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Summary. The abs t rac t ion  of a shared memory  is of grow- 
ing impor tance  in d is t r ibuted  comput ing  systems. Tradi-  
t ional  memory  consis tency ensures that ali processes agree 
on  a c o m m o n  order  of all opera t ions  on memory.  Unfor tu-  
nately,  provid ing  these guarantees  entaits access latencies 
that  prevent  scaling to large systems. This paper  weakens 
such guarantees  by defining causal memory, an abst ract ion 
that  ensures that  processes in a system agree on the rela- 
tive order ing ,:s opera t ions  that  are causally related. Be- 
cause causal  memory  is weak ly  consistent, it admits  more  
executions,  and hence more  concurrency,  than  either 
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atomic or sequentially consistent memories. This paper 
provides a formal definition of causal memory and gives 
an implementation for message-passing systems. In addi- 
tion, it describes a practical class of programs that, if 
developed for a strongly consistent memory, run correctly 
with causal memory. 

Key words: Memory consistency - Causal memory - 
Sequential consistency - Distributed shared memory 

1 Introduction 

The abstraction of a shared memory is of growing import- 
ance in distributed computing systems. It allows users to 
program these systems without concerning themselves 
with the detials of the underlying message-passing system. 
Traditionally, distributed shared memories ensure that all 
processes in the system agree on a common order of all 
operations on memory. Such guarantees are provided by 
sequentially consistent memory [27] and by atomic mem- 
ory [28] (also called linearizable memory [20]). Unfor- 
tunately, providing these consistency guarantees entails 
access latencies that prevent scaling to large systems. 
A simple argument [10, 29] can be used to show that no 
memory can provide strong consistency and retain low 
latency in systems with high message-passing delays. This 
tradeoff represents a significant efficiency problem since it 
forces applications to pay the costs of consistency even if 
they are highly parallel and involve little synchronization. A 
number of techniques [11, 24] have been suggested to im- 
prove the efficiency of shared memory implementations, but 
all provide only partial remedies to the fundamental prob- 
lem of latency and scale for strongly consistent memories. 

Recent research [1, 6, 8, 16-18, 21, 29] suggests that 
a systematic weakening of memory consistency can reduce 
the costs of providing consistency while maintaining a vi- 
able "target" model for programmers. Weakly consistent 
memories admit more executions, and hence more concur- 
rency, than either sequentially consistent or atomic memo- 
ries. This paper defines causal memory, an abstraction that 
ensures that processes in a system agree on the relative 
ordering of operations that are causally related. (Causal 
memory has been mentioned earlier [6, 21]; however, these 
papers do not present careful definitions as is done here.) 
This paper provides a formal definition of causal memory 
and gives an implementation for message-passing systems. 
We give two classes of programs that can be developed 
assuming a sequentially consistent memory and that run 
correctly with causal memory. 

Causal memory is based on Lamport's concept of 
potential causality [26]. Potential causality provides 
a natural ordering on events in a distributed system in 
which processes communicate via message passing. We 
introduce a similar notion of causality based on reads and 
writes in a shared-memory environment. Causal memory 
requires that reads return values consistent with causally 
related reads and writes, and we say that "reads respect the 
order of causally related writes." Since causality orders 
events only partially, reading processes may disagree on 
the relative ordering of concurrent writes. This provides 
independence between concurrent writers, which reduces 

consistency maintenance (synchronization) costs. The idea 
is that the synchronization required by a program is often 
specified explicitly and it is not necessary for the memory 
to provide additional synchronization guarantees. 

Causal memory is related to the ISIS causal broadcast 
and, thereby, to the notion of causally ordered messages 
[13]. Our implementation of causal memory is based on 
the use of vector timestamps [14, 30], as is the ISIS 
implementation of causal broadcast. Both implement- 
ations are "non-blocking': a process may complete an 
operation (e.g., a write or a send) without waiting for 
communication with other processes. Nevertheless, causal 
memory is more than a collection of "locations" updated 
by causal broadcasts. Memory has overwrite semantics 
and messages have queuing semantics. A message recipient 
can be assured that it will eventually receive all messages 
that have been sent to it, but repeated reads cannot 
guarantee that all values written will be read. "Hidden 
writes", values overwritten before they are read, are always 
possible. Since a process may read memory locations in 
any order it chooses, it may read a value vl from location 
x much later than a value vz from location y, even when 
the write operation that stores vl in x causally precedes the 
write of v2 to y. In a message-passing system, such behav- 
ior would violate the required causal ordering. 

We give precise characterizations of two classes of 
programs that run correctly with causal memory. Any 
execution of a program in either of these classes with 
causal memory is actually sequentially consistent. If the 
program is proven correct with sequentially consistent 
memory, then it is still correct with causal memory. One of 
these classes includes data-race free programs [1, 21 that 
make use of explicit synchronization to prevent problems 
that may stem from concurrent access to shared memory. 

It is far from clear that there is a "best" kind of shared 
memory model for use with distributed systems. Strongly 
consistent memories are easier to program than weak 
memories, but they require costly blocking implementa- 
tions. Very weak memories may be implemented cheaply, 
but they might not be practical to program. We believe 
that causal memory provides a happy medium: it allows 
non-blocking implementations and is a useful model for 
a class of practical programs. 

2 Shared memory systems 

This section formally describes the system that underlies 
our definitions and results. We use a model derived from 
those used by Herlihy and Wing [20] and by Misra [33]. 

We define a system to be a finite set of processes that 
interact via a shared memory that consists of a finite set of 
locations. Let .~ = {pl,pz, ... ,pn} be the set of processes. 
A process's interaction with the memory is through a series 
of read and write operations on the memory. Each such 
operation acts on some named location and has an asso- 
ciated value. For  example, a write operation by process pi, 
denoted wi(x)v, stores the value v in location x; a similarly 
denoted read operation, ri(x)v, reports to p~ that v is stored 
in location x. 

A local execution history (or local history) of process pi, 
denoted Li, is a sequence of read and write operations. If 
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operation ol precedes 02 in Li, we write ox ~ oz and say 
that ol precedes 02 in program order. An execution history 
(or history) H = (L1,L2 . . . . .  L , )  is a collection of local 
histories, one for each process. An operation is said to be in 
H if it is in one of the local histories that H comprises. 

Different kinds of memories are defined by considering 
serializations of certain sets of operations. If A (or, respec- 
tively, H) is a set of operations (or history), then S is 
a serialization of A (or H) if S is a linear sequence contain- 
ing exactly the operations of A (or H) such that each read 
operation from a location returns the value written by the 
most recent preceding write to that location. (Unless 
otherwise stated, we assume that each location has initial 
value _1_ and that, in any serialization, this value is returned 
by any read of a location with no preceding write.) Serializ- 
ation S respects order --, if, for any operations oI and o2 in 
S, ol ~ o2 implies that ol precedes o2 in S. 

3 Earlier memory models 

pl: ~ ~ ' f i - ]  

Fig. 1. A history that is not sequentially consistent 

Notice that both sequential consistency and PRAM 
require serializations that respect program order. PRAM 
is weaker than sequential consistency because each process 
may "perceive" a different serialization. While the order of 
two writes by a given process must be the same in all these 
serializations (even those for other processes), writes by 
different processes may appear in different orders in 
different serializations. Furthermore, each process's serial- 
ization does not contain the read operations of other 
processes, as it is not (directly) aware of these operations. 
Figure 1 gives an example of a PRAM history that is not 
sequentially consistent. This history is PRAM because the 
following serializations exist: 

Given the formalism developed above, one can define 
a variety of memory consistency models. This section 
defines Lamport 's sequential consistency [27] and the 
PRAM of Lipton and Sandberg [29]. The next section 
uses the same formalism to define causal memory. 

The idea behind sequential consistency is that, al- 
though the shared memory accessed by processes may be 
distributed (i.e., may consist of many different modules), 
the processes' observations of the memory should be con- 
sistent with one that permits only sequential accesses (i.e., 
a single memory). History H is sequentially consistent if it 
satisfies the following: 

SC: there is a serialization S of H that respects all the 
program orders ~ .  

