
Semantic Community Web Portals

S. Staab A;O;1;2, J. Angele O;3, S. Decker A;O;2, M. Erdmann A;2,

A.Hotho A;2, A.Maedche A;2, H.-P. Schnurr A;O;2, R. Studer A;O;2,

Y. Sure A;2

AInstitute for Applied Informatics and Formal Description Methods (AIFB),

University of Karlsruhe, 76227 Karlsruhe, Germany 4

OOntoprise GmbH, Hermann-Loens-Weg 19, 76275 Ettlingen, Germany 5

Abstract

Community web portals serve as portals for the information needs of particular

communities on the web. We here discuss how a comprehensive and
exible strategy

for building and maintaining a high-value community web portal has been conceived

and implemented. The strategy includes collaborative information provisioning by

the community members. It is based on an ontology as a semantic backbone for

accessing information on the portal, for contributing information, as well as for

developing and maintaining the portal. We have also implemented a set of ontology-

based tools that have facilitated the construction of our show case | the community

web portal of the knowledge acquisition community.

Key words: Web Portal; Collaboration; Ontology; Web Site Management;

Information Integration

1 Introduction

One of the major strengths of the web is that virtually everyone who owns

a computer may contribute high-value information | the real challenge is to

make valuable information be found. Obviously, this challenge can not only be

1 Corresponding author.
2 E-Mail: fstaab, decker, erdmann, hotho, maedche, schnurr, studer,

sureg@aifb.uni-karlsruhe.de
3 E-Mail: angele@ontoprise.de
4 http://www.aifb.uni-karlsruhe.de/WBS/
5 http://www.ontoprise.de/

achieved by centralized services, since the coverage of even the most powerful

crawling and indexing machines has shrunk in the last few years in terms of

percentage of the number of web pages available on the web. This means that

a proper solution to this dilemma should rather be sought along a principle

paradigm of the WWW, viz. self-organization.

Self-organization does not necessarily mean automatic, machine-driven orga-

nization. Rather, from the very beginning communities of interest have formed

on the web that covered what they deemed to be of interest to their group of

users in | what we here call | community web portals. Community web por-

tals are similar to Yahoo and its likes by their goal of presenting a structured

view onto the web, however they are dissimilar by the way knowledge is pro-

vided in a collaborative process with only few resources (manpower, money)

for maintaining and editing the portal. Another major distinction is that com-

munity web portals count in the millions, since a large percentage, if not the

majority, of web or intranet sites is not maintained by a central department,

but rather by a community of users. Strangely enough, technology for support-

ing communities of interest has not quite kept up with the complexity of the

tasks of managing community web portals. A few years ago such a community

of interest would have comparatively few sources of information to consider.

Hence, the overall complexity of managing this task was low. Now, with so

many more people participating a community portal of only modest size may

easily reach the point where it appears to be more of a jungle of interest rather

than a convenient portal to start from.

This problem gave us reason to reconsider the techniques for managing com-

munity web portals. We observed that a successful web portal would weave

loose pieces of information into a coherent presentation adequate for sharing

knowledge with the user. On the conceptual, knowledge sharing, level we have

found that Davenport and Prusak's maxime [6], \people can't share knowledge

if they don't speak a common language", is utterly crucial for the case of com-

munity web portals. The only di�erence to Davenport and Prusak's thoughts

derives from the fact that knowledge need not only be shared between people,

but also between people and machines.

At this point, ontologies and intelligent reasoning come in as key technologies

that allow knowledge sharing at a conceptually concise and elaborate level.

These AI techniques support core concerns of the \Semantic Web" (cf. Bern-

ers & Lee [3]). In this view, information on the web is not restricted to HTML

only, but information may also be formal and, thus, machine understandable.

The combination may be accounted for by an explicit model of knowledge

structures in an ontology. The ontology formally represents common knowl-

edge and interests that people share within their community. It is used to

support the major tasks of a portal, viz. accessing the portal through mani-

fold, dynamic, conceptually plausible views onto the information of interest in

1

a particular community, and providing information in a number of ways that

re
ect di�erent types of information resources held by the individuals.

Following these principles when putting the Semantic Community Web Por-

tal into practice, incurs a range of subtasks that must be accounted for and

requires a set of tools that support the accomplishment of these tasks. In Sec-

tion 2 we discuss requirements that we have derived from a particular applica-

tion scenario, the KA2 portal, that also serves as our testbed for development.

Section 3 describes how ontologies are created and used for structuring infor-

mation and, thus, appears as the conceptual cornerstone of our community web

portal. We proceed with the actual application of ontologies for the purposes

of accessing the KA2 portal by navigating and querying explicit and implicit

information through conceptual views on and rules in the ontology (Section

4). Section 5 covers the information provisioning part for the community web

portal considering problems like information gathering and integration. Then,

we describe the engineering process for our approach (Section 6) and present

the overall architecture of our system (Section 7). Before we conclude with

a tie-up of experiences and further work, we compare our work with related

approaches (Section 8).

2 Requirements for a Community Web Portal - The KA2 Example

Examples for community web portals abound. In fact, one �nds portals that

very well succeed regarding some of the requirements we describe in this sec-

tion. For instance, MathNet (http://www.math-net.de/) introduces knowl-

edge sharing through a database relying on Dublin Core metadata. Another

example, RiboWeb [1], o�ers means to navigate a knowledge base about ri-

bosomes. However, these approaches lack an integrated concept covering all

phases of a community web portal, viz. information accessing, information

providing, and portal development and maintenance. We pursue a system

that goes beyond isolated components towards a comprehensive solution for

managing community web portals.

2.1 Portal Access by Users

Navigating through a community web portal that is unknown is a rather dif-

�cult task in general. Information retrieval may facilitate the �nding of pieces

of texts, but its usage is not suÆcient in order to provide novice users with the

right means for exploring unknown terrain. This turns out to be a problem

particularly when the user does not know much about the domain and does

not know what terms to search for. In such cases it is usually more helpful for

2

the user to explore the portal by browsing | given that the portal is well and

comprehensively structured. Simple tree-structured portals may be easy to

maintain, but the chance is extremely high that an inexperienced user looking

for information gets stuck in a dead-end road. Here, we must face the trade-o�

between resources used for structuring the portal (money, man-power) and the

extent to which a comprehensive navigation structure may be provided. Since

information in the community portal will be continually amended by users,

richly interrelated presentation of information would usually require extensive

editing, such as is done, e.g., for Yahoo. In contrast, most community web

portals require that comprehensive structuring of information for presenta-

tion comes virtually for free.

There has been interesting research (e.g. Fr�ohlich et al. [13] or Kesseler [15])

that demonstrates that authoring, as well as reading and understanding of

web sites, pro�ts from conceptual models underlying document structures

\in the large", i.e. the interlinking between documents, as well as document

structures \in the small", i.e., the contents of a particular document. Rather

naturally, once a common conceptual model for the community exists and is

made explicit, it is easier for the individual to access a particular site. Hence,

in addition to rich interlinking between document structures \in the large",

comprehensive surveys and indices of contents and a large number of di�erent

views onto the contents of the portal, we require that the semantic structure of

the portal is made explicit at some point. The following sections will show that

this stipulation does not raise a con
ict with other requirements, but that it

�ts well with the requirements that arise from provisioning of information and

maintenance of the portal. Section 4 will elaborate on how such a conceptual

level is exploited for a complex web site with extensive browsing and querying

capabilities.

