
Synergy-based Workload Management

Martina-Cezara Albutiu
supervised by Alfons Kemper (kemper@in.tum.de)

Technische Universität München
Boltzmannstr. 3

Garching, Germany

albutiu@in.tum.de

ABSTRACT
Workload management aims at the efficient execution of
queries on a database. In this context, scheduling plays a
crucial role. A vast number of scheduling approaches have
been developed, most of them belonging to one of two cat-
egories: analysis and monitoring. However, they mainly ei-
ther focus only on one possible kind of impact of queries on
each other’s execution time, or require an offline phase for
information gathering. In contrast, the approach we pur-
sue does not require any offline phase and flexibly adapts to
any database system or hardware configuration. It bases on
the fact that the multiple requests that are executed con-
currently in a database for performance purposes may have
a positive impact on the execution of each other, e.g. due
to caching or complementary resource consumption, or im-
pede each other’s execution, e.g. in the case of resource con-
tention. Both kinds of impacts are reflected by the execution
time of the workload. We apply a monitoring approach to
derive those impacts – called synergies – between request
types fully automated at runtime from measured execution
times. Thereby, our approach works completely indepen-
dent from changing synergies or configurations and easily
handles new query types.

1. INTRODUCTION
In database systems, a set of queries is executed concur-

rently in order to provide a good utilization of the system’s
resources like processors and memory. The concurrently
running queries may interact with each other and thus influ-
ence each other’s execution time positively or negatively. A
common example for positive interactions between queries
running in a database system are caching effects. Negative
interactions may occur in the case of resource contention. By
detecting and exploiting positive influences between queries
the throughput in the database system can be maximized.
On the other hand, negative query combinations with un-
predictable execution times can be avoided. The influence

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

of a query on another query – we call this the synergy be-
tween the two queries – depends on a multitude of factors,
e.g. the system’s hardware and configuration, implementa-
tion details of the database operators, and programs running
on the same system as the database. Thus, the prediction
of query influences is a complex task and prediction models
are often based on probably arguable assumptions.

In this paper, we present a different approach considering
the database as a black box. By monitoring the execution
times of different query sets at runtime, we draw conclusions
regarding the synergies of queries. This information can also
instantly be applied by the scheduling component in order
to maximize throughput.

2. RELATED WORK
Workload management, which includes scheduling tech-

niques, is a part of many products like the HP Workload
Manager for Neoview [3], the IBM Query Patroller for DB2 [7],
the Microsoft SQL Server [6], and the Oracle Database Re-
source Manager [9]. Krompass et al. [4] present an overview
of current workload management techniques and implemen-
tations. Common approaches for scheduling are FIFO and
priority-based. However, none of the commercial products
considers influences of queries on each other.

Approaches that take into account impacts of queries can
be classified according to the technique of impact detection:
those based on analysis examine the workload queries in or-
der to determine sources of synergies. For example common
subqueries [2, 10] need only be optimized once for all the
queries in which they occur. But also shared data is a source
of performance gains, e.g. by using cooperative scans as in-
troduced by Zukowski et al. [11]. Analysis techniques focus
on one specific source of synergy which is then exploited.
However, there are a great number of different sources of
positive and negative synergy to be taken into considera-
tion which may also neutralize each other. Furthermore,
the analysis of queries is often a complex task requiring lots
of information which is not always provided by a database
system. Approaches based on monitoring by contrast con-
sider the database system and the queries as black boxes.
Information is gained by observing the execution of queries
and drawing conclusions. O’Gorman et al. [8] compare the
number of disk accesses for the pairwise sequential and con-
current execution of TPC-H queries. This way, they iden-
tify caching effects without analyzing the underlying data of
both queries. However, this approach only detects pairwise
synergies and requires the synergy detection to take place

Client

Classification

Queueing

Scheduling

Synergy

Computation

Monitoring

DBMS

O
p
ti

m
iz

at
io

n

C
o

m
p

o
n

en
t

Figure 1: Architecture.

before the actual scheduling.
An approach which is similar to ours in terms of the com-

putational model is that of Ahmad et al. [1]. However, their
approach is only applicable to batch workloads and it re-
quires an offline sampling phase.