Thus, the values returned by the read operations in H are 
consistent with the sequential ordering in S. If processes 
communicate only via the shared memory, they cannot tell, 
by way of their interactions with the memory, that they are 
not accessing a single memory. A memory is sequentially 
consistent if it admits only sequentially consistent histories. ~ 

Recognizing that sequential consistency is costly to 
implement, Lipton and Sandberg developed a weaker form 
of memory that they called the pipelined R A M  or PRAM.  
This memory requires only that the writes of each process 
be seen in program order at all other processes. Thus, each 
process must sequence its own operations and the writes of 
other processes. For  this reason, we make the following 
definition. If H is a history and pl is a process, let 
AS+ w comprise all operations in Li and all write operations 
in H. A history H is PRAM if it satisfies the following: 

PRAM: for each process pi, there is a serialization Si of 
A~+w that respects all the program orders 7 �9 

A memory is P R A M  if it admits only PRAM histories. 

A memory is atomic (or linearizable) if each history admits a serializ- 
ation that not only preserves the order within the local histories but 
also that of any pair of operations whose executions do not overlap 
in real time [20, 28]. The definition of such memories is beyond the 
scope of this paper 

S 1 ~- Wl(X)0;  w2(x)l; r l (x) l  (1) 

S 2 = w 2 ( x  ) 1; wl(x)0; r2(x)0 (2) 

We now show that the history is not sequentially consis- 
tent. Suppose that it were and let S be the required serializ- 
ation. Inspection of L1 shows that w l(x)0; w2(x)1; rl(x)1 
must appear in that order in S. Inspection of L2 shows that 
w2(x)l; wl(x)0; r2(x)O must appear in that order in S. This 
gives a contradiction, as wl(x)O and w2(x)l must be or- 
dered uniquely. 

Slow memory given by Hutto and Ahamad [21] can 
also be defined using this formalism, as can processor 
consistency [-4, 16, 18]. We are currently exploring the 
use of this formalism in the definition of other memories 
[25]. 

4 Causal memory 

We define causal memory to be intermediate between 
sequential consistency and PRAM. Its definition is similar 
to that of PRAM but is stronger because the serializations 
required must respect not only program order but 
a causality order as well. We first define causality orders. 

Let H -- (L1 ,L2 ,  . . . , L , ) .  A causality order of opera- 
tions in H is determined by program order and a writes- 
into order that associates a write operation with each read 
operation (except one of a location's initial value). The 
writes-into order is analogous to the order in message- 
passing systems that relates the sending of a message to its 
corresponding receipt. The order in message-passing sys- 
tems is easier to define because, for each message receipt, 
there is a unique sending event. This is not the case in 
shared-memory systems: several write operations may 
write the same value to the same location, and it is not 
always clear which to associate with a particular read 
operation. (Misra simplified this situation by assuming 
that all writes to a location are uniquely valued.) 

Because there may be multiple writes of a value 
to a location, there may be more than one writes-into 
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order. A writes-into order ~ on H is any relation with 
the following properties: 

- i fo l  ~ o2, then there are x and v such that ol = w(x)v 
and 02 = r(x)v; 

- for any operation oz, there is at most one o~ such that 
0 1  ~ 0 2 ;  

- if 02 = r(x)v for some x and there is no 01 such that 
01 ~ 02, then v = A_; that is, a read with no write must 
read the initial value. 

A causality order ~ induced by ~ for H is a partial order 
that is the transitive closure of the union of the history's 
program order and the order ~-~. In other words, o~ ~> 02 
if and only if one of the following cases holds: 

- 01 7 02 for some Pi (01 precedes 02 in Li); 
- 01 ~-~ 02 (o2 reads the values written by 01); or 
- there is some other operation o' such that 01 ~ ,  o' ~ o2. 

(If the relation ~ is cyclic, then it is not a causality order.) 
Ifo~ and 02 are two operations in H such that, for causality 
order ~ ,  01 ~ 0 2  and 0 2 ~ 0 1 ,  we say that 01 and 02 are 
concurrent with respect to ~,. 

We can now define causal memory. A history H is 
causal if it has a causality order ~ such that 

CM: for each process pi, there is a serialization S~ of 
A~+,, that respects ~>. 

A memory is causal if it admits only causal histories. 
Again, this is weaker than sequential consistency because 
each process may "perceive" a different serialization. Fig- 
ure 1, given above, is causal but not sequentially consistent 
(it is causal because the serializations S~ and Sz, given 
on lines (2) and (2) above, are serializations of A~+~. and 

u Az+w, respectively, that respect ~ ) .  
If ol ~ o, for some pi, then o 1 ~ o 2  for all causality 

t " , 

orders ~ ;  thus, It should be clear that any causal history is 
also PRAM. However, not all PRAM histories are causal. 
Figure 2 gives an example of a history that is PRAM but 
not causal. It is PRAM because the following serializ- 
ations, each consistent with program order, exist: 

$1 = wl(x)0; wl(x)l;  w2(y)2; 

$2 = wl(x)0; Wl(X)l; r : (x) l ;  w2(y)2; 

S3 = w/(y)2; r3(y)2; wl (x)0; r3(x)0; wl(x)l. 

The history is not causal for the following reason. There is 
only one possible writes-into order: wl(x)Ow-->r3(x)O, 
wl(x)l  ~ r2(x)l, and w2(y)2 ~ r3(y)2. Thus, H has only 
one causality order, and the following relations hold: 
wl(x)O ~, wl(x)l ~ r , (x) l  ~ w2(y)2. Thus, w1(x)O ~,  

x - 2 . . 

wl (x)1 ~,  w2(y)2, and the three writes must appear  in that 
order in all serializations. It  is clear that there is no way to 
construct $3 (so that it respects the program order in L3) 
with the writes in that order so that each read (by P3) 

P3: [ 7 ~  

Fig. 2. A history that is not causal 

returns the most recently written value to the location 
being read. Clearly, r3(y)2 would have to follow w2(y)2, so 
the only choice for Sa is wl(x)0; wl(x)l;  w2(y)2; r3(y)2; 
r3(x)0. This is not a serialization (the last read should 
return 1), so the history is not causal. 

5 A n  i m p l e m e n t a t i o n  o f  c a u s a l  m e m o r y  

This section presents and proves correct an implementa- 
tion of causal memory  using message passing. The imple- 
mentation uses an adaptation of vector timestamps [14, 
30]. It requires reliable processes and communication 
channels. 

Each process maintains four local data structures. The 
first is a private copy M of the abstract shared causal 
memory dr. The second is a vector clock t, which is used to 
timestamp outgoing messages. This is a vector of natural 
numbers, one for each process in the system. Informally, 
t [i] is the number of pi's writes of which the process is 
aware. Two vectors can be compared by comparing their 
components. Vector tl is less than or equal to t2 (tl ~ t2) if 
each of tl 's components is less than or equal to t2's corres- 
ponding component; tl is less than tz (tl ~ t2) if it is less 
than or equal to t2 and is not equal to t2. Note that "%" is 
transitive. Each process also maintains two queues. The 
first is a first-in-first-out queue called OutQueue. It con- 
tains information about local writes to memory that are 
yet to be communicated to other processes. The second is 
a priority queue called InQueue. Each queue item includes 
a vector clock value, which is its timestamp. The queue 
lnQueue is ordered by timestamp, with items with smaller 
timestamps appearing closer to the head. The queue is 
maintained so that items being added to the queue are 
only placed ahead of existing items whose timestamps are 
greater than that of the new item. That is, the new item is 
placed after any existing item with an equal or incompar- 
able timestamp (actually, one can show that no two items 
can have equal timestamps, but we do not need this fact). 