2.2 Information Provisioning through Community Members

An essential feature of a community web portal is the contribution of informa-

tion from all (or at least many) members of the community. Though, they share

some common understanding of their community, the information they want

to contribute comes in many di�erent (legacy) formats. Still, presentations

of and queries for information contents must be allowed in many ways that

need to be rather independent from the way by that information was provided

originally. The web portal must remain adaptable to the information sources

contributed by its members | and not vice versa. This requirement precludes

the application of database-oriented approaches (e.g., [21]), since they pre-

sume that a uniform mode of storage exists that allows for the structuring

of information at a particular conceptual level, such as a relational database

scheme. In real-world settings, one must neither assume that a uniform mode

3

for information storage exists nor that only one particular conceptual level is

adequate for structuring information of a particular community. In fact, even

more sophisticated approaches such as XML-based techniques that separate

content from layout and allow for multiple modes of presentation appear in-

suÆcient, because their underlying transformation mechanisms (e.g., XSLT or

XQL [24], [9]) are too inconvenient for integration and presentation of various

formats at di�erent conceptual levels. The reason is that they do not provide

the semantic underpinning required for proper integration of information.

In order to integrate diverse information, we require another layer besides the

common distinction into document content and layout, viz. explicit knowledge

structures that may structure all the information in di�erent formats for a

community at various levels of granularity. Di�erent information formats need

to be captured and related to the common ontology:

(1) Several types of metadata such as available on web pages (e.g. , HTML

META-tags),

(2) manual provision of data to the knowledge base, and

(3) a range of di�erent wrappers that encapsulate structured and semi-structured

information sources (e.g., databases or HTML documents).

Section 5 will address exactly these issues. The question now remains as to

how this kind of Semantic Community Web Portal is put into practice.

2.3 Development and Maintenance

A community web portal as we have stipulated constitutes a complex system.

Hence, the developers and editors will need comprehensive tool support for

presenting contents through views and links, and for maintaining consistency

in the system, as well as guidelines that describe the procedures for actually

building such a portal. Indeed, some of our �rst experiences with the example

portal described in Section 2.4 was that even users who were well acquainted

with all the principles hated to acquire detailed, technical knowledge in order

to provide information or maintain \their" information in the portal. Thus, we

need a comprehensive concept that integrates tools and methods for building

the portal, capturing information, and presenting its contents to the com-

munity. While some of the tools will be touched upon in subsequent sections,

development and maintenance issues in general will be dealt with in Section 6.

4

2.4 The Example

The example that we draw from in the rest of this paper is the portal for the

\Knowledge Annotation initiative of the Knowledge Acquisition community"

(KA2; cf. [2]). The KA2 initiative has been conceived for semantic knowledge

retrieval from the web building on knowledge created in the KA community.

To structure knowledge, an ontology has been built in an international collab-

oration of researchers. The ontology constitutes the basis to annotate WWW

documents of the knowledge acquisition community in order to enable intelli-

gent access to these documents and to infer implicit knowledge from explicitly

stated facts and rules from the ontology. Though KA2 has provided much of

the background knowledge we now want to exploit, it lacked much of the ease

for accessing and providing community knowledge that we aim at with the

KA2 community web portal.

Given this basic scenario, which may be easily transfered towards other set-

tings for community web portals, we have investigated the techniques and

built the tools that we describe in the rest of this paper. Nevertheless the

reader may note that we have not yet achieved a complete integration of all

tools and neither have we exploited all our technical capabilities in our up and

running demonstration portal (http://ka2portal.aifb.uni-karlsruhe.de).

3 Structuring the Community Web

Let us now summarize the principal stipulations we have found so far. We

need

� a conceptual structure for presenting information to the user,

� support for integrating information from di�erent granularities stored in

various formats,

� comprehensive tool support for providing information, developing and main-

taining the portal, and

� a methodology for implementing the portal.

In particular, we need an explicit structuring mechanism that pervades the

portal and reaches from development and maintenance, over provisioning to

presentation of information. For this purpose, we use an ontology as the con-

ceptual backbone of our community web portal.

5

3.1 The Role of Ontologies

An ontology is an explicit speci�cation of a shared conceptualization [14]. Their

usefulness for information presentation (e.g. [13]), information integration (e.g.

[30]) and system development (e.g. [2]) has been demonstrated recently. We

introduce another application area, viz. the use of ontologies for intranet man-

agement or, more speci�c in our example, for community portal management.

The role of ontologies is the capturing of domain knowledge in a generic way

and the provision of a commonly agreed understanding of a domain, which

may be reused and shared within communities or applications. Though only

few communities have explicitly modeled their knowledge structures yet (ex-

amples are UMLS [26], Altmann et al. [1]), practically all share a common

understanding of their particular domain.

Hence, our strategy is to use an ontology as a backbone of our community

web portal. In fact, we even allow the usage of multiple views that re
ect

diverging standards of understanding and usage of terminology in di�erent

subcommunities or for di�erent groups of users (e.g., novice vs. expert). Rules

may then be used to translate between di�erent views such that one may view

the information contributed from another subcommunity.

3.2 Modelling

The KA2 ontology consists of (i) concepts de�ning and structuring important

terms, (ii) their attributes specifying properties and relations, and (iii) rules

allowing inferences and the generation of new knowledge. Our representation

language for de�ning the ontology is F-Logic [16], which provides adequate

modeling primitives integrated into a logical framework.

To illustrate the structure of the ontology, the screenshot in Figure 1 depicts

part of the KA2 ontology as it is seen in the ontology development environment

OntoEdit (cf. Section 6.2.1). The leftmost window shows the is-a-relationship

that structures the concepts of the domain in a (possibly multiple) taxonomy.

Attributes and relations of concepts are inherited by subconcepts. Multiple

inheritance is allowed as a concept may �t into di�erent branches of the tax-

onomy. In Figure 1, attributes and relations of the concept Researcher appear

in the middle window. Some of these attributes, like firstName and lastName

are inherited from the superordinate concept Person. Relations refer to other

concepts, like worksAtProject denoting a relation between Researcher and

Project.

We use the KA2 ontology to manage and structure the community portal. The

structure of concepts with its attributes and relations supports user navigation

6

Figure 1. Part of the KA2 Ontology in an OntoEdit-Screenshot

through the domain as detailed in Section 4. Beyond simple structuring we

model rules allowing inferencing and by that means the generation of new

knowledge. The rightmost window in Figure 1 shows some rules of our KA2

ontology. One of them, the ProjectCooperation rule, describes the cooperation

of two researchers working in the same project. The rule states that, two

researchers cooperate, if a Researcher X works at a Project Proj and if a

Researcher Y works at the same Project Proj and X is another person than

Y . The rule is formulated in an F-Logic representation:

(1) FORALL X , Y , Proj

X :Researcher [cooperatesWith!! Y :Researcher]

X :Researcher [worksAtProject!! Proj:Project]

AND Y :Researcher [worksAtProject !! Proj:Project]

AND NOT equal(X , Y).

