation must return the initial value
1. In this case, S';02;01 is a serialization of /4 that
respects ~ .

We have shown that all non-contradictory cases lead to
serializations o f /4 that respect ~,. S ince / t is a history of

46

/7 a n d / 7 is data- race f ree , /4 is data-race free with respect
to ~, . This means that Ol and 02 cannot compete with
respect to ~ , giving the desired contradiction.

We now show tha t H has a serialization that respects
-~. Since H is finite and ~ , is acyclic, we can choose an
opera t ion o in H such tha t for no o' in H does o ~ , o' hold.
Let H be the same as H but excluding o. H is a p roper
prefix of H with respect to ~ and, by the inductive hypo-
thesis, has a serialization S tha t respects ~ . Clearly, S;o
respects ~,; if it did not, either ,~ would not respect ~ , or
there would be an opera t ion o' i n /4 such that o ~ , o', which
contradicts the definition of o. We will now prove that S;o
is a serialization of H, proving that H is sequentially
consistent.

Assume for a contradic t ion that 5';o is not a serializ-
a t ion of H. This means that o is some read opera t ion ri(x)v.
Recall that H is causal; let S~ be the serialization of
An+ w that respects ~ . There are two possibilities:

compl[1..n] and chgd[1..n] are shared variables, initially 0;
done is a shared variable, initially false;
x[1..n] are shared variables, initially 0;

A[1..n, 1..n] and b[1..n] are shared constants;
t[1..n] are local variables, t[i] local to pl;

cony is an external routine that evaluates convergence

process po: process Pi:
while not done while not done

for i:= I to n t[i] := (b[i 3 - - ~'~--11 A[i, j3xCj 3 --
await(compl[i] = 1) ~ = i + l A[i , j]x[j]) /A[i , i]

for i:= 1 to n compl[i] := 1
compl[i] := 0 await(compl[i] = O)

for i:= 1 to n x[i] := t[i]
await(chgd[i] = 1) chgd[i] := 1

done := cony(A, x, b) await(chgd[i]) = 0
f o r i : = l ton

chgd[i] := 0

Fig. 5. Synchronous iterative linear solver on causal memory

There is some write to x in H. All such writes precede
o with respect to ~, : any write that does not either
competes with o with respect to ~ (contradicting the
data-race f reedom of H with respect to ~) or follows
o with respect to ~ (contradict ing the definition of o).
Thus, all writes to x precede o in Si. Let w be the latest
such write. Since Si is a serialization, w writes the value v.
Since ,g;o is not a serialization, there must be some write
w' to x of ano ther value after w in S. Since H is data-race
free with respect to ~ , w and w' are related by ~ and
there are two possibilities:
- w ' ~ w. Since S respects ~ , this means that w' pre-

cedes w in S, contradic t ing the definition of w'.
- w ~ , w'. This means tha t w must precede w' in Si,

contradict ing the definition of w.
- There is no write to x in H. This implies that there can

be no write to x in Si either. Since S;o is not a serializ-
ation, it must be that v ~ _1_. This means that Si cannot
be a serialization either, which is a contradiction.

Since all cases lead to contradict ions, we conclude that S;o
is a serialization of H that respects --~. This implies that
H is sequentially consistent.

This theorem also holds when H is an infinite causal
history of /7 . Let ~ be a causal i ty order that proves that
H is causal. We first p rove that H is data-race free with
respect to ~, . If not, let ol and 02 be two operat ions in
H that compete with respect to ~, . Let H ' be the shortest
prefix of H that includes Ol and o2. Note that H ' is causal
and that ~ is a causali ty order that proves it. It is easy to
see that H ' is finite; by the above, H ' is data-race free with
respect to ~,. This implies that ol and o2 do not compete
with respect to --,, giving the desired contradiction. We
define an infinite sequence (Ho, H1 , . . .) of finite prefixes of
H with respect to ~ , each having all previous ones as
p roper prefixes with respect to ~ , , as follows. H0 is the
empty history. Hi+ ~ includes Hi plus one operat ion o such
that all opera t ions in H tha t precede o with respect to
~ appea r in Hi (the opera t ions o can be chosen "fairly" so
that every opera t ion in H appears in some Hi). Given this
construct ion, there can be no opera t ion in Hg that follows
o with respect to ~, . An inspection of the p roof above
shows that the serializations Si of the prefixes Hi respect

~ and are such that, for all i, Si is prefix of Si+l. This
means that limi~ ~ Si is well-defined and is thus a serializ-
at ion of H. This shows that H is sequentially consis-
tent. []

(Theorem 5 also follows f rom an independent ly derived
result of Singh's [35].)