The implementation for process Pl is shown in Fig. 3. It 
consists of an initialization routine and five basic actions. 
Each of these actions is local and executed atomically. 
A read action is executed whenever a read of a location x is 
invoked by pi. The value stored in M Ix] is returned to Pl. 
A write action is executed whenever a write of some value 
v to some location x is invoked by p~. Process p~ increments 
t[i], writes v to M[x],  and adds the tuple ( i ,x ,  v , t )  to 
OutQueue; this tuple is called a write-tuple. Note that the 
read and write actions require no blocking. This is in 
contrast to implementations of linearizable or sequentially 
consistent memory; in these cases, it can be shown that 
some blocking is required [i0, 29, 31]. 

The information in OutQueue must be communicated 
to the other processes. This is done by send actions, which 
may be performed whenever it is convenient to the process 
but which must be performed infinitely often (that is, 
a process can never elect to perform no more send actions). 
A send action removes some nonempty prefix from Out- 
Queue and sends it to all other processes. When such 
a message is received, p~ executes a receive action; it adds 
all the write-tuples in the message received to InQueue 
(recall that this is a priority queue based on the tuples' 
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/* Initialization: */ 
foreach x ~ . ~  do 

MIx] := .1_ 
for j := l to n do 

t['j] := 0 
OutQueue := ( )  
lnQueue := ( ) 

/* Read action: to read from x*/ 
return(M I x ] )  

/* Write action: to write v to x */ 
t[/] := t[i-I + i 
M Ix] := v 
enqueue (i, x, v, t) to OutQueue 

/* Add ri(x)* tO L~ and Si */ 

/* Add wi(x)v to Li and Si */ 

/* Send action: executed infinitely often */ 
if OutQueue * () then 

let A be some nonempty prefix of OutQueue 
remove A from OutQueue 
send A to all others 

/* Receive action: upon receipt of A from pj */ 
foreaeh ( j ,  x, v, s ) ~ A  

enqueue (j, x, v, s) to InQueue 

/* Apply action: executed inf initely often */ 
if lnQueue 4= ()  then 

let (j, x, v, s) be head of InQueue 
if sl-k] < t[k] for all k =~j and s[j] = t[j] + 1 then 

remove (j,  x, v, s) from lnQueue 
t[j]:=s[j] 
Mix] := v /* Add wAx)v to S~ */ 

Fig. 3. Implementation of causal memory for process p~ 

timestamps). The information in InQueue is used to update 
a process's view of memory. This is done by an apply 
action, which need only be performed infinitely often. The 
write-tuple at the head of lnQueue can be applied if its 
timestamp reflects no other write of which p~ is not aware. 
This can be determined by comparing p~'s vector clock to 
the timestamp of the write; a write by pj can be applied 
only if all components of its t imestamp (other than the jth) 
are less than or equal to those ofpfs  vector clock and if the 
j th component  is exactly one more than the j th  component  
of p~'s vector clock. When a write can be applied, it is 
removed from InQueue, the corresponding component  of 
p~'s vector clock is updated, and the new value is written to 
M. This means that, after the write-tuple ( j ,  x, v, s) is 
applied to p~'s memory,  s % t, where t is the value of p~'s 
vector clock. 

To facilitate the proof of correctness of the implemen- 
tation, we introduce the following notation: if o is an 
operation of a process p~, the timestamp of o, denoted ts(o), 
is the value of p~'s vector clock immediately after o com- 
pletes. Note that, for a write operation o, ts(o) is the same 
as the t imestamp included with the corresponding write- 
tuple. H = (L1, L2 .. . .  , L , )  is a history of the implementa- 
tion if each L~ is the ordered sequence of read and write 
operations performed by process p~ (see comments  in Fig. 
3). Theorem 3 below shows that H is causal. The causality 
order ~ used is derived from the following writes-into 
order ~--~. If o2 = ri(x)v is a read by p~ of some non-initial 
value, then oi w-~ 02, where ol is the latest write to x ap- 
plied by pi before performing Oz (it is clear from Fig. 3 that 
ol is a write of v). 

The following two lemmas are used in the proof  of 
correctness. The first asserts that the causality order ~ is 
reflected in vector timestamps: 

Lemma 1. Let H be a history of  the implementation and let 
01 and 02 be two operations such that 0 1 ~ 0 2 .  Then 
ts(01) ~ ts(02). Furthermore, if02 is a write operation by Pi, 
then ts(ol)Ef] < ts(02)[i'l; thus, ts(01) < ts(02). 

Proof. The proof is by induction on the structure of the 
order ~,. Consider three cases: 

- 01 ,-7. 02 for some p;. Since no process ever decrements 
any component of its vector clock, ts(01) must  be less 
than or equal to ts(02). Furthermore, if 02 is a write 
operation, then Pi increments its local component  dur- 
ing 02, so ts(oO[i] < ts(02)[i ]. 

- ol ~ 02. This means that o~ is a write operation, say 
w~(x)v, and o2 is a corresponding read, say r~(x)v. Note 
that the write-tuple associated with 01 includes the time- 
stamp ts(ox). By Fig. 3, it is clear that pj cannot  read 
v from x before it applies the write to its memory. 
Process Pi does not apply the write until its own time- 
stamp is greater than or equal to ts(ol) (except for 
ts(ol) [i], which is assigned to the ith component  of pfs 
clock when the write is applied). Since no component  of 
pfs t imestamp is even decremented, it is still greater 
than or equal to ts (01) when it reads v, so ts (01) ~ ts (02). 

- There is some operat ion o' such that o 1 ~ o ' - - ~ o 2 .  By 
induction, this implies that tS(Ox)~ ts(o ' )~ ts(o2). By 
the transitivity of ~ ,  the desired result holds. If 02 is 
a write by p~, then ts(o')[i] < ts(02)[i] by induction. 
Since ts(o~)~ts(o') implies ts(01)[i] <.ts(o')[i], we 
have ts(01)[i] < ts(o2)[i]. [] 

The next lemma is used to show the liveness of the 
implementation: 

Lemma 2. Let H be a history of the implementation and 
suppose that w is a write operation of process p~. Then each 
process p~ eventually applies w to its memory. 

Proof If i = j ,  the write is applied immediately; for the 
remainder of the proof, assume that i 4:j. Let s = ts(w). An 
inspection of Fig. 3 shows that, once pl has executed w, it is 
always the case that one of the following holds for w: its 
write-tuple is in pfs OutQueue, its write-tuple is in transit 
from pi to p j, its write-tuple is in pfs InQueue, or p~ has 
applied the write. Since p~ performs send operations infi- 
nitely often and OutQueue is first-in-first-out, any write- 
tuple in OutQueue is eventually sent to pj. Since channels 
are reliable, any write-tuple that is sent is eventually re- 
ceived and added to pj's InQueue. We now show that pj 
eventually applies any write-tuple added to lnQueue. 

Consider the time at which pj adds the write-tuple for 
w, (i, x, v, s), to its lnQueue. There are only finitely many 
write-tuples ahead of it at this time. Write-tuples with 
timestamps smaller than ts(w) that can arrive in the future 
will also be placed ahead of (i, x, v, s) in pj's InQueue. It is 
easy to see that there can be only finitely many  such 
write-tuples. For  this reason, we can assume by induction 
that, at some point in time, pj has applied all write-tuples 
that are ever placed before (i, x, v, s) in pfs  InQueue or 
whose timestamps are less than s. At this point, (i, x, v, s) 
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is at the head of pfs InQueue and remains there until it is 
applied; we say that it is ready to be applied by pj. We now 
show that it is indeed applied when pj next performs an 
apply action. 