With this rule, we may infer, that researcher X cooperates with researcher

Y due to the fact that they work in the same project | even, if there is no

explicit fact, that they cooperate.

7

4 Accessing the Community Web Portal

A major requirement from Section 2 has been that navigation and querying of

the community web portal need to be conceptually founded, because only then

a structured, richly interwoven presentation may be compiled on the
y. In

fact, we elaborate in this section how a semantic underpinning, like the KA2

ontology described above, lets us de�ne a multitude of views that dynamically

arrange information. Thus, our system may provide the rich interlinking that

is most adequate for the individual user and her navigation and querying of

the community web portal that we have aimed at in the beginning. We start

with a description of the query capabilities of our representation framework.

The framework builds on the very same F-Logic mechanism for querying as it

did for ontology representation and, thus, it may also exploit the ontological

background knowledge. Through this semantic level we achieve the indepen-

dence from the original, syntactically proprietary, information sources that we

stipulated earlier. Nevertheless, F-Logic is as poorly suited for presentation

to naive users as any other query language. Hence, its use is mostly disguised

in various easy-to-use mechanisms that more properly serve the needs of the

common user (cf. Section 4.2), while it still gives the editor all the power of the

principal F-Logic representation and query capabilities. Finally in this section,

we touch upon some very mission-critical issues of the actual inference engine

that answers queries and derives new facts by combining facts with structures

and rules from the ontology.

4.1 Query Capabilities

Though information may be provided in a number of di�erent formats our

underlying language for representation and querying is F-Logic. For instance,

using a concrete example from our showcase the following query asks for all

publications of the researcher \Studer".

(2) FORALL Pub

EXISTS ResID ResID:Researcher [lastName !! \Studer";

publication !! Pub].

The substitutions for the variable Pub constitute the publications queried by

this expression. The expressiveness and usability of such queries is improved

by the possibility to use a simple form of information retrieval using regular

expressions whithin queries. For instance the following query asks for abstracts

that contain the word \portal":

8

(3) FORALL Abstr

EXISTS Pub, X

Pub:Publication [abstract !! Abstr]

AND regexp (\[pjP]ortal", Abstr, X).

The substitutions for the variableAbstr are the abstracts of publications which

contain the word \portal".

In addition, the query capabilities allow to make implicit information explicit.

They use the background knowledge expressed in the KA2 ontology including

rules as introduced in Section 3.2. If we have a look at web pages about

research projects, information about the researchers (e.g. their names, their

aÆliation, ...) involved in the projects is often explicitly stated in HTML.

However, the fact that researchers who are working together in projects are

cooperating is not explicitly stated. A question might be: \Which researchers

are cooperating with other researchers?" Querying for cooperating researchers

the implicit information about project cooperation of researchers is exploited.

The query may be formulated by:

(4) FORALL ResID1 , ResID2

ResID1 :Researcher [cooperatesWith !! ResID2].

The result set includes explicit information about a researchers cooperation

relationships, which are stored in the knowledge warehouse, and also implicit

information about project cooperation between researchers derived using the

project-cooperation rule modeled in the ontology.

4.2 Navigating and Querying the Portal

Usually, it is too inconvenient for users to query the portal using F-Logic.

Therefore we o�er a range of techniques that allow for navigating and querying

the community web:

� A hypertext link may contain a query which is dynamically evaluated when

one clicks on the link. Browsing is made possible through the de�nition of

views onto top-level concepts of the KA2 ontology, such as Persons, Projects,

Organizations, Publications, Research Topics and Events. Each of these topics

can be browsed using prede�ned views. For example, a click on the Projects

hyperlink results in a query for all projects known at the portal. The query

is evaluated and the results are presented to the user in a table.

� A choice of concepts, instances, or combinations of both may be issued to the

user in HTML forms. Choice options may be selected through check boxes,

9

selection lists, or radio buttons. For instance, clicking on the Projects link

(cf. upper part of Figure 2) an F-Logic query is evaluated and all projects

contained in the portal are retrieved. The results can be restricted using

topic-speci�c attributes contained in the KA2 ontology for projects, such

as topics of a project, people involved etc. The selection list (e.g. for all

people involved in projects) is generated dynamically from the information

contained in the knowledge warehouse (cf. Section 5.4). Using the form's

contents a query may be compiled and evaluated.

Figure 2. Accessing the Community Web Portal

� A query may also be generated by using the hyperbolic view interface (cf.

Figure 3). The hyperbolic view visualizes the ontology as a hierarchy of

concepts. The presentation is based on hyperbolic geometry (cf. [18]) where

nodes in the center are depicted with a large circle, whereas nodes at the

border of the surrounding circle are only marked with a small circle. This

visualization technique allows a survey over all concepts, a quick navigation

to nodes far away from the center, as well as a closer examination of nodes

and their vicinity. When a user selects a node from the hyperbolic view,

a form is presented which allows the user to select attributes or to insert

values for the attributes. An example is shown in Figure 3. The user is

searching for the community member \Studer" and his photo. Based on the

selected node and the corresponding attributes, a query is compiled. The

query-result is shown in the right part of Figure 2.

� Furthermore, queries created by the hyperbolic view interface may be stored

10

using the personalization feature. Queries are personalized for the di�erent

users and are available for the user in a selection list. The stored queries

can be considered as semantic bookmarks. By selecting a previously created

bookmark, the underlying query is evaluated and the updated results are

presented to the user. By this way, every user may create a personalized

view on the portal.

� Finally, we o�er an expert mode. The most technical (but also most powerful

and
exible) way for querying the portal requires that F-Logic is typed in

by the user. This way is only appropriate for users who are very familiar

with F-Logic and the KA2 ontology.

Figure 3. Hyperbolic View Interface

4.3 The Inference Engine

The inference engine answers queries and it performs derivations of new knowl-

edge by an intelligent combination of facts with an ontology denoted in F-Logic

like the examples described above. While the expressiveness of F-Logic and its

Java-powered realization in our inference engine constitute two major argu-

ments for using it in a semantic community web portal, wide acceptance of a

service like this also depends on prima facie unexciting features like speed of

service. The principal problem we encounter here is that there exist worst case

situations (not always recognizable as such by the user) where a very large set

of facts must be derived by the inference engine in order to solve a particular

query. While we cannot guarantee for extremely fast response times, unless

11

we drastically cut back on the expressiveness of our representation formalism,

we provide several strategies to cope with performance problems:

� The inference engine may be con�gured to subsequently deliver answers

to the query instead of waiting for the entire set of answers before these

answers are presented to the user. Thus, answers that are directly available

as facts may be presented immediately while other anwers that have to be

derived using rules are presented later.