3. APPROACH
Our approach for the detection and exploitation of query

synergies is totally independent from the database system
used and transparent to the clients issuing the database re-
quests. In this section we present the underlying principles
of the approach and the architecture of the optimization
component.

Monitoring

We focus on a monitoring approach which considers the
database system as well as the executed queries as black
boxes. That is, no information about the resource require-
ments of requests or the configuration of the database sys-
tem is available. Only measurements that can be obtained
by monitoring the system serve as input to the optimiza-
tion model. A short overall execution time indicates that
the order in which the workload queries are executed per-
mits to exploit sources of synergies like caching and at the
same time avoids counterproductive effects like resource con-
tention. Although it is not obvious what the sources of
synergies are, the main goal of scheduling, i.e. minimizing
the workload execution time, is met. Our approach there-
fore considers execution time as the main indicator for good
scheduling.

Architecture

In order to realize the approach in a database independent
way we use the architecture depicted in Figure 1: A middle-
ware layer between client and database intercepts the client
requests and forwards them to the optimization component.
Here, the requests are first classified. The classification iden-
tifies queries only differing in parameter values but having
the same SQL skeleton. Those queries are assigned the
same type. Under certain assumption like uniformly dis-
tributed data queries having the same type will have the
same execution characteristics (like CPU-intensive, short-
running, etc.). Of course we are aware of the fact that in
case of data skew a query q being short-running with param-
eter x ∈ [0, 100] may become long-running with parameter
y ∈ [101, 110]. The approach can easily handle such a case
by including parameter values into the classification pro-
cess, thus forming two types of queries q1 and q2 out of the
SQL skeleton of q for the intervalls [0, 100] and [101, 110],
respectively. Thereby, x and y can be determined using
2D classification techniques. The classified queries are then
queued in the middleware. Whenever the database can ac-
cept new requests a scheduling algorithm chooses a set of

queries out of the queue to be executed next. The size of
the set corresponds to the multi-programming level (MPL)
and is determined in advance such that the database load is
maximized. After the execution of the query set has finished
the monitored execution time is fed back into the optimiza-
tion component where the synergies are computed.

Training and Optimization Phase

The approach consists of two phases: the training phase
and the optimization phase. Depending on the phase, differ-
ent scheduling algorithms are applied. During training, the
main goal of scheduling is to determine synergies between
queries. Having learned about those synergies, scheduling
during the optimization phase makes use of them in order
to maximize the throughput. In both phases, the knowledge
base consisting of different query combinations and their ex-
ecution times is continuously extended by feeding back new
monitoring data. There is no general best point in time for
switching from training to optimization phase. It depends
on the database workload and the system load as well as on
the amount of synergy information already obtained. The
person in charge has to make a trade-off between complete-
ness and accuracy of synergy information and the duration
of unoptimized scheduling. However, as new information
is continuously fed into the model not only during training
but also during optimization, yet incomplete synergy infor-
mation may be completed later on.

Synergy Computation

As stated above, we assume that the MPL has been deter-
mined beforehand in a way that maximizes the database
throughput. This may be done based on expert knowledge.
In order to accurately determine influences of certain queries
on others, we execute the queries of a workload block-wise,
i.e. only after all queries of one block have finished execution
the next block is submitted to the database.

Within a block of MPL many queries, each of the queries
influences the execution of each of the other block queries,
either positively or negatively. In other words, there exist
pairwise synergies between the queries of one concurrently
executed block which either result in a shorter overall exe-
cution time (if the synergies are positive) or in a longer one
(if they are negative). Thus, the overall execution time of
a block of queries (rt, response time) can be represented by
a linear combination of

(

MPL

2

)

execution time shares sxy of
two query types x and y. The execution time for a block of
four concurrently executed queries a, b, c and d is thus:

rtabcd = sab + sac + sad + sbc + sbd + scd

Each share sxy represents the influence that the concurrent
execution of the queries x and y have on the overall execution
time. If all of the block’s queries have equal execution times
and there are no synergies, the influences (shares) are equal.
A block consisting of queries of different complexity (and
thus different execution times) results in greater values of
the shares containing complex queries and smaller values of
the shares representing less complex queries. Also, if two of
the queries have synergies, their share is smaller which also
results in a smaller response time of the block.