Let t be pfs vector clock at such a point. We must show - 
that t[k] >= s[k] for all k #: i  and that t[i] + 1 = s[i]. 
Let Pk be any process other than Pi (k could equal j). Let w' 
be the s [k] th write by Pk. This means that pi applies w' 
before it performs w, which implies that ts(w')~(ts(w). 
Thus, p~ must order w' ahead of w in InQueue, which 
implies that, once (i, x, v, s) is ready to be applied by pj, - 
pj has already applied w'. Once pj applies w', t[k] > s[k], 
as desired. Let ~ be the (s[i-] - 1)st write by Pi. By Lemma 
1, t s ( ~ ) ~  ts(w). Thus, pj must order ~ ahead of w in 
InQueue and thus has already applied ~. Therefore, 
t [ i ] =  s[i"] - 1. This means that Pi applies w the next - 
time it performs an apply operation. Since pj does this 
infinitely often, we conclude that pj eventually applies this 
write. []  

We can now prove the correctness of the implemen- 
tation: 

Theorem 3. Let H be a history of the implementation. Then 
H is causal. 

Proof The proof must show that, for each process p~, there 
is a serialization S~ of Af+w that respects ~,. (Recall that 
A~+ w is the set of all of p~'s operations and all writes in H.) 

The serialization S; for p/is obtained simply by concat- 
enating all writes as they are applied to p~'s memory and all 
reads as they occur (see comments in Fig. 3). By Lemma 2, 
S; includes all write operations in H, and thus all of A~+ ~. 
S~ is a serialization because all reads and writes apply 
directly to p~'s copy of memory and each read thus returns 
the value most recently written. It remains to be seen that 
Si represents ~,. 

We first observe that ~ ,  is indeed a partial order in H. 
To prove this, it suffices to observe that it is acyclic by 
showing that 01 ~,  02 implies 02 @,01. Suppose for a con- 
tradiction that 0 1 ~ 0 2  and 02~,01. By Lemma 1, this 
means that ts(01) ~ ts(o:) and ts(oz) <~ ts(01), implying 
that ts(01) = ts(02). Lemma 1 implies that neither 01 nor 
Oe is a write operation, as this would contradict this 
equality. Even if 01 and 02 occur at the same process, it 
cannot be the case that each of or and 02 precede the other 
with respect to program order. Without loss of generality, 
assume that 01 does not precede 02 in any L~. Since 01 ~,  02 
and both operations are reads, there must be some write 
operation w such that 0 1 ~ w ~ , 0 2 .  By Lemma 1, 
ts(01) ~, ts(w) ~ ts(02), implying ts(01) ~a ts(o2), a contra- 
diction. We conclude that the causality order is not cyclic. 

Let 01 and 02 be two operations in A~+~ such that 
0 ~ 0 2 ;  we must show that o~ precedes 02 in S~. By 
Lemma 1, tS(Ol) < ts(o2). One of the following five cases 
must hold: 

- Both 01 and 02 are operations by pi. Since ~ is acyclic, 
this means that 01 precedes 02 in L~. Since p~'s opera- 
tions appear in both L~ and Ss in the order in which they 
are performed, o~ precedes 02 in Si. 

- o~ is a write by another process pj and 02 is an opera- 
tion by p~. An inspection of Fig. 3 shows that p~ does 

not set its vector clock t such that t[j'] = ts(ol)[j]  
until it applies 01 to its local memory. Since ts(02) [j"] >- 
ts(ol)[j] ,  Oz can occur only after this application. This 
means that 01 precedes o2 in Si. 
01 is a write by Pi and o2 is a write by another process pj. 
Since ts(01) ~ ts(02), ts(01)[i] < ts(02)[i"]. This means 
that Pi does not execute 02 until it has applied 01; since Pi 
cannot apply 02 before pj and must apply 01 before p j, it 
must be that pi applies 01 before it applies Oz. Thus, 01 
precedes 02 in S~. 
01 is a read by p~ and 02 is a write by another process. It 
is not hard to see that 01--~02 implies that there is 
a write w by Pl such that 01 ~ w ~ o 2 .  By the first case, 
above, 01 precedes w in S~. By the third case above, 
w precedes 02 in Si. Thus, 01 precedes Oz in S~. 
01 and 02 are both writes by processes other than pi. 
Suppose 01 and 02 are executed by processes pj and Pk- If 
j----k, Lemma 1 implies ts(ol)[j"] < tS(Oz)[j], so Pi 
cannot apply 02 until it has applied 01. Now assume 
tha t j  # k and let t be p~'s vector clock at the point when 
02 is applied. By Fig. 3, ts(02)[j] < t[ j] .  Since ts(01) 
ts(o2), ts(ol)[ j]  < ts(02)[j]. This means that Pi has 
already applied 01 at this point. Thus, 01 precedes oz 
in Si. 

In all cases, ol precedes 02 in Si, so the proof is com- 
plete. []  

The implementation given in Fig. 3 shows that read 
and write operations for causal memory can be imple- 
mented without processes experiencing any blocking, 
Consider the following analyses of the performance of 
implementations of various forms of distributed shared 
memory. Assume that local computation time is negligible 
with respect to message delays and assume that d is the 
worst-case message delay. Given a memory implementa- 
tion, let R be the worst-case execution time for a read and 
W be the worst-case execution time for a write. Attiya and 
Welch [10] showed that, in systems in which process 
clocks were not perfectly synchronized and in which there 
was some uncertainty with respect to message delays (e.g., 
some messages may take d to be delivered and others may 
take less), it is impossible to achieve W = 0 or R = 0 in 
implementations of linearizable memory (see footnote 1). 
Lipton and Sandberg [29] showed that, for any implemen- 
tation of sequentially consistent memory, R + W > d. In 
contrast, our implementation of causal memory gives 
R = W = O .  

The implementation presented here is correct as long 
as processes and communication channels are reliable. 
This is a normal assumption when implementing distrib- 
uted shared memory [3, 8, 10, 29, 31, 32]. However, we 
have also developed an implementation of causal memory 
that is correct even in systems in which processes may fail 
by stopping and in which communication channels can 
lose messages (as long as each channel delivers infinitely 
many messages if infinitely many are sent) [5]. This imple- 
mentation is complex and inefficient and is not presented 
here. 

In other work [5, 23], we give a more practical imple- 
mentation that sacrifices the non-blocking property of the 
implementation presented here. The implementation also 
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makes use of vector timestamps but associates them with 
pages instead of individual locations. The memory of each 
node is treated like a cache for some subset of the shared 
pages, and a page-fault occurs when an accessed page is 
not in the cache. This results in communication with an 
owner node, which is unique for each page. Since the owner 
supplies the page on a fault, this implementation also 
requires that writes to a page be sent to the owner. How- 
ever, it is not necessary that nodes other than the owner be 
notified on a write operation even when they store a copy 
of the page. Causal memory consistency is implemented by 
locally invalidating pages that could potentially be 
causally "overwritten". Vector timestamps are used for this 
purpose. This implementation does require nodes to com- 
municate before certain read or write operations can be 
completed and hence some memory operations may be 
blocking. However, we have shown [23] that this imple- 
mentation provides better performance than sequentially 
consistent memory for several scientific applications. 

6 P r o g r a m m i n g  w i t h  c a u s a l  m e m o r y  

The previous section showed that causal memory may be 
implemented without blocking; a process's write opera- 
tions can complete before other processes learn about 
them. To strengthen the case that causal memory is a good 
model of a distributed shared memory, we must also argue 
that it can be programmed without undue difficulty. In this 
section, we characterize two classes of programs; any pro- 
gram in these classes, if written to run correctly on sequen- 
tially consistent memory, also runs correctly in a system 
with causal memory. Thus, programs in these classes can 
be written assuming a sequentially consistent memory 
even for a system that provides causal memory. We show 
that all executions of these programs on causal memory 
are also possible with a sequentially consistent memory. 

The existence of these classes indicates that causal 
memory is a viable model for programming distributed 
applications: if a few rules are followed, a programmer 
may assume that the memory is sequentially consistent, 
while causal memory may be used instead. Because causal 
memory can be implemented more efficiently, this could 
result in improved performance. 