� The inference engine caches all facts and intermediate facts derived from

earlier queries. Thus, similar queries or queries that build on previously

derived facts may be answered fast.

� Finally, we allow the inference engine to be split into several inference en-

gines that execute in parallel. Every engine may run on a di�erent processor

or even a di�erent computer. Every inference engine administers a subset

of the rules and facts. A master engine coordinates user queries and dis-

tributes subqueries to the slave engines. These slave engines either answer

these subqueries directly or distribute incoming subqueries to other infer-

ence engines.

The reader may note that though we have provided all the technical means to

pursue one or several of these strategies, our showcase has not reached yet the

amount of facts that really necessitates any performance enhancing strategies.

5 Providing Information

\One method �ts all" does not meet the requirements we have sketched above

for the information provisioning part of community web portals. What one

rather needs is a set of methods and tools that may account for the diversity

of information sources of potential interest to the community portal. While

these methods and tools need to obey di�erent syntactic mechanisms, coherent

integration of information is only possible with a conceptual basis that may

sort loose pieces of information into a well-de�ned knowledge warehouse. In

our setting, the conceptual basis is given through the ontology that provides

the background knowledge and that supports the presentation of information

by semantic, i.e. rule-enhanced, F-Logic queries. Talking about the syntactic

and/or interface side, we support three major, di�erent, modes of informa-

tion provisioning: First, we handle metadata-based information sources that

explicitly describe contents of documents on a semantic basis. Second, we

align regularities found in documents or data structures with the correspond-

ing semantic background knowledge in wrapper-based approaches. Thus, we

may create a common conceptual denominator for previously unrelated pieces

of information. Finally, we allow the direct provisioning of facts through our

fact editor. All the information is brought together in a knowledge warehouse

12

that stores data and metadata alike. Thus, it mediates between the original

information sources and the navigating and querying needs discussed in the

previous section.

5.1 Metadata-based Information

Metadata-based information enriches documents with semantic information

by explicitly adding metadata to the information sources. Over the last years

several metadata languages have been proposed which can be used to annotate

information sources. In our approach the speci�ed ontology constitutes the

conceptual backbone for the di�erent syntactic mechanisms.

Current web standards for representing metadata like RDF [28] or XML [27]

can be handled within our semantic web portal approach. On the one hand,

RDF facts serve as direct input for the knowledge warehouse, on the other

hand, RDF facts can be generated from information contained in the portal

knowledge warehouse. We have developed SiLRI (Simple Logic-based RDF

Interpreter), a logic-based inference engine implemented in Java that can draw

inferences based on the RDF data model (cf. Decker et al. [7]).

XML provides the chance to get metadata for free, i.e. as a side product

of de�ning the document structure. For this reason, we have developed a

method and a tool called DTDMaker for generating DTDs out of ontolo-

gies [10]. DTDMaker derives an XML document type de�nition from a given

ontology in F-Logic, so that XML instances can be linked to an ontology.

The linkage has the advantage that the document structure is grounded on

a true semantic basis and, thus, facts from XML documents may be directly

integrated into the knowledge warehouse.

HTML-A, early proposed by Fensel et al. [11], is an HTML extension which

adds annotations to HTML documents using an ontology as a metadata schema.

HTML-A has the advantage to smoothly integrate semantic annotations into

HTML and prevents the duplication of information. An example is an HTML

page that states that the text string \Rudi Studer" is the name of a researcher

where the URL of his homepage is used as his object identi�er. Using HTML-A

this could be realized by:

<HTML>

<BODY>

<H1> HomePage of

Rudi

13

Studer

</H1>

...

</BODY>

</HTML>

The keyword page refers to the webpage that contains the ontological mark-

up. The �rst annotation denotes an object of type Reseacher that represents

the homepage of Rudi Studer. Subsequent annotations de�ne the firstName

and the lastName attributes of this object by relating to the values from

the body of the corresponding anchor-tags. To facilitate the annotation of

HTML, we have developed an HTML-A annotation tool called OntoPad. An

example annotation of an email of the Researcher Rudi Studer using OntoPad is

illustrated in Figure 4. Similarly to HTML-A, it is possible to enrich documents

generated with Microsoft OÆce applications with metadata by using our plug-

ins Word-A and Excel-A.

Figure 4. OntoPad - Providing Semantics in HTML Documents using HTML-A

5.2 Wrapper-based Information

In general, annotating information sources by hand is a time consuming task.

Often, however, annotation may be automated when one �ndes regularities

in a larger number of documents. The principle idea behind wrapper-based

information is that there are large information collections that have a similar

14

structure. We here distinguish between semi-structured information sources

(e.g. HTML) and structured information sources (e.g. relational databases).

5.2.1 Semi-structured Sources

In recent years several approaches have been proposed for wrapping semi-

structured documents, such as HTML documents. Wrapper factories (cf. Sahuguet

et al. [25]) and wrapper induction (cf. Kushmerick [17]) have considerably fa-

cilitated the task of wrapper construction. In order to wrap directly into our

knowledge warehouse we are currently developing our own wrapper approach

that directly alignes regularities in semi-structured documents with their cor-

responding ontological meaning.

5.2.2 Structured Sources

Though, in the KA2 community web there are no existing information systems,

we would like to emphasize that existing databases and other legacy-systems

may contain valuable information for building a community web portal. On-

tologies have shown their usefulness in the area of intelligent database integra-

tion. They act as information mediators (cf. Wiederhold & Genesereth [30])

between distributed and heterogeneous information sources and the applica-

tions that use these information sources. Existing entities in legacy systems

are mapped onto concepts and attributes de�ned in the ontology. Thus, ex-

isting information may be pumped into the knowledge warehouse by a batch

process or it may be accessed on the
y.

5.3 Fact Editor

The process of providing new facts into the knowledge warehouse should be

as easy as possible. For this reason we o�er the hyperbolic interface tool (cf.

Figure 3) which may be used as a Fact Editor. In this mode its forms are

not used to ask for values, but to insert values for attributes of instances of

corresponding concepts from the ontology. The Fact Editor is also used for

maintaining the portal, viz. to add, modify, or delete facts.

5.4 Knowledge Warehouse

The di�erent methods and tools we have just described feed directly into the

knowledge warehouse or indirectly when they are triggered by a web crawl. The

warehouse itself hosts the ontology, i.e. the metadata level, as well as the data

15

proper. The knowledge warehouse is indirectly accessed, through a user query

or a query by an inference engine such as described in Section 4. Hence, one

may take full advantage of the distribution capabilities of the inference engine

and, likewise, separate the knowledge warehouse into several knowledge bases

or knowledge marts. Facts and concepts are stored in a relational database,

however, they are stored in a rei�ed format that treats relations and concepts

as �rst-order objects and that is therefore very
exible with regard to changes

and amendments of the ontology.