The synergy of a query x with respect to another query
y is determined by putting their execution time share sxy

in relation to the execution time shares of x with all known
query types. The set of known query types is denoted by
Q and may increase during runtime. We define the synergy
synxy between two queries x and y, i.e. the impact on the

execution time of x caused by the concurrent execution of y,
as the difference between the average execution time share
of x with all other known query types q and the share of x

and y:

synxy =

∑

q∈Q
sxq

|Q|
− sxy.

Yet unknown share values sxy distort the computed synergy

as subtracting 0 from
∑

q∈Q sxq

|Q|
will result in the highest pos-

sible synergy value synxy. This is why we assume unknown
values sxy to be equal to the average of all known values
for the given matrix row, so that the resulting synergy is
0. Contrary to the execution time shares, the synergy be-
tween two query types is not symmetric, i.e. synxy 6= synyx.
Query x may benefit more from the concurrent execution of
query y than the other way round, e.g. if the data needed
by y is a superset of the data needed by x and caching is
the main source of synergy. The determined synergies can
be stored in a matrix, called the synergy matrix.

In order to determine accurate values of the execution
time shares, each query pair is executed in several combina-
tions with other query types in Q, thus collecting a number
of response time values that form a linear system of equa-
tions of the following form:

rtabcd = sab + sac + sad + sbc + sbd + scd + eabcd

The slack variable eabcd accounts for measurement errors
or execution time fluctuation due to external influences. If
a combination is executed repeatedly, the response time
value rt is set to the average of the measured execution
times. Thereby, the model adapts to execution time varia-
tions which may be accidentaly (e.g. by external influences)
or reasonable (e.g. if the system configuration has been
changed). The execution of new combinations provides new
equations to the system thereby allowing a more precise so-
lution to be determined.

By definition, solving a linear system of equations with
n unknowns requires n equations. In our case, if we as-
sume that |Q| = 5 there are

(

5
2

)

+5 = 15 different shares

(of which
(

5
2

)

are of the form sxy with x 6= y and 5 are
of the form sxx). Without considering the slack variables
this would require 15 different combinations to be executed.
From our example above you can conclude that at the be-
ginning of the workload execution nearly every combination
will contribute a few new unknowns and just one equation.
Therefore, the linear system of equations is generally under-
determined and requires an optimization objective. We em-
ploy the principle of maximum entropy proposed by Markl
et al. [5] for estimating selectivities of composed predicates.
Following this principle we include all of the collected knowl-
edge about combination execution times in the computation
but don’t make any further assumptions. The uncertainty
due to the under-determination of the system of equations is
distributed equally over the variables. Our objective func-
tion thus has two goals: to equally distribute the execution
time over the different execution time shares and to mini-
mize the slack variables:

opt = min

{

σ(S)

avg(S)
+

∑

e∈E

e

}

,

where σ and avg denote the standard deviation, respectively
the average, E is the set of all slack variables e, and S the

set of all shares sxy.

The coefficient of variation σ(S)
avg(S)

models the equal dis-

tribution of the execution time over the shares. The error
sum

∑

e∈E
e assures that the slack variables are minimized.