Section 6.1 presents some definitions and notation 
necessary for discussing the behavior of programs with 
a distributed shared memory. Section 6.2 considers first 
the simple but restricted class of concurrent-write free pro- 
grams. Section 6.3 considers the more practical class of 
data-race free programs. Section 6.4 discusses other work 
done in proving that programs in certain classes run cor- 
rectly on memories weaker than sequential consistency. 

6.1 Definitions and notation 

At any time during an execution, a process is in some local 
state; this is determined by its initial state and the opera- 
tions performed thus far in its local history. A process Pi 
runs a local program l-ll, which is a function from local 
states to actions; each action is either of the form w(x)v, 
indicating that value v should be written to location x, or 
of the form r(x), indicating that the value of x should be 

x, y, and z are shared variables, initially 0; 
a, b, c, and d are local variables 

process p~: process P2: process P3: 
x := 1 repeat b := y; 
y := 1 a := y repeat 

until a = 1 c := z 
z : = l  u n t i l c = l  

d:=x 

Fig. 4. A concurrent-write free program 

read and returned. 2 The execution of an action is an 
operation and changes the process's local state; note that 
the operation associated with a read action includes the 
value that was read. A tuple of local programs, one for 
each process, is called a program and is usually denoted/7. 
H is a history of/7 if all operations in H are the execution 
of the actions tha t /7  would specify given the local states 
through which processes pass. 

Recall that a history H is a tuple of local histories, 
Li for each process Pi. Let ~ be a causality order of H. We 
say that history H' = (L'a, L~ . . . . .  L', ) is a prefix of H with 
respect to ~ if each L'i is a prefix of Li and, if 0 is an 
operation in H', then all operations in H that precede 
0 with respect to ~ are also in H'. H' is a proper prefix of 
H with respect to ~ if it is a prefix of H with respect to 
~ and H ' ,  H. 

6.2 Concurrent-write free programs 

A major advantage of using causal memory is that normal 
memory accesses can be implemented without blocking; 
processes need not synchronize with each other in per- 
forming these accesses. As a result, programs running on 
causal memory must do their own synchronization. One 
way to achieve this is to ensure that no two writes can be 
concurrent. 

Let H be a history with causality order ~ .  H is concur- 
rent-write free with respect to ~ if there are no two write 
operations wl and w2 in H that are concurrent with respect 
to ~ .  Program/7  is concurrent-write free if, for all histories 
H of/7 and all causality orders ~ of H, if H has a serializ- 
ation that respects -* (note that this implies that H is 
sequentially consistent), then H is concurrent-write free 
with respect to --,. Note that the concurrent-write freedom 
of a program is only a statement about its sequentially 
consistent histories. An example of a concurrent-write free 
program is given in Fig. 4. 3 It is concurrent-write free 
because, in any execution of the program, the three writes 
to global variables must be related as follows by any 
causality order ~ :  Wl(X) 1 ~ ,  wl (y) 1 ~ w2(z ) 1. (The read of 
y by P3 is not relevant to the concurrent-write freedom of 
the program. It serves to make the program not data-race 
free; see below.) 

2These actions should not be confused with the implementation 
actions described in Fig. 3 
3 In this figure and in Fig. 5, an assignment to a shared variable 
indicates a write action. An assignment with a shared variable on the 
right side indicates a read action 
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Let H be a causal history, let ~ be a causality order 
that proves H is causal, and suppose tha t /4  is concurrent-  
write free with respect to ~=~. For  each process p~, let Si be 
the serialization of  Aff+~ that  respects -~  (see Sect. 4). 
F rom ~ ,  define a stron9 causality order, denoted ~ ,  as 
follows: 01 =~ o2 if and only if one of the following cases 
holds: 

- -  Oi ~ )  O2;  

- ol is a read by process Pl, 02 is a write, and o~ precedes 
o2 in St; or  

- there is some other opera t ion  o' such that ol ~ o' 
:=~ 0 2  . 

The idea behind ~ is that  it extends ~ ,  by ordering a read 
after any writes that causally precede it and before all 
other writes. It is not  hard  to see that, i f /4  is concurrent-  
write free with respect to ~ ,  then the associated ~ is 
acyclic; in particular, if o~ =- o2, then o2ff, ox. Further-  
more, for any operat ion in such a history, there are only 
finitely many operat ions tha t  precede it with respect to ~ .  

The following theorem shows that concurrent-write 
free programs produce only sequentially consistent execu- 
tions when run on causal memory :  

Theorem 4. If~7 is concurrent-write free, then all histories 
of 17 with causal memory are sequentially consistent. 

Proof The proof  is by induct ion on the structure of causal 
histories of/7.  Specifically, let H be a finite causal history 
o f /7  and let --~ be a causali ty order  that proves t ha t / - / i s  
causal. (The proof  for infinite/4 follows.) We will prove the 
following for /4  given that it holds for all proper prefixes of 
H with respect to ~ :  H is concurrent-write free with 
respect to ~ ,  and has a serialization that respects ~,. 

To show tha t / - / i s  concurrent-wri te  free with respect to 
~,, assume for a contradic t ion that wl and w2 are two 
concurrent  writes in/4.  Clearly, wl and w, are executed by 
different processes, so assume that  w~ is performed by pj 
and w2 by Pk, where j  4= k. Def ine /4 '  = (L'I ,  L~, . . . ,  L',> by 
letting L'i be the subsequence of  Li containing all opera- 
tions that precede either wl or  w_, with respect to ~ .  If  
either wl or w2 appears in H', one precedes the other with 
respect to ~,,  giving a contradict ion.  Assume instead that  
neither operat ion appears  in H';  this means L) includes p~'s 
operations up to but not  including w~ and that the same 
holds for Li,  Pk, and w2. Clearly, I-I' is a proper prefix of  
/4 with respect to ~,;  by the inductive hypothesis, H '  is 
concurrent-write free with respect to ~ and has a serializ- 
ation that respects ~ .  Now define/-) = (s  > by 

L j  t .  . 
= g l , w  1 , 

/2k = L~;w2 ; 

/2~ = L'i if i ~ { j, k}. 

/-) is also a (not necessarily proper) prefix o f t t  with respect 
to ~ and is thus an execution o f / / .  Let S' be a serialization 
of /4' that respects ~ .  This implies that S';wl;w2 is 
a serialization of / t  that  also respects ~ .  Since H is 
a history o f /7  a n d / 7  is concurrent-wri te  f ree , / / i s  concur-  
rent-write free with respect to  ~ .  This means that wa and 
w2 cannot be concurrent  with respect to -~, giving the 
desired contradiction. 

We now show that  H has a serialization that respects 
~ .  As noted above, the order = is acyclic. Since H is 
finite, we can choose an opera t ion o in H such that for no 
o' in H does o =~ o' hold. Let H be identical to H but 
excluding o. / /  is a proper  prefix of H with respect to  
~ ,  and, by the inductive hypothesis, has a serialization 

that respects -~. Clearly, S;o respects ~ ;  if it did not, 
either S would not  respect ~ or there would be an opera- 
t ion o' in /7  such that  o -~  o', which contradicts the defini- 
tion of  o. We will now prove that S;o is a serialization of H, 
proving that H is sequentially consistent. 

Assume for a contradict ion that S;o is not  a serializ- 
at ion of H. This means  that  o is some read operation r~(x)v. 
Recall that  H is causal; let St be the serialization of  
A~+ w that respects ~ .  There are two possibilities: 

- There is some write to x in H. All such writes precede 
o in S,-: any write that  does not will follow o with respect 
to =~, contradict ing the definition of  o. Let w be the 
latest write to x in Si. Since S~ is a serialization, w writes 
the value v. Since S;o is not  a serialization, there must be 
some write w' to  x of  another  value after w in S. Since 
H is concurrent-wri te  free with respect to ~,, there are 
two possibilities:_ 

- w' ~ ,  w. Since S respects ~,, this means that w' pre- 
cedes w in S, contradict ing the definition of w'. 

- w ~ ,  w'. This means that w must precede w' in S~, 
contradict ing the definition of w. 