6 Development of Web Portals

6.1 The Development and Maintenance Process

Even with the methodological and tool support we have described so far, de-

veloping a web portal for a community of non-trivial size remains a complex

task. Strictly ad-hoc rapid prototyping approaches easily doom the construc-

tion to fail or they easily lead up to unsatisfactory results. Hence, we have

thought about a more principled approach towards the development process

that serves as means for documenting development, as well as for communi-

cating principal structures to co-developers and editors of the web portal. We

distinguish di�erent phases in the development process that are illustrated in

Figure 5. For the main part this model is a sequential one. Nevertheless, at

each stage there is an evaluation as to whether and as to how easily further de-

velopment may proceed with the design decisions that have been accomplished

before. The results feed back into the results of earlier stages of development.

In fact, experiences gained by running the operational system often �nd their

way back into the system.

The main stages of the development process and their key characteristics are

given in the following:

� The process starts with the elicitation of user requirements in the require-

ments elicitation phase. In this phase, requirements about important and

interesting topics in the domain are collected, the information goals of po-

tential users of the portal are elicited, and preferences or expectations con-

cerning the structure and layout of presented information is documented.

Results of this very �rst phase constitute the input for the design of the web

site and for preliminary HTML pages and a�ect the formal domain model

embodied in the ontology.

� The requirements determine, e.g., which views and queries are useful for

users of the portal, which navigation paths they expect, how di�erent web

pages are linked, or which functionality is provided in di�erent areas of the

16

portal. Requirements like these are realized in the web site design. This

design phase may be performed independently to a very large extent from

the underlying formal structuring, i.e. the ontology. Since a mock-up version

of the web site is developed early in the development phase, one may check

early whether the system to be developed really meets the users' needs.

� In parallel to the development of the structure and layout of the web site

an ontology engineering process is started. The �rst phase elicits relevant

domain terms that need to be re�ned and amended in the ontology engi-

neering phase. First, the static ontology parts, i.e. the concept hierarchy, the

attributes, and relations between concepts are formally de�ned. Thereafter,

rules and constraints are developed. Rule development may necessitate a

major revision of the concept hierarchy. For instance, new sub-concepts

may have to be introduced, attributes may have to turn into relations or

into other concepts, or relations may have to become concepts. This (intra-

ontology) engineering cycle must be performed until the resulting ontology

remains suÆciently stable.

� In the query formulation step the views and queries described in one of the

earlier phases are formalized. At �rst, their functionality is tested indepen-

dently from the web site design. To express the information needs formally,

the developer has to access the ontology, whereby additional rules or rela-

tions that de�ne new views or ease the de�nition of queries may become

necessary. In order to test ontology and queries, a set of test facts has to

be prepared. During this process of testing, inconsistencies in the ontology

may be detected, which may lead to a feed back-loop back into the ontology

engineering phase.

� Finally, web pages are populated, i.e. the queries and views developed during

website design, and formalized and tested during query formalization are

integrated into the operational portal. Information may be accessed via the

portal as soon as a suÆcient amount has been made available as outlined

in Section 5.

Figure 5. The Development Process of the Community Web Portal

During operation of the community portal it must be fed and maintained:

17

� The user community provides facts via numerous input channels (cf. Section

5).

� These facts may contain errors or undesired contents, or the integration of

di�erent sources may lead to inconsistencies. To counter problems like these,

an editor is responsible to detect these cases and act appropriately. The de-

tection of inconsistencies is supported by the inference engine via constraints

formulated in F-Logic. The editor then has to decide how to proceed. He

may contact responsible authors, simply ignore con
icting information, or

he may manually edit the contents.

� Changing requirements of the community must be re
ected in the portal,

e.g. popularity increasing in new �elds of interests or technologies or view-

points that shift may incur changes to the ontology, new queries, or even a

new web site structure. In order to meet such new requirements, the above

mentioned development process may have to be partially restarted.

6.2 Tools for Development and Maintenance

The previous subsection has described the principal steps for developing a

community web portal. For eÆcient development of a community web portal,

however, the process must be supported by tools. In the following, we describe

the most important tools that allow us to facilitate and speed up the develop-

ment and maintenance process. The tools cover the whole range from ontology

engineering (OntoEdit), query formulation (Query Builder), up to the creation

of dynamic web pages with the help of HTML/JavaScript templates. We just

want to note here that we also rely on common HTML editing tools for web

site design.

6.2.1 OntoEdit.

The OntoEdit toolset has already been mentioned in Section 3.2 and a screen-

shot is shown in Figure 1. OntoEdit is used during terminology engineering

and rule development. It delivers a wide range of functionalities for the engi-

neering of ontologies. As introduced in Section 3, ontology modeling | from

our point of view | includes the creation of concepts, attributes, relations,

rules, and general metadata. To reduce complexity and to simplify the diÆ-

cult task of ontology modeling, OntoEdit o�ers di�erent views on the main

modeling elements, thus facilitating the complex process of ontology modeling.

The modeling task is usally started with introducing new concepts and orga-

nizing them into a hierarchy (cf. left part of Figure 1). The next step of the

modeling task uses the concepts to model attributes of and relations between

concepts. On the basis of these knowledge structures, OntoEdit includes a rule

view enabling the user to model rules which state common legalities (e.g. the

18

symmetry of the cooperation relationship between two persons).

6.2.2 Query Builder

While queries with low complexity can be expressed in F-Logic using the rule

debugger alone, in other cases it is more convenient to create queries using

our Query Builder tool. The hyperbolic view (cf. Section 4) interface may be

con�gured for this tool to allow the user to generate queries instead of posing

queries. Such queries may then be integrated as links into a web page with

the help of a common web page editor by copying and pasting it into the web

editors form.

6.2.3 HTML/JavaScript Templates

Another time consuming activity is the development of the web pages that as-

semble queries from parts and that display the query results. For that purpose

we have developed a library of template pages:

� Templates with check boxes, radio boxes, and selection lists are available.

These HTML forms produce data that is used to generate queries. These

queries can then be sent to the inference engine using submit buttons.

� The results of a query are fed into a template page as Javascript arrays.

From these data di�erent presentation forms may be generated 6 :

� A general purpose template contains a table that presents answer tuples

returned by the inference engine in a HTML table. The template provides

functions to sort the table in ascending or descending order on di�erent

columns. Substitutions of certain variables may be used as URLs for other

entries in the table. Di�erent data formats are recognized and processed

according to their suÆxes, i.e. a \.gif" or \.jpg" su�x is interpreted as a

picture and rendered as such (cf. Figure 2 for an example).

� Results may also be fed into selection lists, radio boxes, or check lists.

Thus, query results can provide the initial setting of further HTML form

�elds. These forms can be used to create new queries based on the results

of previous ones.

� A user can create queries using the hyperbolic view interface (cf. Section

4). As a personalization feature of our web portal he can store these queries

by assigning a personal label. All stored queries can be accessed through a

selection list, to restart the query and retrieve the most up to date answers.

This list of stored queries provides individual short cuts to often needed

information.

6 For the future, we envision that XML is returned by the inference engine and

outlayed by XSL style sheets.

19

The template pages are compatible with some standard web editors, i.e. the

web designer is able to rearrange or redesign the elements without destroying

their functionality.