The classes of data-race free and concurrent-wri te free
p rograms are incomparable . For example, consider the
concurrent-wri te free p r o g r a m given in Fig. 4. It is not
data-race free. In an execution in which P3 reads y before
Pl writes it, these two opera t ions are concurrent and thus
compete. On the other hand, the data-race free program
given in Fig. 5 is not concurrent-wri te free. In any given
iteration, the variables x[i] may all be written con-
currently.

Despite this incomparabi l i ty , the class of data-race free
p rograms contains m a n y more p rograms that are of prac-
tical use. In general, da ta races are considered "anomalies"
and it is reasonable to assume that a substantial portion of
concurrent p rograms are data-race free [9].

The following subsections demons t ra te two ways of
obtaining data-race free programs. Both of these sections
require some kind of blocking, the first th rough the use of
programmer-specif ied busy-wait ing and the second
through the augmenta t ion of causal m e m o r y with sema-
phores. This use of blocking does not eliminate the advant-
ages gained by our non-blocking implementa t ion of causal
memory . Blocking is required for any kind of synchroniza-
tion, and data-race free p rog rams require a p rog rammer to
do explicit synchronization. The advantage of causal
m e m o r y is that it requires such blocking only when explicit
synchronizat ion is required. It does not require blocking
for ordinary memory operat ions.

6.3.1 P rograms with await s ta tements

One c o m m o n way to synchronize processes ' actions is by
blocking a process until some desired condit ion becomes
true. T o capture this in our p rog ram model, we allow
a p rogram to specify an act ion of the form await(x = v); in
process histories, we will denote this by a(x)v. This blocks
the process until the desired condit ion is true, that is, until

47

the shared variable x takes on the value v. It can be
implemented by simple read actions as follows:

repeat
a := x

u n t i l a = v

However, we consider an await as a single read that ap-
pears in a local history only once each time it is invoked
(any preceding reads of other values do not). Thus,
a writes-into order ~ relates to a(x)v only w(x)v and not
any writes of other values read before the await completes.
It is not hard to see that Theorem 5 continues to apply
when await statements are added to the model. (Singh [35]
also augments the usual memory operations with await
operations.)

Many programs use await statements to synchronize
the access to shared variables. For example, they can be
used to effect barrier synchronization to control access to
certain data. An example is given in Fig. 5. The example is
a synchronous iterative linear equation solver that solves
Ax = b, where A is a known n x n matrix, b is a known
vector, and x is the vector that is to contain the solution.
The solver operates in a series of phases: in each phase,
process Pi computes a new value for the solution compon-
ent x [i]. If we use xk[il to represent the value of the
ith component of x in phase k, then new values are com-
puted as follows: x k + x [i] �9 i- 1 = (b[~] - ~ ~ j = 1 A[i, j l x k [j] --
Z~=i+iA[i , j]xk[j]) /A[i , il . Thus, the computing of
xk+l[i] requires access to all xk[j] (for j ~ i) from the
previous iteration. The process p~ (1 < i < n) computes
x[i 1. The process Po tests for convergence and synchro-
nizes each other process p~ twice per iteration using a bar-
rier technique: before reading the various x [j I from phase
k and before writing x[i] for phase k + 1. (By making
the array t shared and having workers read alternately
from x[i] and t i l l , we could eliminate the first syn-
chronization.)

The program in Fig. 5 is easily shown to be correct
with sequential consistency. It is also not hard to see that it
is data-race free. Access to x [i] is controlled by compl[i]
and chgd[i 1. Suppose for example that pj (j ,t: i) reads the
kth iteration value v from x[i] and let v' be the (k + 1)st
iteration value of x[i 1. It is not hard to see that the
following causal chain must exist (for any writes-into order
~-*) in the k + 1st iteration:

rj(x[il)v 7 wj(compl[j]) l ~ ao(compl[j])l y

Wo(compl[i])O ~ ai(compl[i])O V wi(x[il)v'"

Thus, these two accesses to x[i] do not compete with
respect to any ~ . Similar arguments show that there are
no competing accesses in any execution of the program;
thus, the program is data-race free. Theorem 5 now implies
it runs correctly on causal memory. In fact, it runs
faster with causal memory than with sequential consist-
ency [221.