- There is no write to x in H. This implies that there can 
be no write to x in Si either. Since S~ is a linearization, 
w writes the value v. Since S~ either. Since S;o is not  
a serialization, it must  be that v ~ / .  This means that S~ 
cannot  be a serialization either, which is a contradiction. 

Since all cases lead to contradictions, we conclude that S;o 
is a serialization of  H that  respects ~ .  This implies that 
H is sequentially consistent. 

This theorem also holds if H is an infinite causal 
history of /7 .  Let ~ ,  be a causality order that proves that  
H is causal. We first prove that H is concurrent-write free 
with respect to --~. If  not,  let Wx and w2 be two writes in 
H that are concurrent  with respect to ~,. Let H '  be the 
shortest prefix of  H that  includes wl and Wz. Note  that H' 
is causal and that ~=, is a causality order that proves it. It is 
easy to see that H '  is finite; by the above, H' is concurrent-  
write free with respect to ~ .  This implies that wi and WE 
are related by --,, giving the desired contradiction. Let 
=~ be the strong causali ty order for H derived from ~ .  We 

know that =~ is acyclic and that any operation in H has 
a finite number  of  predecessors with respect to =, .  Define 
an infinite sequence (Ho, Hi . . . .  ) of finite prefixes of  
H with respect to ~ ,  each having all previous ones as 
proper  prefixes with respect to ~ ,  as follows. Ho is the 
empty history. H;+ 1 includes Hi plus one operation o such 
that all operat ions in H that precede o with respect to 
=- appear  in H~ (the operat ions o can be chosen "fairly" 

so that every opera t ion  in H appears in some H~). Given 
this construction, there can be no operation in Hi that  
follows o with respect to =, .  An inspection of the proof  
above shows that  the serializations S~ of the prefixes 
Hi respect ~ ,  and are such that, for all i, Si is prefix of 
Si+l.  This means that  limi~oo Si is well-defined and is thus 
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a serialization of H. This shows that H is sequentially 
consistent. []  

6.3 Data-race free programs 

While concurrent-write free programs run correctly with 
causal memory,  they form a very restricted class and allow 
very little concurrency. In this section, we define the more 
practical class of data-race free programs and show that 
they also run correctly with causal memory. Alternative 
definitions have been given elsewhere [-1, 2, 16]. 

Let H be a history with causality order ~ .  Two opera- 
tions ol and 02 in H compete with respect to ~ if both 
access the same location, at least one is a write, and they 
are concurrent with respect to ~,. H is data-race free with 
respect to ~,  if it contains no pair of operations that 
compete with respect to ~ .  A history that is data-race free 
with respect to ~ ,  has the property that all writes to 
a given location are linearly ordered with respect to ~,. 
P rog ram/7  is data-race free if, for all histories H of /7  and 
all causality orders ~ of H, if H has a serialization that 
respects ~ ,  (note that this implies that H is sequentially 
consistent), then H is data-race free with respect to ~-,. 
Note that the data-race freedom of a program is a state- 
ment only about  its sequentially consistent histories. 

Previous definitions of data-race free programs were 
quite different from ours. These definitions were for sys- 
tems with normal data operations (reads and writes) and 
special synchronization operations. Any competing opera- 
tions is a sequentially consistent execution of a data-race 
free program must be separated (with respect to a kind of 
causality) by synchronization operations. It is not hard to 
see that our definition is a generalization of this to systems 
in which there need not be synchronization operations 
with specified semantics. Sections 6.3.1 and 6.3.2 below 
give two ways in which data-race free programs (using our 
definition) may be derived. The class of data-race free 
programs should not be confused with the memory models 
DRF0 [1] and DRF1 [2]. 

The following theorem shows that data-race free pro- 
grams produce only sequentially consistent executions 
when run on causal memory: 

Theorem 5. I f  17 is data-race free, then all histories of 
H with causal memory are sequentially consistent. 

Proof The proof  is by induction on the structure of causal 
histories of/7.  Specifically, let H be a finite causal history 
of H and let ~ be a causality order that proves that H is 
causal. (The proof  for infinite histories follows.) We will 
prove the following for H given that it holds for all proper 
prefixes of H with respect to ~ :  H is data-race free with 
respect to -~, and has a serialization that respects ~ .  

To show that H is data-race free with respect to ~ ,  
assume for a contradiction that 01 and o2 are two opera- 
tions in H that compete with respect to ~,.  We can assume 
by induction that there is no operation o in H such that 
either (1) 0 ~  01 holds and o and o2 compete with respect 
to ~ or (2) o ~ ,  02 holds and o and 01 compete with respect 
to ~ .  If ol and oz are both reads, both are performed by 
the same process, or they are to different locations, then 
they do not compete. Assume, therefore, that ol and o2 are 

concurrent with respect to ~-,, o 1 is a write to x performed 
by p~ and o2 is an operation on x performed by Pk, where 
j ~ k. Define H ' =  (L'~,L'2 . . . . .  L',)  by letting LI be the 
subsequence of L~ containing all operations that precede 
either oi or 02 with respect to ~-0. If either Ol and Oa 
appears in H',  they are related by ~ ,  and we are done. 
Assume instead that neither operation appears in H'; this 
means L) includes pSs operations up to but not including 
ol and that the same holds for L~,, Pk, and o2. Clearly, H' is 
a proper prefix of H with respect to ~,; by the inductive 
hypothesis, H' is data-race free with respect to ~ ,  and has 
a serialization that respects ~,. Now define / t  = 
(/7,1,/-~2, ... ,/7,,) by 

s = L ) ; o l ;  

f--~k t .  . = tk,02, 

Li=L' i  i f i 6 { j , k } .  

/4 is also a (not necessarily proper) prefix of H with respect 
to -~ and is thus an execution of/7. Let S' be a serialization 
of H'  that  respects ~0. We will now prove that /~ has 
a serialization that respects -~,. By the data-race freedom of 
/7, this will imply that ol and o2 do not compete with 
respect to --,, giving the desired contradiction. 

If ol and 02 are both write operations, then S';ol;oz is 
a serialization of/-) that respects ~,.  Assume instead that 
o2 is a read (ol was already assumed to be a write). If  o2 
returns the value that ol writes, then S';ol;o2 is a serializ- 
ation of H that respects ~,. Suppose instead that oz returns 
a different value. There are two possible cases: 

- S' contains a write to x and oz returns the value written 
by the last such write. In this case, S';o2;ol is a serializ- 
ation o f /~  that respects ~,. 

- S' contains a write to x and o2 does not return the value 
written by the last such write w. Because H'  is data-race 
free with respect to ~,,  all of its writes to x are totally 
ordered by ~,.  Since S' respects ~,, all other writes to 
x precede w with respect to ~,.  Recall that H is causal 
and that o2 is performed by Pk; let Sk be the serialization 
of Akn+~ that  respects ~,. By the above, all other writes to 
x must precede w in Sk. Since 02 does not return the 
value written by w, it must also precede w in Sk. Since Sk 
respects ~ ,  w ~ 0 2 .  Since H'  contains only operations 
that causally precede 01 or o2 and w appears in H', it 
must be that  w~,01.  Consider now two sub-cases: 
- oa -~  w. This implies that w and 02 are concurrent 

with respect to ~ ,  and thus compete with respect to 
~ .  This means that w contradicts the assumption that 
there is no operation causally preceding 01 that com- 
petes with o2 with respect to ~,. 

- o2 ~ w. This implies 02 ~,01, contradicting the fact 
that 01 and o2 are concurrent with respect to ~ .  

Thus, this case leads to a contradiction. 

- S' contains no writes to x. Since no writes to x causally 
precede 02, that operation must return the initial value 
_1_. In this case, S';02;01 is a serialization of /4 that 
respects ~ .  

We have shown that all non-contradictory cases lead to 
serializations o f /4  that respect ~,. S ince / t  is a history of 



46 

/7 a n d / 7  is data- race  f ree , /4  is data-race  free with respect 
to ~, .  This means  that  Ol and  02 cannot  compete  with 
respect to ~ ,  giving the desired contradiction.  