7 The System Architecture

This section summarizes the major components of our system. An overall

view of our system is depicted in Figure 6, which includes the core modules

for accessing and maintaining a community web portal:

� Providing Information in our community web portal has already been in-

troduced in Section 5. In our approach we distinguish between metadata-

based, wrapper-based and fact-based information. Metadata-based infor-

mation (such as HTML-A, Word-A, Excel-A, RDF, XML) is collected from

the web using a fact crawler. Wrapper-based information means integrat-

ing semi-structured and structured information semi-automatically into the

knowledge warehouse. Using the Fact Editor factual information can be

directly added to the knowledge warehouse.

� The Knowledge Warehouse is the knowledge base of the community web

portal. It is structured according to the ontology. The facts contained in

the knowledge warehouse and the ontology itself serve as the input for the

inference engine.

� The Inference Engine uses information from the knowledge warehouse to

answer queries. In addition, it uses ontological structures and rules to derive

additional factual knowledge that is only implicitly provided. This inference

mechanismmay also be used to reduce the maintenance e�orts, because facts

that may be automatically derived from other facts need not be provided

by some member of the community.

� Accessing the community web portal means navigating and querying for

information as described in Section 4. Queries embedded in the portal or

formulated using the hyperbolic view interface (cf. Figure 3) are posted to

the inference engine. The results may be delivered in di�erent forms like

HTML, XML, or RDF.

8 Related Work

This section positions our work in the context of existing web portals like

Yahoo and Netscape and also relates our work to other technologies that are

or could be deployed for the construction of community web portals.

One of the well-established web portals on the web is Yahoo , a manually main-

20

Figure 6. System Architecture

tained web index (http://www.yahoo.com). Yahoo allows information seekers

to retrieve web documents by navigating a tree-like taxonomy of topics. Each

web document indexed by Yahoo is classi�ed manually according to a topic

in the taxonomy. In contrast to our approach Yahoo only utilizes a very light-

weight ontology that solely consists of categories arranged in a hierarchical

manner. Yahoo o�ers keyword search (local to a selected topic or global) in

addition to hierarchical navigation but is only able to retrieve complete doc-

uments, i.e. it is not able to answer queries concerning the contents of doc-

uments, not to mention to present or combine facts being found in di�erent

documents. Due to its weak ontology Yahoo cannot extend information to in-

clude facts that could be derived through ontological axioms. The mentioned

points are realized in our portal that builds upon a rich ontology enabling the

portal to give detailed and integrated answers to queries. Furthermore, our

portal supports the active provision of information by the user community.

Thus we get rid of the manual and centralized classi�cation of documents.

The portal is made by the community for the community.

A portal that is specialized for a scienti�c community has been built by the

Math-Net project, an initiative for \setting up the technical and organizational

infrastructure for eÆcient, inexpensive and user driven information services for

mathematics" [5]. At http://www.math-net.de/ the portal for the (german)

mathematics community is installed that makes distributed information from

several mathematical departments available. The scope of o�ered informa-

tion ranges from publications such as preprints and reports to information

about research projects, organizations, faculty etc. All this data is accompa-

nied by meta-data according to the Dublin Core (http://www.purl.org/dc)

21

Standard [29] that makes it comparatively easy to provide structured views

onto the stored information. The 15 elements of Dublin Core primarily de-

scribe meta-data about a resource, e.g. its title, its author, or its format. The

Dublin Core element \Subject" is used to classify resources as students, as

conferences, as research groups, as preprints etc. A �ner classi�cation (e.g.

via attributes) is not possible except for instances of the publication category.

Here the common MSC-Classi�cation (Mathematical Subject Classi�cation;

http://www.ams.org/msc/) is used that resembles an ontology of the �eld of

mathematics. The pros of Math-Net lie in the \important organizational task"

of \establishing a network of persons [...] dedicating their time and work to the

electronic information system" [5] and in the technical task of collecting var-

ious resources and integrating them to make them uniformly accessible. The

cons of Math-Net are the lack of a rich ontology that could enhance the quality

of search results (esp. via inferencing), and the restriction to information in

the DC format.

Parts of Math-Net are implemented on the basis of the Hyperwave system [21],

an elaborated web server that is based on databases providing information in

a structured manner. Hyperwave has a lot of fancy and useful features such

as external links, automatic handling of outdated pages, avoiding of dangling

links, presenting di�erent views for di�erent users, etc. The system is a useful

basis for the development of a portal, but since it does not have the notion of

an ontology, the portal is restricted to the power of the underlying database.

Its capabilities clearly stay behind the inferential properties of Ontobroker's

inference engine.

Another community-focused portal is RiboWeb [1], an ontology-based data

resource of published ribosome data and computational models that can pro-

cess this data. RiboWeb exploits several types of ontologies to provide se-

mantics for all the data and computational models that are o�ered. These

ontologies are speci�ed in the OKBC (Open Knowledge Base Connectivity)

representation language [4]. The primary source of data is given by published

scienti�c literature which is manually linked to the di�erent ontologies. Both

systems, RiboWeb and our community portal, rely on ontologies for o�ering a

semantic-based access to the stored data. However, the OKBC knowledge base

component of RiboWeb does not support the kind of automatic deduction that

is o�ered by the inference engine of Ontobroker. Furthermore, RiboWeb does

not include wrappers for automatically extracting information from the given

published articles. On the other hand, the computational modules of RiboWeb

o�er processing functionalities that are not part of (but also not intended for)

our community web portal.

The Ontobroker project [8] lays the technological foundations for the KA2

portal. On top of Ontobroker the portal has been built and organizational

structures for developing and maintaining it have been established. Therefore,

22

we compare our system against approaches that are similar to Ontobroker.

The approach closest to Ontobroker is SHOE [19]. In SHOE, HTML pages are

annotated via ontologies to support information retrieval based on semantic

information. Besides the use of ontologies and the annotation of web pages

the underlying philosophy of both systems di�ers signi�cantly: In SHOE, ar-

bitrary extensions to ontologies can be introduced on web pages and no cen-

tral provider index is maintained. As a consequence, when specifying a query,

users can not know all the ontological terms which have been used and the

web crawler will miss annotated web pages. In contrast, Ontobroker relies on

the notion of a community de�ning a group of web users who share a common

understanding and, thus, can agree on an ontology for a given �eld. There-

fore, both the information providers and the clients have complete knowledge

of the available ontological terms, a prerequisite for building a community web

portal. SHOE and Ontobroker also di�er with respect to their inferencing ca-

pabilities. SHOE uses description logic as its basic representation formalism,

but it o�ers only very limited inferencing capabilities. Ontobroker relies on

Frame-Logic and supports complex inferencing for query answering.