The following example briefly demonstrates the approach.
We assume that the MPL is set to three and the system
knows of four different query types a, b, c, and d by now.
The following equations represent the executed combina-
tions, the respective shares, and the time units the execution
took:

rtabc = sab + sac + sbc + eabc = 200

rtabd = sab + sad + sbd + eabd = 180

rtacd = sac + sad + scd + eacd = 250

rtbcd = sbc + sbd + scd + ebcd = 260

After the combination a, b, and c is executed a second time,
with a measured time of 190 time units, the equation system
is updated by computing the average value of rt for the first
equation:

rtabc = sab + sac + sbc + eabc = 195

Figure 2 shows the development of the shares xxy as well as
the resulting synergy matrix.

Training and Optimization Algorithms

The scheduling algorithms during both the training and the
optimization phase determine a group of MPL many queries
to be executed next. During training, the main scheduling
goal is to gather as much information as possible about syn-
ergies, i.e., to best fill the synergy matrix. This is done by
systematically executing different query combinations and
monitoring their execution times. Each of the monitored
combination execution times provides either a new equation
(and thus at least one new value in the synergy matrix) or
contributes to a more meaningful average execution time of
an already executed combination (and thus results in more
precise values in the synergy matrix). We examined the
following different scheduling algorithms for training:

FIFO The queries are executed in the order in which they
arrive.

MaxUnknown The goal of this strategy is to quickly fill
the synergy matrix by selecting combinations of queries
which provide the most new synergy values.

MinUnknown The goal of this strategy is to fill the syn-
ergy matrix with as precise values as possible by se-
lecting combinations of queries for which most of the
variables in the system of equations are known.

MinComb This strategy selects combinations which have
been executed the rarest. Following this strategy, the
matrix will be enhanced by at least one new value af-
ter each combination execution. As soon as each of
the combinations has been executed at least once the
combinations’ execution times are updated uniformly.

MinCombMaxUnknown The goal of this strategy is to
combine the goals of MinComb and MaxUnknown, i.e.
to quickly fill the matrix and uniformly update the
system of equations.

MinCombMinUnknown The goal of this strategy is to
combine the goals of MinComb and MinUnknown, i.e.
to fill the matrix with precise values and uniformly
update the system of equations.

a

b

c

d

a b c d
x

y

67

67 67

(a) sxy – one equation

a

b

c

d

a b c d
x

y

63

68

58

68

58

(b) sxy – two equations

a

b

c

d

a b c d
x

y

40

75

67

80

72 108

(c) sxy – four equations

a

b

c

d

a b c d
x

y

21 -14 -7

24 -16 8

13 8 -20

15 10 -25

(d) synergies synxy

Figure 2: Development of the shares and the synergy matrix.

During the optimization phase, the main scheduling goal
is to exploit the queries’ synergies by selecting the query
combinations to be executed based on the synergy matrix.
Thereby, a greedy approach is employed which determines
only one query combination to be executed at a time. The
computation of a complete schedule for the workload has ex-
ponential complexity and therefore is not efficiently applica-
ble. The scheduling algorithm MaxSyn chooses the queries
with the highest combination synergy sync, which is com-
puted as follows:

sync =
∑

sxy∈c

(

synxy + synyx

)

Some of the queries may have positive synergies while oth-
ers may influence each other’s execution in a negative way.
Positive and negative synergies between query pairs within
a combination can cancel each other out. However, the com-
bination containing the most synergetic query pairs has the
highest combination synergy value.

4. SIMULATION
We developed a database simulation framework which en-

ables us (1) to evaluate different scheduling algorithms in
a timely manner and (2) to verify the synergy matrix val-
ues. The second point is of particular importance as the
presented approach is based on unsupervised learning and
thus the solution cannot be validated using real data.

Simulation Framework

The simulation framework allows for the modelling of dif-
ferent types of queries, e.g. short-running, long-running,
data intensive or processor intensive, and a given database
system described by its cache size and resource capacities.
Based on these parameters, the framework computes the ex-
ecution time of the simulated queries corresponding to their
resource requirements and impacts on each other. There are
numerous sources of synergies, some of them like caching
are obvious while others are not. In our simulation frame-
work we had to choose a set of synergy sources on which
to focus. Of course this set is not complete but it never-
theless provides a reasonable database simulation for our
purposes. The following sources of (anti-)synergies are sup-
ported by the framework as described in Table 1: caching,
complementary resource requirements, resource contention,
lock contention, memory thrashing.

