
Robust Concurrency Control in Main-Memory

DBMS: What Main Memory Giveth, the

Application Taketh Away

Ryan Johnson1, Kangnyeon Kim1, Tianzheng Wang1, Ippokratis Pandis2

University of Toronto1 and Cloudera2

{ryanjohn, knkim, tzwang}@cs.toronto.edu, {ippokratis}@cloudera.com

Modern systems with large main memories and massively parallel processors
have inspired many new high-performance OLTP systems [2–4,6], often referred
to as main memory DBMS (MMDBMS). These systems leverage spacious main
memory to fit the whole working set in DRAM with streamlined, memory-
friendly data structures; further, optimizations for multicore and multi-socket
hardware allow a much higher level of parallelism compared to conventional
database systems. With disk overheads and delays removed, transaction laten-
cies drop precipitously and worker threads can usually execute transactions to
completion without in- terruption. The result is a welcome reduction in con-
tention and less pressure on whatever concurrency control (CC) scheme might
be in place.

Meanwhile, database workloads are evolving to become increasingly hetero-
geneous, blending the gap between transaction and analytical processing. This
trend is at least partly enabled by the improved concurrency and reduced con-
tention offered by MMDBMS. Mixed workloads have two significant impacts
on CC, however. First, the read/write ratio increases from 2:1 (e.g. TPC-C)
to 10:1 or higher [1], usually by increasing the number of reads as the number
of writes remains stable. Second, workloads frequently include some fraction of
large transactions that are read-mostly rather than read-only, a trend reflected
in the TPC-E [5] benchmark. Unfortunately, both of these workload properties
mean an increase in effective concurrency control footprints, and increased pres-
sure on the CC scheme. As is usually the case, it appears that our workloads
stand ready to absorb any and all concurrency gains the MMDBMS has to offer.

In this talk, we argue that the shift to heterogenous workloads means effective
and robust CC schemes will become increasingly important for main-memory
DBMS going forward. A growing body of research shows that the CC schemes
currently in vogue with MMDBMS are not robust under contention, particularly
when short write-intensive transactions coexist with longer read-mostly transac-
tions. For example, the two most common families of approaches can be loosely
classified as two-phase locking (2PL) and optimistic concurrency control (OCC).
2PL is common in traditional disk-oriented systems, and is often criticized be-
cause of high overheads, its policy of blocking transactions (leading to deadlocks
and other scheduling problems), and a tendency to lock up (performance crash)
once the aggregate transactional footprint grows too large (a state quickly at-
tained when large transactions enter the system). OCC, on the other hand, never



2 Ryan Johnson1, Kangnyeon Kim1, Tianzheng Wang1, Ippokratis Pandis2

blocks readers—and may not even block writers—thus avoiding most scheduling
issues.

Although they differ in details, the rising generation of MMDMBS almost
universally adopts a form of OCC that is effectively single-versioned, with read
footprint validation at pre-commit [4, 6]. This type of approach suffers badly
in high-parallelism systems [7] because transactions must abort if any portion
of their read footprint is overwritten before they commit. Some systems [2, 3]
sidestep the issue entirely by adopting a single-threaded transaction execution
model, but that introduces a different set problems for mixed workloads.

In light of the weaknesses in 2PL and the common flavors of OCC, we next
highlight several alternative approaches to concurrency control. Some are lesser-
known (and worth taking more seriously); others are imperfect or still in progress,
but promising (and good candidates for further refinement); and we round out
the discussion with a few approaches that are new, unproven, and perhaps even a
little crazy (but worth exploring because they are so different they - or something
else just as wacky - might just work).

Finally, we close with a discussion of low-level issues (latching, thread schedul-
ing, etc.) and design decisions - particularly at the system architecture level—that
strongly influence the system’s ability to provide robust and effective CC. The
form of logging used, the storage management architecture, and scheduling poli-
cies for worker threads can impose drastic constraints on which forms of CC can
be implemented at all, let alone efficiently. We examine several existing systems
and show how their choice of CC is largely dictated by their system architecture
- for better or for worse - and that it can be difficult or impossible to adopt a
different CC scheme without significant changes to the rest of the system. The
point is not that such design choices should be avoided, but rather that they
should be made only with a full awareness of the consequences for concurrency
control. Time permitting, we will report on some early progress in designing
a MMDBMS from the ground up to support efficient concurrency control, and
how the resulting architecture does not necessarily sacrifice performance in other
areas.

References

1. S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson, I. Pandis, and
R. Stoica. Characterizing the new tpc-e benchmark via an i/o comparison study.
In SIGMOD Record, pages 13–24, 2011.

2. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: A
High-performance, Distributed Main Memory Transaction Processing System. In
PVLDB, pages 1496–1499, 2008.

3. A. Kemper and T. Neumann. HyPer: A Hybrid OLTP & OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In ICDE, pages 195–206,
2011.

4. P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling.
High-Performance Concurrency Control Mechanisms for Main-Memory Databases.
In PVLDB, pages 298–309, 2011.



Title Suppressed Due to Excessive Length 3

5. Transaction Processing Performance Council. The TPC-E benchmark, August 2014.
6. S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy Transactions in

Multicore In-Memory Databases. In SOSP, pages 18–32, 2013.
7. X. Yu, G. Bezerra, A. P. abd S. Devadas, and M. Stonebraker. Staring into the

abyss: An evaluation of concurrency control with one thousand cores. Technical
report, Technical Report, MIT CSAIL, 2014.