We now show tha t  H has a serialization that  respects 
-~. Since H is finite and ~ ,  is acyclic, we can choose an 
opera t ion  o in H such tha t  for no o' in H does o ~ ,  o' hold. 
Let H be the same as H but  excluding o. H is a p roper  
prefix of  H with respect to ~ and, by the inductive hypo-  
thesis, has a serialization S tha t  respects ~ .  Clearly, S;o 
respects ~,;  if it did not,  either ,~ would not respect ~ ,  or  
there would be an opera t ion  o' i n /4  such that o ~ ,  o', which 
contradicts  the definition of o. We will now prove that  S;o 
is a serialization of H,  proving  that  H is sequentially 
consistent. 

Assume for a contradic t ion  that  5';o is not  a serializ- 
a t ion of H. This means  that  o is some read opera t ion  ri(x)v. 
Recall that  H is causal; let S~ be the serialization of 
An+ w that  respects ~ .  There  are two possibilities: 

compl[1..n] and chgd[1..n] are shared variables, initially 0; 
done is a shared variable, initially false; 
x[1..n] are shared variables, initially 0; 

A[1..n, 1..n] and b[1..n] are shared constants; 
t[1..n] are local variables, t[i] local to pl; 

cony is an external routine that evaluates convergence 

process po: process Pi: 
while not done while not done 

for i:= I to n t[i] := (b[i 3 - -  ~'~--11 A[i, j3xCj 3 -- 
await(compl[i] = 1) ~ = i + l  A[i , j ]x[ j ] ) /A[ i ,  i] 

for i:= 1 to n compl[i] := 1 
compl[i] := 0 await(compl[i] = O) 

for i:= 1 to n x[i] := t[i] 
await(chgd[i] = 1) chgd[i] := 1 

done := cony(A, x, b) await(chgd[i]) = 0 
f o r i : = l  ton 

chgd[i] := 0 

Fig. 5. Synchronous iterative linear solver on causal memory 

There is some write to x in H. All such writes precede 
o with respect to ~, :  any  write that  does not  either 
competes  with o with respect  to ~ (contradicting the 
data-race  f reedom of H with respect to ~ )  or  follows 
o with respect to ~ (contradict ing the definition of o). 
Thus,  all writes to x precede o in Si. Let w be the latest 
such write. Since Si is a serialization, w writes the value v. 
Since ,g;o is not  a serialization, there must  be some write 
w' to x of ano ther  value after w in S. Since H is data-race  
free with respect to ~ ,  w and w' are related by ~ and 
there are two possibilities: 
- w ' ~  w. Since S respects ~ ,  this means that  w' pre- 

cedes w in S, contradic t ing the definition of w'. 
- w ~ ,  w'. This means  tha t  w must  precede w' in Si, 

contradict ing the definition of w. 
- There  is no write to x in H. This implies that  there can 

be no write to x in Si either. Since S;o is not a serializ- 
ation, it must  be that  v ~ _1_. This means that  Si cannot  
be a serialization either, which is a contradiction. 

Since all cases lead to contradict ions,  we conclude that  S;o 
is a serialization of H that  respects --~. This implies that  
H is sequentially consistent.  

This theorem also holds when H is an infinite causal 
history of /7 .  Let ~ be a causal i ty order  that  proves that  
H is causal. We first p rove  that  H is data-race free with 
respect to ~, .  If  not, let ol and 02 be two operat ions  in 
H that  compete  with respect  to ~, .  Let H '  be the shortest  
prefix of H that  includes Ol and o2. Note  that  H '  is causal 
and that  ~ is a causali ty order  that  proves it. It is easy to 
see that  H '  is finite; by the above,  H '  is data-race free with 
respect to ~,.  This implies that  ol and o2 do not  compete  
with respect to --,, giving the desired contradiction.  We 
define an infinite sequence (Ho, H1 , . . .  ) of finite prefixes of  
H with respect to ~ ,  each having all previous ones as 
p roper  prefixes with respect to ~ , ,  as follows. H0 is the 
empty  history. Hi+ ~ includes Hi plus one operat ion o such 
that  all opera t ions  in H tha t  precede o with respect to 
~ appea r  in Hi (the opera t ions  o can be chosen "fairly" so 
that  every opera t ion in H appears  in some Hi). Given this 
construct ion,  there can be no opera t ion  in Hg that  follows 
o with respect to ~, .  An inspection of the p roof  above  
shows that  the serializations Si of  the prefixes Hi respect 

~ and are such that, for all i, Si is prefix of  Si+l. This 
means  that  limi~ ~ Si is well-defined and is thus a serializ- 
at ion of H. This shows that  H is sequentially consis- 
tent. []  

(Theorem 5 also follows f rom an independent ly derived 
result of Singh's [35].) 

The classes of data-race  free and concurrent-wri te  free 
p rograms  are incomparable .  For  example,  consider the 
concurrent-wri te  free p r o g r a m  given in Fig. 4. It is not 
data-race free. In an execution in which P3 reads y before 
Pl writes it, these two opera t ions  are concurrent  and thus 
compete.  On the other  hand, the data-race  free program 
given in Fig. 5 is not  concurrent-wri te  free. In any given 
iteration, the variables x[ i ]  may all be written con- 
currently. 

Despite  this incomparabi l i ty ,  the class of data-race free 
p rograms  contains m a n y  more  p rograms  that  are of prac- 
tical use. In general, da ta  races are considered "anomalies"  
and it is reasonable to assume that  a substantial  portion of 
concurrent  p rograms  are data-race  free [9]. 

The following subsections demons t ra te  two ways of 
obtaining data-race free programs.  Both of these sections 
require some kind of blocking, the first th rough the use of 
programmer-specif ied busy-wait ing and the second 
through the augmenta t ion  of causal m e m o r y  with sema- 
phores. This use of blocking does not eliminate the advant- 
ages gained by our non-blocking implementa t ion  of causal 
memory .  Blocking is required for any kind of  synchroniza- 
tion, and data-race free p rog rams  require a p rog rammer  to 
do explicit synchronization.  The advantage  of causal 
m e m o r y  is that  it requires such blocking only when explicit 
synchronizat ion is required. It  does not require blocking 
for ordinary  memory  operat ions.  

6.3.1 P rograms  with await  s ta tements  

One c o m m o n  way to synchronize processes '  actions is by 
blocking a process until some desired condit ion becomes 
true. T o  capture this in our  p rog ram model,  we allow 
a p rogram to specify an act ion of the form await(x = v); in 
process histories, we will denote  this by a(x)v. This blocks 
the process until the desired condit ion is true, that  is, until 
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the shared variable x takes on the value v. It can be 
implemented by simple read actions as follows: 

repeat 
a := x 

u n t i l  a = v 

However, we consider an await as a single read that ap- 
pears in a local history only once each time it is invoked 
(any preceding reads of other values do not). Thus, 
a writes-into order ~ relates to a(x)v only w(x)v and not 
any writes of other values read before the await completes. 
It is not hard to see that Theorem 5 continues to apply 
when await statements are added to the model. (Singh [35] 
also augments the usual memory operations with await 
operations.) 

Many programs use await statements to synchronize 
the access to shared variables. For example, they can be 
used to effect barrier synchronization to control access to 
certain data. An example is given in Fig. 5. The example is 
a synchronous iterative linear equation solver that solves 
Ax = b, where A is a known n x n matrix, b is a known 
vector, and x is the vector that is to contain the solution. 
The solver operates in a series of phases: in each phase, 
process Pi computes a new value for the solution compon- 
ent x [i]. If we use xk[il to represent the value of the 
ith component of x in phase k, then new values are com- 
puted as follows: x k + x [i] �9 i- 1 = (b[~] - ~ ~ j =  1 A[i, j l x k [ j ]  -- 
Z~=i+iA[ i , j ]xk[ j ] ) /A[ i ,  il . Thus, the computing of 
xk+l[i] requires access to all xk[j]  (for j ~ i) from the 
previous iteration. The process p~ (1 < i < n) computes 
x[i  1. The process Po tests for convergence and synchro- 
nizes each other process p~ twice per iteration using a bar- 
rier technique: before reading the various x [ j I from phase 
k and before writing x[i] for phase k + 1. (By making 
the array t shared and having workers read alternately 
from x[i] and t i l l ,  we could eliminate the first syn- 
chronization.) 