While the program presented in Fig. 5 requires a cen-
tralized coordinator, there also exists a fully distributed
solution [15]. This solution is also data-race free and thus
runs correctly with causal memory.

6.3.2 Programs with semaphores

While await statements allow for barrier synchronization
such as that used in Fig. 5 above, they do not suffice for
implementing other kinds of synchronization, such as criti-
cal sections. Recall that await statements can be imple-
mented with a "spinning read." However, it has been
shown that the mutual exclusion necessary for implement-
ing critical sections cannot be realized with causal memory
without cooperation [81; for example, Peterson's algo-
rithm [34] for mutual exclusion will not run correctly with
causal memory.

Mutual exclusion can be implemented with special
synchronization primitives such as semaphores. A sema-
phore is a variable holding a non-negative integer that
supports two operations: V, which atomically increments
the value, and P, which atomically decrements it. If the
semaphore's value is zero, then a P operation is blocked
until the semaphore becomes positive.

It is possible to add semaphores to our definition of
causal memory; call the result extended causal memory.
Note that every operation on a semaphore reads and then
writes the semaphore (e.g., a V operation first reads the
semaphore and then writes an incremented value). Because
of this, all operations on a semaphore are causally related,
meaning that there can be no competing accesses to
a semaphore. This implies that, in an execution with ex-
tended causal memory, all operations on a semaphore
appear in the same order to all processes. An implementa-
tion of extended causal memory would require blocking
and is beyond the scope of this paper. It is not hard to see
that Theorem 5 applies to extended causal memory.

Semaphores can be useful in synchronization. For
example, the program in Fig. 5 can be modified to use
semaphores. Let the arrays compl and chgd be of sema-
phores, and let each write to an array element be a V op-
eration and each await statement be a P operation. The
program remains correct and data-race free.

Semaphores can also be used to implement critical
sections. With each critical section is associated a sema-
phore with initial value 1. A process invokes P on the
semaphore before entering a critical section and invokes
V on the same semaphore upon leaving.

6.4 Other work

Other researchers have considered different programming
models and the correctness of programs in those models
on memories weaker than sequential consistency.

Gibbons, Merritt, and Gharachorloo considered the
DASH system's RCsc version of release consistency [17].
This is a "mixed" memory model in that it allows pro-
grammers to specify (or "label") whether operations are
"weak" or "strong". In this case, the strong operations are
sequentially consistent, whereas weak operations are or-
dered based on when they are invoked relative to the
strong operations. A program is properly labeled if there
are no data races among the weak operations. Gibbons
et al. showed that, when run on RCsc, properly labeled
programs admit only sequentially consistent executions.
Attiya et al. showed a similar result for a different mixed
memory model, called hybrid consistency [7]. They also

4~

proved that only sequentially consistent executions are
obtained if either all writes or all reads are labeled
as strong. Our results contrast with both of these in
that we do not require a memory model that allows
strong (sequentially consistent) operations (except in
Sect. 6.3.2).

Singh [35] independently considered programming
models for purely weak consistency models such as causal
memory. His work classifies programs based on the types
of executions they permit with a weaker form of memory.
Our work differs from his in that we classify programs
based on how they execute with sequential consistency
and then prove properties about their execution on causal
memory. We believe that this is a potentially more prod-
uctive approach, as it is easier for programmers to
reason about the behavior of programs with sequential
consistency.

Heddaya and Sinha [19] considered a variety of
weaker forms of memory, including slow memory [21].
They showed that all programs in the class of totally
asynchronous iterative algorithms [12] run correctly on
slow memory (and, therefore, on causal memory). We note
here that the class of synchronous iterative algorithms is
a broader class and not all of these programs run correctly
with slow memory. However, these programs are data-
race free (Fig. 5 gives an example) and run correctly with
causal memory.

Attiya and Friedman [9] considered the shared-mem-
ory model provided by multiprocessors based on DEC-
Alpha. They showed that data-race free programs will run
with this model as if it were sequentially consistent. In
addition, they gave a method of converting non-
cooperative solutions to the mutual exclusion problem
(which are not, in general, data-race free), derived with the
assumption of sequential consistency, into solutions cor-
rect with the Alpha-based memory model.