WebKB [20] aims at providing intelligent access to Web documents. WebKB

uses conceptual graphs for representing the semantic content of Web docu-

ments. It embeds conceptual graph statements into HTML tags to provide

meta data about the contents of HTML documents. These statements are

based on an ontology de�ning the concepts and relations which may be used

for annotating the HTML documents. WebKB pursues a rather similar ap-

proach when compared to our backbone system Ontobroker: both systems

use a general representation language for representing meta data (conceptual

graphs and Frame logic, respectively) and embed meta data within the HTML

source code. However, Ontobroker (and thus our portal) provides additional

means for accessing non-HTML resources, e.g. exploiting XML, RDF meta-

data, or using ontology-based wrappers. Furthermore, the tool environment

of WebKB does not o�er the methods and tools that are needed to build a

community portal on top of WebKB and, thus, to make an application out of

a core technology.

The STRUDEL system [12] applies concepts from database management sys-

tems to the process of building Web sites. STRUDEL uses a mediator ar-

chitecture to generate such Web sites. Wrappers transform the external data

sources, being either HTML pages, structured �les or relational databases,

into the semi-structured data model used within STRUDEL's data repository.

STRUDEL then uses so-called \site-de�nition queries" to create multiple views

to the same Web site data. These queries are de�ned in STRUQL, a query

language for manipulating semi-structured data. When compared to our ap-

proach, the STRUDEL system lacks the semantic level that is provided in our

approach by the domain ontology and the associated inference engine.

23

The Observer-System [23] uses a network of ontologies to provide access to

distributed and heterogeneous information. Each ontology can describe the

information contained in one or more information repositories. Since these

ontologies are linked explicitly by so called inter-ontology relationships (syn-

onym, hypernym, and hyponym), the information stored in the di�erent re-

sources are linked as well. A user selects an ontology (a vocabulary) to express

his query. The Observer system accesses the resources described by the selected

ontology to answer the query. If the answers are not satisfactory other ontolo-

gies and thus, other resources can be accessed. Observer provides means to

state queries but does not o�er prede�ned or customizable views.

From our point of view, our community portal system is rather unique with

respect to the collection of methods used and the functionality provided. Our

approach for accessing information, providing information and maintaining

the portal are more comprehensive than those found in other portals. We are

able to o�er this functionality since our backbone system Ontobroker and its

add-ons provide more powerful techniques for e.g. inferencing or extracting

information from various sources than those o�ered by comparable systems.

Moreover, all these methods are integrated into one uniform system environ-

ment.

9 Conclusion

We have demonstrated in this paper how a community may build a community

web portal. The portal is centered around an ontology that structures infor-

mation for the purposes of presentation and provisioning of information, as

well as for the development and maintenance of the portal. We have described

a small scale example, the KA2 portal, that illustrates some of our techniques

and methods. In particular, we have developed a set of ontology-based tools

that allow to present multiple views onto the same information appropriate

for browsing, querying, and personalizing web pages. Adding information in

the up and running portal is possible for members of the community or the

editors of the portal through a set of methods that support the integration

of metadata and (semi-)structured information sources, as well as the man-

ual manipulation of data. The tools that support development of the portal

and maintenance by the editors are also ontology-based and, thus, �t together

smoothly with the overall process of running the community portal.

The concepts that we have explained are general enough to apply to many

other domains. As a second application, we have constructed an intranet man-

agement application for an IT service company, the rationale being that the

people in a company just form a community with common interests.

24

For the future, we will need to tackle some very practical issues, like improving

and integrating the interfaces of our tools, adding a component for session

management, or versioning of views and ontologies. A major experience so far

has been that community members are only willing to contribute information

if this is very easy to accomplish. We could not provide this quality of service

from the start. Hence our knowledge warehouse is still rather small, but large

enough to show the viability of our approach. Besides fancy interfaces, the

most urgent needs will be the improvement of provisioning. There are some

machine learning approaches (e.g. [22]) that may help with dedicated subtasks

of the information provisioning process. Our general experience, however, is

that there is no single tool or technique that �ts all needs, but there is a

conceptual strategy that ties up all the loose ends, viz. ontologies.

References

[1] R.B. Altmann, M. Bada, X.J. Chai, M. Whirl Carillo, R.O. Chen, and N.F.

Abernethy. RiboWeb: An Ontology-based System for Collaborative Molecular

Biology. IEEE Intelligent Systems, 14(5):68{76, September/October 1999.

[2] R. Benjamins, D. Fensel, and S. Decker. KA2: Building Ontologies for the

Internet: A Midterm Report. International Journal of Human Computer

Studies, 51(3):687, 1999.

[3] T. Berners-Lee. Weaving the Web. Harper, 1999.

[4] V. Chaudri, A. Farquhar, R. Fikes, P. Karp, and J. Rice. OKBC: A

Programmatic Foundation for Knowledge Base Interoperability. In Proceedings

15th National Conference on Arti�cial Intelligence (AAAI-98), pages 600{607,

1998.

[5] W. Dalitz, M. Gr�otschel, and J. L�ugger. Information Services for Mathematics

in the Internet (Math-Net). In A. Sydow, editor, Proceedings of the 15th

IMACS World Congress on Scienti�c Computation: Modelling and Applied

Mathematics, volume 4 of Arti�cial Intelligence and Computer Science, pages

773{778. Wissenschaft und Technik Verlag, 1997.

[6] T. Davenport and L. Prusak. Working Knowledge: How organizations manage

what they know. Harvard Business School Press, 1998.

[7] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service

for RDF. In Proceedings of the W3C Query Language Workshop (QL-98) ,

Boston, MA, December 3-4, 1998.

[8] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based

Access to Distributed and Semi-Structured Information. In R. Meersman et al.,

editors, Database Semantics: Semantic Issues in Multimedia Systems, pages

351{369. Kluwer Academic Publisher, 1999.

25

[9] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query

Language for XML. In Proceedings of the 8th Int. World Wide Web Conf.

(WWW'8), Toronto, May 1999, pages 1155{1169. Elsevier Science B.V., 1999.

[10] M. Erdmann and R. Studer. Ontologies as Conceptual Models for XML

Documents. In Proceedings of the 12th International Workshop on Knowledge

Acquisition, Modelling and Mangement (KAW'99), Ban�, Canada, October,

1999.

[11] D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: The Very High

Idea. In Proceedings of the 11th International Flairs Conference (FLAIRS-98),

Sanibel Island, Florida, May, 1998.

[12] M. Fernandez, D. Florescu, J. Kang, and A. Levy. Catching the Boat with

Strudel: Experiences with a Web-Site Management System. In Proceedings of

the 1998 ACM Int. Conf. on Management of Data (SIGMOD'98) , Seattle, WA,

pages 414{425, 1998.

[13] P. Fr�ohlich, W. Neijdl, and M. Wolpers. KBS-Hyperbook - An Open Hyperbook

System for Education. In 10th World Conf. on Educational Media and

Hypermedia (EDMEDIA'98), Freiburg, Germany, 1998.

[14] T. R. Gruber. A Translation Approach to Portable Ontology Speci�cations.

Knowledge Acquisition, 6(2):199{221, 1993.

[15] M. Kesseler. A Schema Based Approach to HTML Authoring. In Proceedings

of the 4th Int. World Wide Web Conf. (WWW`4). Boston, December, 1995.