The program in Fig. 5 is easily shown to be correct 
with sequential consistency. It is also not hard to see that it 
is data-race free. Access to x [i] is controlled by compl[i] 
and chgd[i 1. Suppose for example that pj ( j  ,t: i) reads the 
kth iteration value v from x[i] and let v' be the (k + 1)st 
iteration value of x[i  1. It is not hard to see that the 
following causal chain must exist (for any writes-into order 
~-*) in the k + 1st iteration: 

rj(x[il)v 7 wj(compl[j]) l  ~ ao(compl[j])l y 

Wo(compl[i])O ~ ai(compl[i])O V wi(x[il)v'" 

Thus, these two accesses to x[i] do not compete with 
respect to any ~ .  Similar arguments show that there are 
no competing accesses in any execution of the program; 
thus, the program is data-race free. Theorem 5 now implies 
it runs correctly on causal memory. In fact, it runs 
faster with causal memory than with sequential consist- 
ency [221. 

While the program presented in Fig. 5 requires a cen- 
tralized coordinator,  there also exists a fully distributed 
solution [15]. This solution is also data-race free and thus 
runs correctly with causal memory. 

6.3.2 Programs with semaphores 

While await statements allow for barrier synchronization 
such as that used in Fig. 5 above, they do not suffice for 
implementing other kinds of synchronization, such as criti- 
cal sections. Recall that await statements can be imple- 
mented with a "spinning read." However, it has been 
shown that the mutual exclusion necessary for implement- 
ing critical sections cannot be realized with causal memory 
without cooperation [81; for example, Peterson's algo- 
rithm [34] for mutual exclusion will not run correctly with 
causal memory. 

Mutual exclusion can be implemented with special 
synchronization primitives such as semaphores. A sema- 
phore is a variable holding a non-negative integer that 
supports two operations: V, which atomically increments 
the value, and P, which atomically decrements it. If the 
semaphore's value is zero, then a P operation is blocked 
until the semaphore becomes positive. 

It is possible to add semaphores to our definition of 
causal memory; call the result extended causal memory. 
Note that every operation on a semaphore reads and then 
writes the semaphore (e.g., a V operation first reads the 
semaphore and then writes an incremented value). Because 
of this, all operations on a semaphore are causally related, 
meaning that there can be no competing accesses to 
a semaphore. This implies that, in an execution with ex- 
tended causal memory, all operations on a semaphore 
appear in the same order to all processes. An implementa- 
tion of extended causal memory would require blocking 
and is beyond the scope of this paper. It is not hard to see 
that Theorem 5 applies to extended causal memory. 

Semaphores can be useful in synchronization. For  
example, the program in Fig. 5 can be modified to use 
semaphores. Let the arrays compl and chgd be of sema- 
phores, and let each write to an array element be a V op- 
eration and each await statement be a P operation. The 
program remains correct and data-race free. 

Semaphores can also be used to implement critical 
sections. With each critical section is associated a sema- 
phore with initial value 1. A process invokes P on the 
semaphore before entering a critical section and invokes 
V on the same semaphore upon leaving. 

6.4 Other work 

Other researchers have considered different programming 
models and the correctness of programs in those models 
on memories weaker than sequential consistency. 

Gibbons, Merritt, and Gharachorloo considered the 
DASH system's RCsc version of release consistency [17]. 
This is a "mixed" memory model in that it allows pro- 
grammers to specify (or "label") whether operations are 
"weak" or "strong". In this case, the strong operations are 
sequentially consistent, whereas weak operations are or- 
dered based on when they are invoked relative to the 
strong operations. A program is properly labeled if there 
are no data races among the weak operations. Gibbons 
et al. showed that, when run on RCsc, properly labeled 
programs admit only sequentially consistent executions. 
Attiya et al. showed a similar result for a different mixed 
memory model, called hybrid consistency [7]. They also 
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proved that only sequentially consistent executions are 
obtained if either all writes or all reads are labeled 
as strong. Our results contrast  with both of these in 
that we do not require a memory  model that allows 
strong (sequentially consistent) operations (except in 
Sect. 6.3.2). 

Singh [35] independently considered programming 
models for purely weak consistency models such as causal 
memory. His work classifies programs based on the types 
of executions they permit with a weaker form of memory. 
Our  work differs from his in that we classify programs 
based on how they execute with sequential consistency 
and then prove properties about  their execution on causal 
memory. We believe that this is a potentially more prod- 
uctive approach, as it is easier for programmers to 
reason about the behavior of programs with sequential 
consistency. 

Heddaya and Sinha [19] considered a variety of 
weaker forms of memory,  including slow memory [21]. 
They showed that all programs in the class of totally 
asynchronous iterative algorithms [12] run correctly on 
slow memory (and, therefore, on causal memory). We note 
here that the class of synchronous iterative algorithms is 
a broader class and not all of these programs run correctly 
with slow memory. However, these programs are data- 
race free (Fig. 5 gives an example) and run correctly with 
causal memory. 

Attiya and Friedman [9] considered the shared-mem- 
ory model provided by multiprocessors based on DEC- 
Alpha. They showed that data-race free programs will run 
with this model as if it were sequentially consistent. In 
addition, they gave a method of converting non- 
cooperative solutions to the mutual exclusion problem 
(which are not, in general, data-race free), derived with the 
assumption of sequential consistency, into solutions cor- 
rect with the Alpha-based memory  model. 

7 Discussion 

We have presented a new model of distributed shared 
memory called causal memory. We defined it formally 
using a simple framework that  allows it to be compared 
easily with other memory models. We exhibited a message- 
based implementation of causal memory.  Finally, we for- 
mally characterized two classes of programs that run cor- 
rectly with causal memory,  assuming that they do so under 
sequential consistency. 

Our  formal analysis shows causal memory to lie be- 
tween sequential consistency (a strong memory) and 
PRAM (a weak one). This suggests that it may be powerful 
enough to program easily (like strong memories) but at the 
same time allow inexpensive implementations (like weak 
memories). These are borne out by the results in Sects. 5 
and 6. 

Our  implementation of causal memory is non-blocking; 
a process can always complete a read or a write operation 
immediately, without having to communicate with other 
processes. All communication can take place in the back- 
ground between memory accesses. It is important to note 
that this implementation, like the definition of causal 
memory,  lies between sequential consistency and PRAM; 

it allows histories that are not sequentially consistent but 
no PRAM histories that are not causal. 

Section 6 shows that all concurrent-write free and 
data-race free programs will run correctly on causal 
memory. These are programs in which data accesses are 
controlled using explicit synchronization. Such synchroni- 
zation is often necessary even for distributed programs 
designed to run with sequentially consistent memory. For 
example, the synchronization in the program in Fig. 5 is 
necessary even with stronger memories, yet the program 
runs correctly with causal memory. By requiring only that 
the programmer  explicitly specify the synchronization 
needed, we allow him or her to use a form of memory that 
can be implemented much more efficiently. 

All these facts show that causal memory has the poten- 
tial to be an important  model for distributed shared mem- 
ory systems. To realize this potential, we are currently 
exploring implementations of causal memory  in actual 
distributed systems [6]. These are more practical than the 
theoretically motivated implementation given in Sect. 5, 
basing communication on entire pages rather than single 
variables (see the discussion at the end of that section). In 
the future, we plan to benchmark these implementations to 
better compare causal memory with other intermediate 
memory models. 
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