Caching and complementary resources are sources of pos-
itive synergy. Caching bypasses the slow disk access times
and thus results in better performance. If computation in-
tensive queries are executed concurrently with data intensive

queries, they don’t get in the way of each other with respect
to resources, in contrary their execution results in a good
utilization of the system resources. Resource and lock con-
tention as well as memory thrashing are sources of negative
synergy (anti-synergy). They prevent queries from progress-
ing by not providing enough resource capacity and holding
back needed data or paging it out of memory, respectively.

In the simulation framework, query types are identified
by their total amount of used processor cycles and disk op-

erations, and the required main memory. By varying the
query type parameters we can model computation intensive
queries like highly complex data analysis as well as disk in-
tensive queries reading a lot of data. A high main memory
value represents e.g. query types containing sorting or other
main memory intensive functions. Furthermore, we model
the cache synergies and lock anti-synergies between queries
as partial binary functions. Cache synergies are given by
caching(q1, q2) = c, c ∈ N , where c is the number of disk
operations that can be saved due to caching advantages.
Lock anti-synergies are realized by reducing the number of
processor cycles that can be assigned to a certain query by
locking(q1, q2) = l, l ∈ N . The simulated database is char-
acterized by the processor and disk capacities, i.e. the pro-
cessor and disk cycles the database can perform per second,
and available main memory. Additional parameters are an
out of RAM penalty and maximum processor and disk quotas

per query.
The execution of a set of queries is simulated by (1) com-

puting each query’s share of the system resources and (2)
determining the queries’ progress assuming they are allo-
cated the computed shares. The first step is conducted for
the current point in time based on the queries’ requirements
and impacts on other queries and on the system parame-
ters. In the second step, a short period of execution time is
simulated during which the queries consume their resource
shares. After that, the two steps are repeated for the new
point in time.

Benchmarks

We conducted several benchmarks in order to efficiently
evaluate different training algorithms in terms of their abil-
ity to fill the synergy matrix quickly and with accurate val-
ues. The more accurate the values in the synergy matrix
are, the more precisely we can predict the execution time
of a certain combination of queries during the optimization
phase, thereby enabling us to schedule the queued queries in
a way that maximizes throughput. The quality measure we
employ in order to evaluate the accuracy of the synergy ma-
trix values is the deviation of the estimated execution time

source of synergy type simulation

caching positive caching(q1, q2) = c, c ∈ N , where c is the number of disk operations that
can be saved due to caching advantages

complementary resource
requirements

positive query types with complementary requirements of different resources

resource contention negative query types with high requirements of the same resource
lock contention negative decrease of processor share (and thus progress) by locking(q1, q2) = l, l ∈ N
memory thrashing negative limited database main memory, main memory requirements of query types,

thrashing penalty

Table 1: Simulated sources of synergies.

of a combination c, denoted by est-rtc, from the simulated
(and later real) execution time real-rtc, which we call the
error coefficient ecc:

ecc =
|est-rtc − real-rtc|

real-rtc

The prediction error errpred is defined as the average error
coefficient over all possible query combinations of size MPL:

errpred = avg (ecc)

As this measure is meaningful only after the matrix has been
filled for the most part we also consider a second measure,
the net prediction error, which is computed the same way as
the prediction error but only for not-empty matrix entries.

For our benchmarks we defined five different query types
having similar numbers of disk operations. One of the types
has constant disk and processor requirements over time while
the remaining two pairs of queries are complementary in
their requirements over time. The pairs also differ in their
processor usage. All of the queries have more or less cache
synergies and some of them have lock anti-synergies. We
employed a MPL of three in the benchmarks.