7 Discussion

We have presented a new model of distributed shared
memory called causal memory. We defined it formally
using a simple framework that allows it to be compared
easily with other memory models. We exhibited a message-
based implementation of causal memory. Finally, we for-
mally characterized two classes of programs that run cor-
rectly with causal memory, assuming that they do so under
sequential consistency.

Our formal analysis shows causal memory to lie be-
tween sequential consistency (a strong memory) and
PRAM (a weak one). This suggests that it may be powerful
enough to program easily (like strong memories) but at the
same time allow inexpensive implementations (like weak
memories). These are borne out by the results in Sects. 5
and 6.

Our implementation of causal memory is non-blocking;
a process can always complete a read or a write operation
immediately, without having to communicate with other
processes. All communication can take place in the back-
ground between memory accesses. It is important to note
that this implementation, like the definition of causal
memory, lies between sequential consistency and PRAM;

it allows histories that are not sequentially consistent but
no PRAM histories that are not causal.

Section 6 shows that all concurrent-write free and
data-race free programs will run correctly on causal
memory. These are programs in which data accesses are
controlled using explicit synchronization. Such synchroni-
zation is often necessary even for distributed programs
designed to run with sequentially consistent memory. For
example, the synchronization in the program in Fig. 5 is
necessary even with stronger memories, yet the program
runs correctly with causal memory. By requiring only that
the programmer explicitly specify the synchronization
needed, we allow him or her to use a form of memory that
can be implemented much more efficiently.

All these facts show that causal memory has the poten-
tial to be an important model for distributed shared mem-
ory systems. To realize this potential, we are currently
exploring implementations of causal memory in actual
distributed systems [6]. These are more practical than the
theoretically motivated implementation given in Sect. 5,
basing communication on entire pages rather than single
variables (see the discussion at the end of that section). In
the future, we plan to benchmark these implementations to
better compare causal memory with other intermediate
memory models.

Acknowledgements. We were greatly helped in the development of
Sect. 6 by discussions with Ambuj K. Singh. Dr. Singh and Subodh
Kumar both provided comments on earlier versions of this paper. In
addition, the comments and suggestions of the anonymous reviewers
were extremely helpful.

References

1. Adve SV, Hill MD" Weak ordering - a new definition. In: Prec.
17th Annual International Symposium on Computer Architec-
ture, pp 2-14, May 1990

2. Adve SV, Hill MD: A unified formalization of four shared-
memory models. IEEE Trans Parallel Distrib Syst 4(6): 613-624
(1993)

3. Afek Y, Brown G, Merritt M: Lazy caching. ACM Trans
Program Lang Syst 15(1): 182-205 (1993)

4. Ahamad M, Bazzi RA, John R, Kohli P, Neiger G: The power
of processor consistency. In: Proc 5th Symposium on Parallel
Algorithms and Architectures, pp 251-260. ACM Press, June
1993. A full version appears a Technical Report 92/34, College of
Computing, Georgia Institute of Technology

5. Ahamad M, Burns JE, Hutto PW, Neiger G: Causal memory.
In: Toueg S, Spirakis PG, Kirousis L (eds) Proc 5th Inter-
national Workshop on Distributed Algorithms. Lect Notes
Comput Sci, vol 579, pp 9-30. Springer, Berlin Heidelberg New
York 1991

6. Ahamad M, Hutto PW, John R: Implementing and program-
ming causal distributed shared memory. In: Proc llth Inter-
national Conference on Distributed Computing Systems, pp
274-281, May 1991

7. Attiya H, Chaudhuri S, Friedman R, Welch JL: Shared memory
consistency conditions for non-sequential execution: definitions
and programming strategies. In: Proc 5th Symposium on Paral-
lel Algorithms and Architectures, pp 241-250. ACM Press, June
1993

8. Aniya H, Friedman R: A correctness condition for high per-
formance multiprocessors. In: Proc 24th ACM Symposium
on Theory of Computing, pp 679-690. ACM Press, May
1992

49

9. Attiya H, Friedman R: Programming DEC-Alpha based multi-
processors the easy way. In: Proc 6th Symposium on Parallel
Algorithms and Architectures, pp 157-166. ACM Press, June
1994. A revised and expanded version appears as Technical
Report 9411, Laboratory for Parallel Computing Research,
Israel Institute of Technology, October 1994

10. Attiya H, Welch JL: Sequential consistency versus linearizability.
ACM Trans Comput Syst 12(2): 91-122 (1994)

11. Bennett JK, Carter JB, Zwaenepoel W: Adaptive software cache
management for distributed shared memory architectures. In:
Proc 17th Annual International Symposium on Computer
Architecture, May 1990