[16] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and

Frame-Based Languages. Journal of the ACM, 42:741{843, 1995.

[17] N. Kushmerick. Wrapper Induction: EÆciency and Expressiveness. Arti�cial

Intelligence. in press.

[18] L. Lamping, R. Rao, and P. Pirolli. A Focus+Context Technique Based on

Hyperbolic Geometry for Visualizing Large Hierarchies. In Proceedings of the

ACM SIGCHI Conference on Human Factors in Computing Systems, pages

401{408, 1995.

[19] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web Agents. In

Proceedings of First International Conference on Autonomous Agents, 1997.

[20] P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In

Proceedings of the 8th Int. World Wide Web Conf. (WWW`8), Toronto, May

1999, pages 1403{1419. Elsevier Science B.V., 1999.

[21] H. Maurer. Hyperwave. The Next Generation Web Solution. Addison Wesley,

1996.

[22] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A Machine

Learning Approach to Building Domain-Speci�c Search Engines. In Sixteenth

International Joint Conference on Arti�cial Intelligence (IJCAI-99), pages 662{

667, 1999.

26

[23] E. Mena, V. Kashyap, A. Illarramendi, and A. Sheth. Domain Speci�c

Ontologies for Semantic Information Brokering on the Global Information

Infrastructure. In N. Guarino, editor, Formal Ontology in Information Systems.

IOS Press, 1998.

[24] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proceedings

of the W3C Query Language Workshop (QL-98) , Boston, MA, December 3-4,

1998.

[25] A. Sahuguet and F. Azavant. Wysiwyg Web Wrapper Factory (W4F). Technical

report, 1999. http://db.cis.upenn.edu/DL/WWW8/index.html.

[26] UMLS. Uni�ed Medical Language System .

http://www.nlm.nih.gov/research/umls/.

[27] W3C. XML Speci�cation. http://www.w3.org/XML/, 1997.

[28] W3C. RDF Schema Speci�cation. http://www.w3.org/TR/PR-rdf-schema/,

1999.

[29] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for

Resource Discovery. Number 2413 in IETF. The Internet Society, September

1998.

[30] G. Wiederhold and M. Genesereth. The Conceptual Basis for Mediation

Services. IEEE Expert / Intelligent Systems, 12(5):38{47, September/October

1997.

Vitae

Ste�en Staab is Assistant Professor for Applied Computer Sci-

ence at Karlsruhe University. He has published in the �elds of

computational linguistics, information extraction, knowledge

representation and reasoning, knowledge management, knowl-

edge discovery, and intelligent systems for the web. Ste�en

studied computer science and computational linguistics be-

tween 1990 and 1998, earning a M.S.E. from the Univ. of

Pennsylvania during a Fulbright scholarship and a Dr. rer. nat. from Freiburg

University during a scholarship with Freiburg's graduate program in cognitive

science. Since then, he has also been working as a consultant for knowledge

management at Fraunhofer IAO and at the start-up company Ontoprise.

27

Juergen Angele received the diploma degree in computer sci-

ence in 1985 from the University of Karlsruhe. From 1985 to

1989 he worked for the companies AEG, Konstanz, and SEMA

GROUP, Ulm, Germany. From 1989 to 1994 he was a research

and teaching assistant at the University of Karlsruhe. He did

research on the operationalization of the knowledge acquisition

language KARL, which led to a Ph.D. from the University of

Karlsruhe in 1993. In 1994 he became a full professor in applied

computer science at the University of Applied Sciences, Braunschweig, Ger-

many. In 1999 he cofounded the company Ontoprise together with S. Decker,

H.-P. Schnurr, S. Staab, and R. Studer and has been CEO of Ontoprise since

then. His interests lie in the development of knowledge management tools and

systems, including innovative applications of knowledge-based systems to the

WWW.

Stefan Decker is working as a PostDoc at Stanfords Infolab

together with Prof. Gio Wiederhold in the Scalable Knowl-

edge Composition project on ontology articulations. He has

published in the �elds of ontologies, information extraction,

knowledge representation and reasoning, knowledge manage-

ment, problem solving methods and intelligent systems for

the web. He is one of the designers and implementers of the

Ontobroker-System. Stefan Decker studied Computer Science and Mathemat-

ics at the University of Kaiserslautern and �nished his studies with the best

possible result in 1995. From 1995-1999 he did his PhD-studies at the Univer-

sity of Karlsruhe, where he worked on the Ontobroker project.

Michael Erdmann gained his Master Degree in Computer Sci-

ence from the University of Koblenz (Germany) in 1995. Since

October 1995 he works as a junior researcher at the University

of Karlsruhe (Germany). He is a member of the Ontobroker-

Project-Team and currently engaged in �nishing his PhD.

about the relationship between semantic knowledge modelling

with ontologies and XML.

Andreas Hotho is a Ph.D. student at the Institute of Applied

Computer Science and Formal Description Methods at Karl-

sruhe University. He earned his Master's Degree in informa-

tion systems from the University of Braunschweig (Germany)

in 1998. His research interests include the application of data

mining techniques on very large databases and intelligent Web

applications.

28

Alexander Maedche is a Ph.D. candidate at the Institute of

Applied Computer Science and Formal Description Methods

at Karlsruhe University. He received his diploma in industrial

engineering (computer science, operations research) in 1999

from Karlsruhe University. His research interests include on-

tology engineering, machine learning, data and text mining

and ontology-based applications.

Hans-Peter Schnurr is a Ph.D. candidate at the Institut of

Applied Computer Science and Formal Description methods

at Karlsruhe University. He received his diploma in industrial

engineering in 1995 from Karlsruhe University. Between 1995

and 1998, Hans-Peter was working as a researcher and prac-

tice analyst at McKinsey & Company and is co-founder of the

start-up company Ontoprise, a knowledge management solu-

tions provider. His current research interests include knowl-

edge management methodologies and applications, ontology engineering and

ontology-based applications.

Rudi Studer obtained a Diploma in Computer Science at the

University of Stuttgart in 1975. In 1982 he was awarded a

Doctors degree in Mathematics and Computer Science at the

University of Stuttgart, and in 1985 he obtained his Habilita-

tion in Computer Science at the University of Stuttgart. From

January 1977 to June 1985 he worked as a research scientist at

the University of Stuttgart. From July 1985 to October 1989

he was project leader and manager at the Scienti�c Center of IBM Germany.

Since November 1989 he has been Full Professor in Applied Computer Science

at the University of Karlsruhe. His research interests include knowledge man-

agement, intelligent Web applications, knowledge engineering and knowledge

discovery. He is co-founder and member of the scienti�c advisory board of the

knowledge management start-up company Ontoprise.

York Sure is a Ph.D. candidate at the Institut of Applied Com-

puter Science and Formal Description Methods at Karlsruhe

University. He received his diploma in industrial engineering in

1999 from Karlsruhe University. His current research interests

include knowledge management, ontology merging and map-

ping, ontology engineering and ontology-based applications.

29