Figure 3(a) shows the prediction error dependent on the
number of queries during training for the different training
algorithms. From a training phase of 70 queries, the predic-
tion error is acceptable for each of the training algorithms,
and does not change significantly anymore. MinComb and
its variations MinCombMaxUnknown and MinCombMinUn-

known perform best, FIFO lies in the middle field, and Min-

Unknown and MaxUnknown achieve the worst results. Min-

CombMaxUnknown and MinCombMinUnknown both quickly
reach a small prediction error after only about 30 training
queries while MinComb results in the greatest prediction er-
ror of all training algorithms with such a training length.
When considering the net prediction error shown in Fig-
ure 3(b), the reason for this becomes obvious. MinComb

has the smallest net prediction error while the net prediction
error of MinCombMaxUnknown and MinCombMinUnknown

is almost equal to the prediction error. Thus, the bad over-
all prediction error performance of MinComb follows from
empty synergy matrix fields which of course result in an
high error coefficient for the combinations containing the re-
spective query pairs. The behavior of FIFO is as expected
because by chance, as many good combinations (i.e. combi-
nations that provide important information for the synergy
matrix) as bad combinations (e.g. always the same combina-
tion not serving for new information) may be selected, thus
resulting in a middle-rate performance. Also the predic-
tion error of MaxUnknown is not surprising as this strategy
quickly fills the synergy matrix with (unprecise) values, but

does not effectively try to improve the values after that. The
bad performance of MinUnknown compared to MinComb-

MinUnknown with regard to both the prediction error and
the net prediction error can be explained by having a look at
the implementation of those algorithms. Both of them pre-
fer combinations with the least unknown variables, however
the first criterion of MinCombMinUnknown is the number
of occurrences for the different combinations with are deter-
mined in a sorted order. Therefore, it is more likely that
combinations are selected which not only provide a precise
new value but at the same time also provides new infor-
mation for the already known variables which improves the
precision of the synergy matrix in total.

The comparison of Figures 3(a) and 3(b) also confirmes
another expectation. With five query types and the MPL
being three there are 35 different combinations of queries
(10 with different query types, 20 with two queries of the
same type, and 5 with all three queries of the same type).
Therefore, we expect the synergy matrix to be filled after
a training phase of 35 · 3 = 105 queries. As the graphs in
Figures 3(a) and 3(b) are quite equal for training phases of
this length or longer, i.e. the net prediction error does not
differ from the prediction error because of empty synergy
matrix fields, our expectation is fulfilled.

5. CURRENT AND FUTURE WORK
At the moment we are conducting benchmarks on real

database systems (in addition to our simulation framework)
using the schema and data provided by the TPC-E and
TPC-H benchmarks. However, as the trend is moving away
from the separation of OLTP running on transactional data-
bases and OLAP processed in data warehouses more and
more to operational business intelligence, the diversity of
workloads being executed in one database system will in-
crease. In order to benchmark the applicability of our syn-
ergy model in such a scenario, we are planning to develop
a benchmark environment which models highly heteroge-
neous information systems – hosting the data and handling
the queries of various applications. Further, we plan to en-
hance the model as follows: As a first step the block size will
be reduced so that the model will be scalable for the large
MPLs expected in OLTP environments or infrastructures
with high-performance hardware. Therefore, the model has
to make use of groups, i.e. the combination size is not set to
MPL, but to a smaller group size g. Of course, the MPL -
g queries running concurrently with the group influence the
group queries and the challenge will be to minimize those
inter-group influences. Second, in order to fully exploit the
MPL and thus the database resources, the block-wise ex-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

pr
ed

ic
tio

n
er

ro
r

number of queries during training

FIFO
MaxUnknown

MinComb
MinCombMaxUnknown
MinCombMinUnknown

MinUnknown

(a) prediction error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

ne
t p

re
di

ct
io

n
er

ro
r

number of queries during training

FIFO
MaxUnknown

MinComb
MinCombMaxUnknown
MinCombMinUnknown

MinUnknown

(b) net prediction error (only known matrix fields)

Figure 3: Prediction error subject to the number of training queries and the training algorithm.