12. Bertsekas DP, Tsitsiklis JN: Parallel and distributed computa-
tion: numerical methods. Prentice Hall, Englewood Cliffs, New
Jersey, 1989

13. Birman K, Schiper A, Stephenson P: Lightweight causal and
atomic group multicast. ACM Trans Comput Syst 9(3): 272-314
(1991)

14. Fidge C: Logical time in distributed computing systems.
Computer 24(8): 28-33 (1991)

15. Friedman R: Personal communication, 1991
16. Gharachorloo K, Lenoski D, Laudon J, Gibbons P, Gupta A,

Hennessy J: Memory consistency and event ordering in scalable
shared-memory multiprocessors. In: Proc 17th International
Symposium on Computer Architecture, pp 15-26, May 1990

17. Gibbons PB, Merritt M, Gharachorloo K: Proving sequential
consistency of high-performance shared memories. In: Proc 3rd
Symposium on Parallel Algorithms and Architectures, pp
292-303. ACM Press, July 1991

18. Goodman JR: Cache consistency and sequential consistency.
Technical Report 61, IEEE Scalable Coherent Interface Work-
ing Group, March 1989

19. Heddaya A, Sinha HS: Coherence, non-coherence and local
consistency in distributed shared memory for parallel comput-
ing. Technical Report 92-004, Computer Science Department,
Boston University, May 1992

20. Herlihy MP, Wing JM: Linearizability: a correctness condition
for concurrent objects. ACM Trans Program Lang Syst 12(3):
463-492 (1990)

21. Hutto PW, Ahamad M: Slow memory: weakening consistency to
enhance concurrency in distributed shared memories. In: Proc
10th International Conference on Distributed Computing
Systems, May 1990. A complete version appears as Technical
Report 89/39, School of Information and Computer Science,
Georgia Institute of Technology

22. John R: Implementing and programming weakly consistent
memories. Ph.D. dissertation, Georgia Institute of Technology,
1994

23. John R, Ahamad M: Implementation and evaluation of causal
memory for data race free programs. Technical Report 94/30,
College of Computing, Georgia Institute of Technology, July
1994

24. Kessler RE, Livny M: An analysis of distributed shared memory
algorithms. In: Proc 9th International Conference on Distrib-
uted Computing, pp 498-505, June 1989

25. Kohli P, Neiger G, Ahamad M: A characterization of scalable
shared memories. In: Proc 22nd International Conference on
Parallel Processing, pp 1-332-I-335, August 1993

26. Lamport L: Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM 21(7): 558-565 (1978)

27. Lamport L: How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans Comput
C-28(9): 690-691 (1979)

28. Lamport L: On interprocess communication, part I: Basic for-
malism. Distrib Comput 1(2): 77-85 (1986)

29. Lipton R J, Sandberg JS: PRAM: a scalable shared memory.
Technical Report 180-88, Department of Computer Science,
Princeton University, September 1988

30. Mattern F: Virtual time and global states of distributed systems.
In: Cosnard M, Quinton P, Robert Y, Raynal M (eds) Proc
International Workshop on Parallel and Distributed Algo-
rithms, pp 215-226. North-Holland, October 1988

31. Mavronicolas M, Roth D: Sequential consistency and lineariza-
bility: read/write objects. In: Proc 29th Annual Allerton Confer-
ence on Communication, Control, and Computing, pp 683-692,
October 1991. A revised version appears as Technical Report
28-91, Aiken Computation Laboratory, Harvard University,
June 1992 under the title "Linearizable Read/Write Objects"

32. Mavronicolas M, Roth D: Efficient, strongly consistent imple-
mentations of shared memory. In: Segall A, Zaks S (eds) Proc 6th
International Workshop on Distributed Algorithms. Lect Notes
Comput Sci, vol 647, pp 346-361. Springer, Berlin Heidelberg
New York 1992

33. MisraJ: Axioms for memory access in asynchronous hardware
systems. ACM Trans Program Lang Syst 8(1): 142-153 (1986)

34. Peterson GL: Myths about the mutual exclusion problem. Inf
Process Lett 12(3): 115-116 (1981)

35. Singh AK: A framework for programming using non-atomic
variables. In: Proc 8th International Parallel Processing Sympo-
sium, pp 133-140, IEEE Computer Society Press, April 1994