ecution has to be broken up, i.e. the number of concur-
rently executed queries in the database should always be
filled up to MPL. Here, the challenge is to correctly gather
information about synergies. As the queries are only partly
executed concurrently, their impact on each other may vary
depending on the amount of time they run together or on
the queries’ progress at the time they are processed in par-
allel. Another important point is that queries with negative
synergies relating to most of the other queries run the risk
of starvation as they are never scheduled. This problem has
to be addressed by the scheduling component. Finally, in
addition to only reacting to the arrival of queries at the mid-
dleware layer an advanced forecasting model which logs the
frequency with which different query types are submitted
and employs this knowledge in order to foresee the arrival of
queries with high synergy values relating to already queued
queries is planned.

In future work we are planning to develop a two-dimen-
sional synergy model which considers a second measure in
addition to execution time. The motivation therefore is that
combinations resulting in the same execution time may have,
e.g., completely different main memory requirements. This
reveals the potential of increasing the MPL or freeing main
memory (to be used for other applications) which may be
communicated to the DBA.

6. CONCLUSION
Although workload management is a highly examined field

in the database community, most of the up to now presented
approaches focus on only one source of synergy, thereby ig-
noring the potential influences of other synergy factors. Oth-
ers are not applicable at runtime as they require a preceding
offline phase in order to gather information. We develop an
approach which collects synergy information and flexibly in-
tegrates new query types at runtime. By using the execution
time of query combinations as an indicator for synergies,
we concentrate on optimizing the ultimate goal of schedul-
ing and at the same time do not run the risk of ignoring
any sources of synergy. Furthermore, our approach is com-
pletely independent of the underlying system’s hardware or

the database system used. In future work, the computed
query synergies will be applied to efficiently schedule het-
erogeneous database workloads.

7. REFERENCES
[1] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.

Modeling and Exploiting Query Interactions in Database
Systems. In Proc. of the ACM 17th Intl. Conf. on
Information and Knowledge Management (CIKM ’08),
Napa, California, USA, 2008.

[2] S. Choenni, M. L. Kersten, and J. F. P. van den Akker. A
Framework for Multi Query Optimization. In Proc. of the
8th Intl. Conf. on Management of Data (COMAD), pages
165–182, Madras, India, 1997.

[3] HP NeoView Workload Management Services Guide,
August 2007.

[4] S. Krompass, A. Scholz, M.-C. Albutiu, H. A. Kuno, J. L.
Wiener, U. Dayal, and A. Kemper. Quality of
Service-enabled Management of Database Workloads.
IEEE Data Eng. Bull., 31(1):20–27, 2008.

[5] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo,
U. Srivastava, and T. M. Tran. Consistent Selectivity
Estimation via Maximum Entropy. The VLDB Journal,
16(1):55–76, 2007.

[6] Microsoft SQL Server 2005 Books Online. http:
//msdn2.microsoft.com/en-us/library/ms190419.aspx,
September 2007.

[7] B. Niu, P. Martin, W. Powley, R. Horman, and P. Bird.
Workload Adaptation In Autonomic DBMSs. In Proc. of
the 2006 Conf. of the Center for Advanced Studies on
Collaborative Research (CASCON ’06), 2006.

[8] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple
Query Optimization by Cache-Aware Middleware Using
Query Teamwork. In Proc. of the 18th Intl. Conf. on Data
Engineering (ICDE), page 274, 2002.

[9] The Oracle Database Resource Manager: Scheduling CPU
Resources at the Application Level. http://research.
microsoft.com/~jamesrh/hpts2001/submissions/, 2001.

[10] N. Subramanian and S. Venkataraman. Cost Based
Optimization of Decision Support Queries using
Transient-Views. In Proc. of the ACM SIGMOD Intern.
Conf. on Management of Data, pages 319–330, June 1998.

[11] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Cooperative Scans: Dynamic Bandwidth Sharing in a
DBMS. In Proc. of the 33rd Intl. Conf. on Very Large
Data Bases (VLDB), pages 723–734, 2007.

